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A four-node hybrid assumed-strain finite element for
laminated composite plates
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Summary
Fibre-reinforced plates and shells are finding an increasing interest in engi-

neering applications. Consequently, efficient and robust computational tools are
required for the analysis of such structural models. As a matter of fact, a large
amount of laminate finite elements have been developed and incorporated in most
commercial codes for structural analysis.
In this paper a new laminate hybrid assumed-strain plate element is derived within
the framework of the First-order Shear Deformation Theory (i.e. assuming that par-
ticles of the plate originally lying along a straight line which is normal to the unde-
formed middle surface remain aligned along a straight line during the deformation
process) and assuming perfect bonding between laminae. The in-plane components
of the (infinitesimal) strain tensor are interpolated and by making use of the consti-
tutive law, the corresponding in-plane stress distribution is deduced for each layer.
Out-of-plane shear stresses are then computed by integrating the equilibrium equa-
tions in each lamina, account taken of their continuity requirements. Out-of-plane
shear strains are finally obtained via the inverse constitutive law.
The resulting global strain field depends on a fixed number of parameters, regard-
less of the total number of layers; 12 degrees of freedom are for instance assumed
for the developed rectangular element.
The proposed model does not suffer locking phenomena even in the thin plate limit
and provides an accurate description of inter-laminar stresses. Results are com-
pared with both analytical and other finite element solutions.

keywords: Laminated composite plates, hybrid finite elements, assumed strain
methods, shear-locking.

Introduction
Finite elements for the analysis of laminated composite plates have been de-

rived by using different laminate theories proposed in the literature [see [32], and
references quoted therein]. Such theories are usually referred to as:

• Equivalent Single Layer (ESL) theories, such as:

– the Classical Lamination Theory (CLT) based on the Kirchhoff model;
– the First-order Shear Deformation Theory (FSDT);
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– Higher-order Shear Deformation Theories (HSDTs);

• Layer-wise Lamination Theory (LLT);
• Three dimensional elasticity.

In the context of ESL theories, the simplest one is the CLT which neglects the
shear contribution in the laminate thickness. However, flat structures made of fiber-
reinforced composite materials are characterized by non-negligible shear deforma-
tions in the thickness direction, since the longitudinal elastic modulus of the lamina
can much higher than the shear and the transversal moduli; hence the use of a shear
deformation laminate theory is recommended.

The extension of the [33] and [20] model to the case of laminated anisotropic
plates, i.e. FSDT [[49]; [47]], accounts for shear deformation along the thickness
in the simplest way. It gives satisfactory results for a wide class of structural prob-
lems, even for moderately thick laminates, requiring only C0-continuity for the
displacement field. However in the classical FSDT:

• the transverse shearing strains (stresses) are assumed to be constant along
the plate thickness so that stress boundary conditions on the top and the bot-
tom of the plate are violated;

• shear correction factors must be introduced. The determination of shear cor-
rection factors is not a trivial task, since they depend both on the lamination
sequence and on the state of deformation [see, e.g. [46]; [44]; [39]] and can
be quite different from the value 5/6 which is typical of homogeneous plates.

Some methods have been proposed for improving FSDT results. For instance post-
processing can be applied in order to improve the transverse shear stresses [viz.
[21]; [35]], and the transverse normal stress [[36]; [52]] in finite element analysis.

Recently, refined FSDT models have been proposed: additive shear warping
functions [24] or the assumption that shear strains vary in the thickness in cylin-
drical bending with the same law as the shear stress obtained by integrating the
equilibrium equations [[29]; [3]] have been successfully employed.

More refined laminate theories are available, of course, and they can be broadly
divided into the three groups outlined above.

On one hand, several ESL higher-order theories (and related finite elements
models) have been proposed: within these theories, for instance, the transverse
displacement has been either expanded in power series in terms of thickness co-
ordinates up to a given order [[9]; [18]; [30]; [25]; [50]; [51]; [14]] or has been
modelled by Legendre polynomials [[26]; [10]].

On the other hand, LLT [[31]; [11]; [34]; [5]] assumes a displacement repre-
sentation formula in every layer.
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Finally, analytical solutions based on three dimensional elasticity (and corre-
sponding finite element models) have been developed, for instance, by [22]; [23];
[17].

