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Application of Gaussian Approximating Functions to the
Solution of the Second Boundary Value Problem of

Elasto-Plasticity for 2D Isotropic Bodies
V. Romero1 and S. Kanaun2

Summary
In this work Gaussian approximating functions proposed in the works of V.

Maz’ya are used for the solution of the integral equations of elasto-plasticity for
isotropic bodies. The use of this functions esentially simplify the calculation of
the elements of the final matrix of the linear algebraic equations of the discretized
problem. The elements of this matrix turn to be a combination of simple elementary
functions. The method is applied to a 2D rectangular body that has a cut on a border
and is subjected to axial tension. The convergence of the method is studied on this
example.

Introduction
A new class of approximating functions of Gaussian type was proposed in the

works of Maz’ya [1,2] for the solution of a wide class of integral equations of
mathematical physics. The theory of approximation by Gaussian functions was
developed in the works of Maz’ya and Schmidt [3,4]. These functions were used
for the solution of static and dynamic problems of elasticity for plane bodies with
cracks [5,6,7]. The main advantages of using these functions are the following:

• The action of many integral operators of mathematical physics on Gaussian
approximating functions are expressed in the form of combinations of some
standard functions that can be tabulated and retained in the computer memory
to be used afterwards for the solution of a wide class of similar problems.
essentially reducing the time required for the calculation of the matrix of the
discretized problem.

• If Gaussian functions are used for approximation, the information needed
for discretization of the problem is the definition of only coordinates and the
normal vectors of equidistant points (nodes) in the boundary region.

In this work we apply the class of Gaussian approximating functions to the
solution of the second boundary value problem of elasto-plasticity.

1MSc. Victor Manuel Romero-Medina, Proffessor and Researcher in the Department of Basic
Sciences and Engineering at Universidad del Caribe, vmromero@ucaribe.edu.mx

2Dr. Sergey Kanaun Mironov: Proffessor and Researcher in the Mechanical Engineering Depart-
ment at ITESM Campus Estado de México, kanaoun@itesm.mx



234 Copyright c© 2007 ICCES ICCES, vol.3, no.4, pp.233-241, 2007

Integral Equations for the Second Boundary Value Problem of
Elasto-Plasticity

Let us consider a body that ocuppies the region Ω in the 3D space with a smooth
boundary Γ . The material of the body is homogeneous and isotropic with elastic
moduli tensor C. The system of differential equations of elasto-plasticity has the
form [8]:

∂iσ i j= 0; σ i j= Ci jklεe
kl; εkl= εe

kl+ε p
kl

Roti jkl εkl= 0; ε p
i j= F i j (σ) ; ∂i=

∂
∂xi

(1)

Here, σ is the stress tensor, εe is the elastic deformation, ε p is the plastic
deformation, ε is the total deformation, Rot is the Saint-Venant incompatibility
operator [8], and F (σ ) is a functional that defines plastic deformation ε p as a
function of stress tensor σ0 and xi are cartesian coordinates in the space.

The stress tensor that satisfies this system of differential equations may be writ-
ten as [9]

σ i j=
∫

Γ
Si jkl

(
x−x′

)
nl
(
x′
)

bk
(
x′
)

dΓ′+
∫

Ω
Si jkl

(
x−x′

)
ε p

kl

(
x′
)

dx′. (2)

Here n(x) is the unit vector normal to the boundary Γ , b(x) is an arbitrary
vector function on Γ , S(x) is the fourth rank tensor function defined as

Si jpq(x) = −Ci jkl∇k∇mGls(x)Cmspq−Ci jpqδ (x), ∇i=
∂

∂xi
, (3)

where, x is a point in the medium, δ (x) is the Dirac delta-function and Gls(x) is
the Green function that satisfies the following equation

∇iCi jkl∇kGlm(x) = −δ i jδ (x), (4)

δ i j is the Kronecker symbol.

Second integral in the right hand side of Eq.(2) represents the stresses due to
plastic deformation ε p , so

σ p=
∫

Ω
S
(
x−x′

)
ε p (x′)dx′. (5)

For the stress-strain analysis in 2D-case equation similar to Eq.(2) takes the
form

ε33 (x)=
1
E

[
− 2μ

1−ν
ε p

33 (x)+ σ̂ 33 (x)−ν (σ11 (x)+σ 22 (x))
]
+ε p

33 (x) .
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a) Plane deformation state. For this situation the strain component ε33 = 0 , so
σ̂33 (x) takes the form

σ̂33 (x)= ν [σ11 (x)+σ 22 (x)]+
ν2E

1−ν2 ε p
33 (x) ; x = (x1,x2) (6)

b) Plane stress state. For this situation stress component σ33 = 0 , so σ̂ 33 (x)
takes the following representation

σ̂33 (x) =
E

1−ν2 ε p
33 (x) . (7)

The stress tensor in Eq.(2) should satisfy the following boundary conditions

σ i j(x)n j(x)
∣∣
Γ = fi(x), (8)

where f (x) is the vector of forces applied at the boundary of the body. After
substituting Eq.(2) in Eq.(8) we obtain the equation for the density b(x) in the
form ∫

Γ
Ti j(x,x′)b j(x′)dΓ′ = fi(x)−n jσ p

ji(x), (9)

where
Ti j
(
x,x′

)
= nk(x)Ski jl

(
x−x′

)
nl(x). (10)

The kernel of the integral operator in Eq.(9) has a strong singularity

T(x,x′)∼ ∣∣x−x′
∣∣−3 when x′ → x,

so a regularization procedure for the calculation of this integral should be defined.
In [5,8] was demonstrated that integral in Eq.(9) can be understood in the following
sense ∫

Γ
Ti j(x,x′)b j(x′)dΓ′ = p.v.

∫
Γ

Ti j(x,x′)
[
b j(x′)−b j(x)

]
dΓ′. (11)

Here Γ is a smooth closed boundary, the integral in the right hand side is
understood as its Cauchi principal value (p.v.), and b(x) is a smooth finite function.
The same regularization formula holds for an open boundary if b(x) → 0 when
x → Γ .

For calculation of the right hand side of Eq.(9), one has to know the plastic
deformation ε p inside the body. This deformation depends on the stress field
(ε p = F (σ)) via the law of plasticity.
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Gaussian Approximating Functions
For the numerical solution of Eq.(9) let us use a special class of Gaussian ap-

proximating functions. According to [1,2], unknown vector b(x) and plastic de-
formation tensor ε p(x) may be pressented as follows

b(x)≈ ∑
i

b(i)ϕ (x−xi) ; ϕ (x) =
1√
πD

exp

(
− |x|2

Dh2

)
; (12)

ε p (x)≈ ∑
i

ε p(i)Ψ(x−yi) ; Ψ(x) =
1

πD
exp

(
− |x|2

Dh2
1

)
. (13)

Here, xi (i = 1,2, . . .,N) is a set of nodes in the boundary Γ , h is the distance
between boundary points xi , yi (i = 1,2, . . .,N1) is a set of nodes inside the plastic
region, h1 is the distance between nodes yi and D is a nondimensional parameter
(D = 2 ).

Using approximation (12) the first integral in the right hand side of Eq.(2) may
be written in the form [9]

∫
Γ

S
(
x−x′

)
n
(
x′
)

b
(
x′
)

dΓ′ ≈∑
i

SΓ (x−xi)n(i)b(i), (14)

where tensor SΓ(x−xi) is a combination of standard functions, n(i) = n(xi) is the
vector normal to the boundary of the body at point xi (see details in [9]).

The stresses due to deformation in the plasticity region in eq.(5) are presented
in the form

σ p (x1,x2) =
∫

Ω
S
(
x−x′

)
ε p (x′)dx′ ≈∑

i

Sp (x−xi)ε p(i), (15)

where

Sp (x) = Sp (x1,x2) =
∫∫

S
(
x1 −x′1,x2 −x′2

)
ϕ0

(
x′1,x′2

)
dx′1dx′2, (16)

and

ϕ0 (x1,x2) =
1

πD
exp

(
− r2

Dh2

)
; r2 = x2

1 +x2
2. (17)

Eq.(16) is the convolution integral that can be written and solved using Fourier
transforms of S(x) and ϕ (x) .
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The Law of Plasticity, ε p= F (σ )
In this work we use the incremental theory of plasticity. Let us introduce equiv-

alent stress as σ̄ , (σ̄ ≥ 0) . In the case of incremental theory of plasticity, the law
of plasticity is defined as follows:

σ̄ =

√
3
2

Si jSi j; Si j = σ i j − 1
3

(σ 11 +σ 22 +σ 33)δ i j (18)

For the plane stress state,

σ̄ =

√
1
2

[
(σ11 −σ 22)

2 +(σ11 −σ 33)
2 +(σ 22−σ 33)

2
]
+3σ 2

12. (19)

Equivalent plastic deformation ε̄ p is defined as

ε̄ p =
∫

dε̄ p; dε̄ p =

√
3
2

dε̄ p
i jdε̄ p

i j;

dε̄ p
i jdε̄ p

i j =
(
dε̄ p

11

)2 +
(
dε̄ p

22

)2 +
(
dε̄ p

33

)2 +2
(
dε̄ p

12

)2
(20)

The incrernent of equivalent plastic deformation dε̄ p is defined by the equa-
tions

dε̄ p
i j =

⎧⎨
⎩

3
2

Si j
dε̄ p

σ̄ T
if σ̄ > σ̄ T

0 if σ̄ < σ̄ T

dε̄ p =
{

f (σ̄ T )dσ̄ if σ̄ +dσ̄ > σ̄T

0 if σ̄ +dσ̄ < σ̄T

(21)

Calculation of σ33 component of stress tensor can be made for two different
cases.

• Plane stress state: σ 33 = 0 .
• Plane deformation state: σ33 = ν (σ11 +σ 22)−Eε p

33 .