All these higher-order theories lead to more accurate results, especially for very
thick laminates. However the computational cost will be significantly increased
[34], due to the increase of variables associated to either the description of the
transversal displacement or the number of layers.

“To date, FSDT is still considered the best compromise between the capability
for prediction and computational cost for a wide class of applications” [8].

With reference to finite element models, although it is usual to present FSDT
within the framework of displacements approaches, nonetheless, in the literature,
hybrid and mixed formulations have been proposed as well, mainly for developing
innovative finite element models: see [1]; [27]. Assumed-stress four-node single-
layer — i.e. homogeneous — plate elements have been developed since many years
[[42]; [28]].

Four-node hybrid stress laminated elements including transverse shear effects
have been developed by [19], where the stress field is defined separately for each
layer and by [43], which, on the contrary, define the stress field for the laminate as
a whole with inter-layer traction continuity and upper/lower laminate free surface
conditions enforced exactly. The four-node hybrid stress multi-layer plate elements
quoted above have the potential disadvantage of possessing two spurious zero en-
ergy modes. To overcome this problem, [41] developed an 8-node multi-layer lam-
inated plate element for both thin and thick plates which has the correct rank and
does not lock in the thin plate limit.

In all the above quoted papers, however, both the transverse (i.e. out-of-plane)
and the in-plane stress components within the element are independently assumed.
The interpolation functions, in order to enforce the inter-laminar continuity condi-
tions, appear to be very complicated.

Finally it should be emphasized that new finite elements based on FSDT are
still being proposed by many researchers [see e.g. the recent papers by [40]; [37];
[2]; [8]].

In this paper, a new four-node hybrid assumed-strain finite element for compos-
ite laminate plates is developed, which retains the basic assumptions of the FSDT:
i.e. that particles of the plate originally lying along a straight line, which is normal
to the undeformed middle surface, are assumed to remain aligned along a straight
line during the deformation process, together with perfect bonding between lam-
inae. The in-plane components of the strain tensor are interpolated and assumed
to vary linearly along the thickness. By making use of the constitutive law, the
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corresponding in-plane stress distribution is deduced for each layer whereas out-
of-plane shear stresses are then computed by integrating the equilibrium equations
in each lamina, account taken of their continuity requirements. Out-of-plane shear
strains are finally obtained via the inverse constitutive law.

In this way the basic hypothesis of FSDT allows keeping a reasonably small
number of strain parameters (which is, however, independent of the number of
laminae), while preserving a sufficiently accurate description of inter-laminar stress
distribution. Moreover it turns out that there is no need of a priori defining any
shear-correction factor. In analogy with a recently developed non-symmetric hybrid
stress assumed homogeneous plate element [12] the shear strain energy turns out to
be exactly zero in the thin plate limit, and this prevents the occurrence of locking
phenomena.

The organization of the paper is as follows: in section 2 the FSDT equations are
presented in a way which is suitable for developing the formulation of the model.
In Section 3 the four-node element is derived from a three-field hybrid-mixed vari-
ational principle, and in Section 4 the stiffness matrix is obtained. Finally, in Sec-
tion 5, the performance of the new element is assessed with reference to meaningful
benchmark problems, chosen in order to show its effectiveness and accuracy.

Laminated plates and FSDT
With the term laminate plate we refer to a thin (or moderately thick) flat body,

constituted by K layers with different mechanical characteristics, stacked one above
the other and occupying the domain:

Ω =
{
(x1,x2,x3) ∈ R3 | x3 ∈ [−h/2,+h/2],

(x1,x2) ∈ Ω̃ ⊂ R2} (1)

where the plane Ω̃ (i.e. x3 = 0) coincides with the middle surface of the undeformed
plate, and the transverse dimension, whose thickness is h, is small compared to the
other two dimensions, see Figure 1.

The layers are assumed to lie parallel to the middle surface Ω̃; the typical k-
th layer lies between the thickness coordinates hk−1 and hk and is supposed to be
orthotropic with material axes oriented at an angle θ k with reference to the laminate
coordinate x1.

The whole lateral surface of the body, ∂Ω, is the union of the upper and lower
faces Ω+ and Ω− and of the lateral surface ΩL.

Symmetric laminate
Before discussing in detail the laminate kinematics and statics, it is useful to

introduce the terminology associated with the particular lamination scheme consid-
ered. The lamination scheme of a laminate will be denoted by [α/β/γ/δ/ε/ .. .],
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Figure 1: Coordinate system and layer numbering used for a typical laminated
plate.

where α is the orientation of the first layer with reference to x1, β that of the second
layer, and so on (see Figure 2).

Figure 2: A symmetric laminate: lamination scheme [γ/β/α/α/β/γ]= [γ/β/α]S.

A laminate is said to be symmetric if the layer stacking sequence, the material
properties and the geometry of the layers are symmetric with reference to the mid-
plane, Ω̃, of the laminate. Only the sequence relevant to laminae having a positive
x3 coordinate need to be prescribed since, by virtue of the above mentioned sym-
metry, the same sequence appears when moving on the negative side of the axis.
From now on, only laminated plates satisfying a symmetric lamination scheme will
be considered.

Load conditions
To avoid, for the sake of simplicity, stretching effects, loading on the plate

upper and lower surfaces (bases) Ω± is assumed to consist only of distribution of
external surface loads f±3 , acting along the x3-direction. For the same reason, the
in-plane components of the body forces (b1, b2) are assumed to be zero within
each lamina; whereas the out-of-plane (or transverse) component, b3, is assumed
to be constant in each layer. An analogous hypothesis is adopted for the traction
distributions applied to the lateral surface ΩL.

As a consequence, by taking into account only the non-zero surface and body



98 Copyright c© 2007 ICCES ICCES, vol.4, no.2, pp.93-121, 2007

forces, the following load condition is assumed:

f3 = f̃ ±3 on Ω± (2)

bk
3 = b̃ k

3 on Ω (3)

f k
1 = x3 f̃ k

1 , f k
2 = x3 f̃ k

2 on ΩL. (4)

where the symbol ˜denotes a field defined on the middle surface, Ω̃, being, there-
fore, a function of coordinates x1, x2 only.

Strain and stress fields
Let us assume the typical assumption of the Reissner-Mindlin and FSDT the-

ories: particles of the plate originally lying along a straight line, which is normal
to the undeformed middle surface, remain on a straight line during deformation,
but this line is no more necessarily perpendicular to the deformed middle surface.
Hence, the effects of shear deformations can be taken into account.

Thus, the in-plane strain components can be written as:

ε11 = x3ε̃11(x1,x2) (5)

ε22 = x3ε̃22(x1,x2) (6)

ε21 = ε12 = x3ε̃12(x1,x2). (7)

According to Eq. (5)–(7) the in-plane components of the strain tensor vary linearly
along the thickness, as in the classical plate theory.

As a consequence, by making use of the Constitutive Law (CL) enforced at
the local level for the k-th lamina, it turns out that the in-plane stress components
(σ k

11, σ k
22, σ k

12 = σ k
21) vary linearly along the transverse direction of the lamina,

just like in the classical plate theories; however, in general, these components are
discontinuous at the interface between two laminae having different orientation
and/or material properties.

Since the single lamina is assumed to be thin, the stress component σ k
33, which

is perpendicular to the middle surface of the laminate, is assumed to vanish, as it is
customary in the theory of homogeneous thin plates.

Moreover, for the sake of simplicity (even though an extension to the mono-
clinic case is straightforward) it is assumed that each lamina is orthotropic, so that
its in-plane elastic behaviour is completely defined by four coefficients only; let
Ck

11, Ck
12, Ck

22, Ck
66 be the independent components of the elastic tensor — written in

the usual, compact notation dating back to Voigt — for the k-th lamina.
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Then CL applied to Eqs. (5)–(7) yields:

σ k
11 = x3σ̃ k

11(x1,x2) = x3[Ck
11ε̃11 +Ck

12ε̃22] (8)

σ k
22 = x3σ̃ k

22(x1,x2) = x3[Ck
12ε̃11 +Ck

22ε̃22] (9)

σ k
12 = x3σ̃ k

12(x1,x2) = x3[2Ck
66ε̃12] (10)

Looking at Eqs. (8)–(10), it should be remarked that the in-plane strain components
do not depend on the k-th layer so that only a small number of parameters need to
be introduced to completely describe the stress field within the plate.

Stress components are labelled in such a way that the former index denotes their
direction, and the latter the normal to the face they are relevant to, and, as a short-
hand notation, a comma denotes partial derivative with respect to the corresponding
coordinate.