Algorithm for the Numerical Solution
Eq.(9) can be written as

Tb = f−gp (ε p) , (22)

where gp (ε p) is the vector of loads that depends of plastic deformation tensor
ε p obtained when applied loads produce stresses higher than yield stress σY of
material. Ussing the class of Gaussian aproximating functions (Eqs. 12 and 13) to
Eq.(29) we obtain the following system of algebraic equations

∑2N
j=1 Ai jXj= Fi; j = 1,2, . . .,2N . (23)
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X2i−1= b(i)
s and X2i= b(i)

n for i = 1,2, . . .,N (24)

F2i−1= f (i)
s −gp(i)

s (ε p) and F2i= f (i)
n −gp(i)

n (ε p) for i = 1,2, . . .,N (25)

Ai j are the elements of the matrix of the discretized system and are expressed
through standard functions that can be calculated only once and kept in the com-
puter memory to be used in every step of the iterative process, Xj represents the
unknown components of potential vector b to be calculated as in Eq.(31) and Fi

represents the column vector whose elements are known from the boundary con-
ditions through f , which is the external forces vector applied to the boundary of
the body (n · σ |Γ = f ) and gp (ε p) the vector obteined due to plastic deformation
tensor ε p . N is the total number of nodes at the boundary.

The system of equations (31) is solved at every step of the process of loading
as follows:

1. Load increment Δσ (k) is defined for every step of loading, and the total
tension applied to the plate is σ = ∑k Δσ (k).

2. The increment of the plastic deformation according to incremental theory of
plasticity is defined by equation (28) where Si j is calculated using Eq.(25),
f (σ̄ T ) is the law of plasticity of the material considered, σ̄ (k−1) is the
equivalent stress in every node of the plastic deformation zone at step k−1
calculated using Eq.(26) and σ̄ (k−1)

T is the stress due to the load applied at

step k−1 . Then total plastic deformation is obtained as ε p
i j = ∑k Δε p(k)

i j .

3. Then vector gP(εP) in Eq.(29) has the form gp(k) = gp(k)(ε p)

4. Stress σ̄ (k)
T is updated in every node of plastic deformation mesh using the

following condition

σ̄ (k)
T =

{
σ̄ (k−1) if σ̄ (k−1) > σ̄ (k−1)

T

σ̄ (k−1)
T if σ̄ (k−1) < σ̄ (k−1)

T

5. Linear system of equations is solved as defined by Eq. (30) to obtain vector
b .

6. Equivalent stresses σ̄ (k) are calculated in every node of mesh for plastic
deformation. Plastic deformation tensor ε p

i j and equivalent stress σ̄ (k) are
kept in the computer memory to be used in the next step.

7. Process is repeated from step 1.
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Numerical Results
The numerical method was applied to a rectangular plate with a cut in a side

and a square mesh was considered in the plasticity region as shown in Fig. 2. The
calculations were made for several square mesh sizes with 21, 41,61 and 81 nodes
per side.To optimize the time of calculation process we used only the nodes where
the stress condition σ̄ > σ̄T were fullfilled, so in every step of the iterative process
the number of nodes used was growing gradually.

Figure 1: 2D representation of plastic defor-
mation region.

Figure 2: Lines A and B
in the deformation region for
the comparison of σ̄ and ε̄ .

For the analysis of the results two lines in the region of plastic deformation
were considered as can be seen in Fig. 2. Stresses and deformations for different
rnesh sizes are compared along each line. Stresses and deformations in line A are
compared in Figs. 3 and 4, respectively. It can be seen that the precision of the
numerical results grows together with the number of nodes M and it achieves its
limit for M = 81 nodes per side. Comparissons of stresses and deformation in line
B are presented in Figs. 5 and 6, respectively. It can be seen that the precision is
not changed when the mesh size increases.

The difference in the behavior of precision in both line is due to the presence
of a strong singularity in the tip of the cut so this requires that the distance between
nodes in the plastic zone be of the same order of magnitude as the distance between
the boundary nodes near this region.

Conclusions
In this work we applied the Gaussian aproximating functions to the calculation

of the elastio-plastic stress field in homogeneous plate with stress concentration.
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Figure 3: Comparison of σ̄ in line
A for meshes with 2l, 41, 61 and 81
nodes.

Figure 4: Comparison of ε̄ in line
A for meshes with 2l, 41, 61 and 81
nodes.

Figure 5: Comparison of σ̄ in line
B for meshes with 2l, 41, 61 and 81
nodes.

Figure 6: Comparison of ε̄ in line
B for meshes with 2l, 41, 61 and 81
nodes.

We have shown that integrals in the right hand side of the stress integral equation
can be presented by some standard functions that can be calculated and tabulated
easily to be kept in the computer memory to be used lately to obtain the elements
of coefficient matrix of the linear equation system.

The numerical results obtained showed that their precision depend on the mesh
nodes density near the boundary where the tip indentation is present and that the
distance between nodes in the plasticity region must be the same order of magnitude
as the distance between boundary points near the indentation. Figures 4 to 7 show
that the method developed is effective.
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