Thus, the Linear Momentum Balance (LMB) equations for the k-th layer read,
account taken of Eq. (3):

σ k
11,1 +σ k

12,2 +σ k
13,3 = 0 (11)

σ k
21,1 +σ k

22,2 +σ k
23,3 = 0 (12)

σ k
31,1 +σ k

32,2 +bk
3 = 0. (13)

By taking now into account the equilibrium equations (i.e. the LMB) in the x1

and x2 directions, the out-of-plane components of the stress field in the k-th layer,
σ k

31 = σ k
13, σ k

32 = σ k
23 can be derived explicitly. It is useful to note that, while the

Angular Momentum Balance (AMB) equation for the in-plane stress components,
i.e. σ k

12 = σ k
21, turns out to be satisfied as a consequence of the symmetry of the

strain tensor, the AMB conditions for the out-of-plane stress components are a
priori enforced, as it is customary in the classical theory of linear elasticity.

Eqs. (11)–(12) can be rewritten as:

σ k
13,3 = −x3(σ̃ k

11,1 + σ̃ k
12,2) (14)

σ k
23,3 = −x3(σ̃ k

21,1 + σ̃ k
22,2). (15)

Then the out-of-plane shear components can be obtained as follows:

σ k
13 = σ0,k

13 −
x3∫

−h/2

x3(σ̃ k
11,1 + σ̃ k

12,2)dx3 (16)

σ k
23 = σ0,k

23 −
x3∫

−h/2

x3(σ̃ k
21,1 + σ̃ k

22,2)dx3, (17)
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where σ0,k
13 , σ0,k

23 are integration constants.

Traction Boundary Conditions (TBCs) require that both σ13 and σ23 must van-
ish on the plate bases Ω±; they are simply satisfied by setting σ1

13(h0) = 0, σ1
23(h0) =

0 and σK
13(hK) = 0, σK

23(hK) = 0, where indices 1 and K refer obviously to the bot-
tom and top layers respectively, as shown in Figure 1.

Therefore it results, for the first layer:

σ 1
13 = −1

2
(x2

3 −h2
0)(σ̃ 1

11,1 + σ̃ 1
12,2) (18)

σ 1
23 = −1

2
(x2

3 −h2
0)(σ̃ 1

21,1 + σ̃ 1
22,2), (19)

and for the k-th layer:

σ k
13 = σ0,k

13 − 1
2
(x2

3 −h2
k−1)(σ̃ k

11,1 + σ̃ k
12,2) (20)

σ k
23 = σ0,k

23 − 1
2
(x2

3 −h2
k−1)(σ̃ k

21,1 + σ̃ k
22,2), (21)

where the explicit form of the integration constants σ0,k
13 and σ0,k

23 is:

σ0,k
13 =

k−1

∑
�=1

−1
2
(h2

� −h2
�−1)(σ̃ �

11,1 + σ̃ �
12,2) (22)

σ0,k
23 =

k−1

∑
�=1

−1
2
(h2

� −h2
�−1)(σ̃ �

21,1 + σ̃ �
22,2). (23)

Once the transverse shear stresses are known, by making use of the inverse
CL the corresponding out-of-plane shear strain components can be evaluated: if,
according to the usual notation, Ck

44 and Ck
55 are the relevant components of the

elastic tensor for the k-th lamina, then:

εk
13 =

σ k
13

2Ck
55

(24)

εk
23 =

σ k
23

2Ck
44

(25)

Displacement field
The in-plane component (u1, u2) of the displacement field are assumed, analo-

gously to the classical Reissner-Mindlin model, to vary linearly along the transverse
direction of the laminated plate, while the normal component, u3, is assumed to be
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constant along the x3-axis:

u1(x1,x2,x3) = −x3ϕ̃1(x1,x2) (26)

u2(x1,x2,x3) = −x3ϕ̃2(x1,x2) (27)

u3(x1,x2,x3) = ũ3(x1,x2). (28)

Here ϕ̃1 and ϕ̃2 are the rotations (see Figure 3) of the transverse line elements,
which initially lie perpendicular to the middle surface, about the x1- and x2-axes.

� ��

�

��
�

x1

x2

x3

ϕ̃1

ϕ̃2

φ1

φ2

�

�

Figure 3: Rotations of the transverse line element of the plate ϕ̃1 and ϕ̃2 used in
the present formulation and corresponding Cartesian components, φ1 and φ2, of the
infinitesimal rotation vector.

Variational formulation
In this Section a brief deduction of assumed-strain hybrid finite elements is

presented. A 3-D continuum is considered, occupying a volume Ω, bounded by a
smooth surface ∂Ω = ∂Ωu ∪∂Ωs, with ∂Ωu ∩∂Ωs = /0; ∂Ωu is the portion of the
boundary where the displacement field is prescribed, whereas ∂Ωs is the comple-
mentary part of the boundary, where TBCs must be fulfilled.

Let us assume the following three-field variational principle (often credited to
Hu-Washizu, see [45]):

ΠHW (σi j,εi j,ui) =
1
2

∫
Ω

(Ci jmnεi jεmn −biui)dV

−
∫
Ω

σi j[εi j − 1
2
(ui, j +u j,i)]dV

−
∫

∂Ωs

fiuidS−
∫

∂Ωu

σi jn j(ui − ūi)dS. (29)

In Eq. (29) Ci jmn,σi j , εi j , ui denote, respectively, the Cartesian components of the
fourth-order elasticity tensor, of the second-order stress and strain tensors and of the
displacement vector; bi and fi denote the components of body and surface forces
respectively, while ūi are the prescribed displacement components.

It can be easily shown that the stationarity conditions of functional (29), when
AMB is a priori satisfied, provide the following field equations:
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• LMB: σi j, j +bi = 0 in Ω;
• CC: εi j = uS

i, j in Ω;
• CL: σi j = Ci jmnεmn in Ω ;
• TBC: σi jn j = fi on ∂Ωs;
• DBC: ui = ūi on ∂Ωu,

where CC stands for Compatibility Condition, and DBC for Displacement Bound-
ary Condition; whereas uS

i, j = 1
2(ui, j + u j,i) is the symmetric part of the displace-

ment gradient.

If CL is a priori enforced, then it is possible, by applying also the divergence
theorem, to eliminate the stress components from Eq. (29), obtaining this modified
Hu-Washizu functional, depending only on strain and displacement fields:

ΠHW,mod(εi j,ui) = −1
2

∫
Ω
Ci jmnεi jεmndV

−
∫

Ω
(Ci jmnεmn, j +bi)uidV

+
∫

∂Ωs

(Ci jmnεmnn j − fi)uidS

+
∫

∂Ωu

Ci jmnεmnn jūidS. (30)

If, instead of a continuous homogeneous solid, a laminated body is consid-
ered, which satisfies the previously introduced hypotheses about geometry, Eq. (1),
loads, Eqs. (2)–(4), strain distribution, Eqs. (5)–(7) and (24)–(25), the variational
principle (30) must be modified accordingly:

ΠHW,mod(εi j,ui) =
K

∑
k=1

[
−1

2

∫
Ω̃
Ck

i jmn

∫ hk

hk−1

εk
i jεk

mndx3dA

−
∫

Ω̃
(Ck

i jmn

∫ hk

hk−1

εk
mn, juidx3 + b̂3u3)dA

+
∫

ΩL
Ck

i jmn

∫ hk

hk−1

εk
mnn jūidx3dl

]
, (31)

where, for the sake of simplicity, a laminated plate with only prescribed DBCs on
its boundary ΩL has been considered, so that the external load contribution, b̂3, is
defined as follows:

b̂3 =
K

∑
k=1

b̃ k
3(hk −hk−1)+ f̃ +

3 + f̃ −3 . (32)

Functional (31) can be easily modified to cope with the case when also TBCs are
given on a portion of the plate boundary ΩL.
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For a hybrid type laminate element, the discretized version of functional (31)
is:

ΠH,e
HW,mod(εi j,ui, ûi) =

K

∑
k=1

[
−1

2

∫
Ω̃e

Ck
i jmn

∫ hk

hk−1

εk
i jεk

mndx3dA

−
∫

Ω̃e
(Ck

i jmn

∫ hk

hk−1

εk
mn, juidx3 + b̂3u3)dA

+
∫

ΩLe
Ck

i jmn

∫ hk

hk−1

εk
mnn jûidx3dl

]
, (33)

where ûi is a displacement field defined only on the boundary ΩLe
of the e-th ele-

ment, whose domain is Ω̃e.

The finite element model
The starting point to derive a Hybrid Assumed-Strain Laminate (or briefly,

HASL) model [see, for instance, [7]] for the Reissner-Mindlin plate consists in en-
forcing the stationarity conditions of the previously introduced mixed-hybrid func-
tional (33). Let us subdivide the plate mid-surface, Ω̃, into M sub-domains, Ω̃e,
such that Ω̃ ∼= ∪eΩ̃e.

A simple quadrilateral 12 degrees-of-freedom (dofs) laminated plate with con-
stant thickness can be developed as follows (see Figure 4).

Figure 4: The rectangular Hybrid Assumed-Strain Laminated element (HASL).

Let us assume a local reference system (x1, x2, x3), where the x1- and x2-axes
are aligned with the 1–2 and 1–4 sides respectively, and the x3-axis is determined
by the right-hand rule. A plane natural reference system (ξ1, ξ2), with −1 ≤ ξ i ≤ 1
(i=1, 2) is then introduced [see, for instance [53]; [15]; [4]] and is related to the
local one by the following relationships (as in standard isoparametric elements):

xi(ξ i) =
4

∑
�=1

N�(ξ i)x�
i (34)
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where x�
i , (with � = 1, . . . ,4), are the nodal coordinates of the element, while N�(ξi)

are the shape functions given by:

N�(ξi) =
1
4
(1+ξ1ξ �

1)(1+ξ2ξ �
2) (� = 1, . . . ,4). (35)

The nodal coordinates in the natural reference system are, of course, given by
(ξ1,ξ2) = (±1,±1).

The strain field
With reference to the natural reference system ξ1,ξ2 (see Figure 4), let us as-

sume the following in-plane components of the strain tensor ε∗
i j:

ε∗k
11 = ε∗

11 = x3ε̃∗
11 = x3(α0 +α1ξ1 +α2ξ2) (36)

ε∗k
22 = ε∗

22 = x3ε̃∗
22 = x3(β0 +β1ξ1 +β2ξ2) (37)

ε∗k
12 = ε∗

12 = x3ε̃∗
12 = x3(γ0 + γ1ξ 2

1 + γ2ξ 2
2 ). (38)

A strain vector β is then introduced, as a short-hand notation, to collect component-
wise the above introduced strain parameters:

β = {α0,α1,α2,β0,β1,β2,γ0,γ1,γ2}T . (39)

The in-plane stress components, corresponding to the in-plane strain components (36)–
(38), are given, for the generic k-th layer, by Eqs. (8)–(10). By substituting (36)–
(38) into (8)–(10), one obtains the following stress components, expressed in the
natural reference system:

σ k
11 = x3[Ck

11(α0 +α1ξ1 +α2ξ2) (40)

+Ck
12(β0 +β1ξ1 +β2ξ2)]

σ k
22 = x3[Ck

21(α0 +α1ξ1 +α2ξ2) (41)

+Ck
22(β0 +β1ξ1 +β2ξ2)]

σ k
12 = x3[2Ck

66(γ0 + γ1ξ 2
1 + γ2ξ 2

2 )]. (42)

The out-of-plane components σ k
13, σ k

23 (referred again to the natural reference
system) can be determined by making use of the LMB equations, as shown in
Section 2.3; for the assumed strain interpolations (36)–(38), Eqs. (14)–(15) provide:

σ k
13 = −1

2
(x2

3 −h2
k−1)[(C

k
11α1 +Ck

12β1)+Ck
66(4γ2ξ2)]

+σ0,k
13 (43)

σ k
23 = −1

2
(x2

3 −h2
k−1)[(C

k
12α2 +Ck

22β2)+Ck
66(4γ1ξ1)]

+σ0,k
23 , (44)
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where the integration constants σ0,k
13 , σ0,k

23 are defined exactly as in Eqs. (22)–(23).

Similarly, the out-of-plane strain components ε∗k
13 , ε∗k

23 are computed by Eqs. (24)–
(25).

It should be remarked that if a linear interpolation is assumed for the in-plane
shear strain components, ε̃∗

12 = ε̃∗
21 — instead of the adopted incomplete quadratic

one, Eq. (38) — the out-of-plane shear stress components, σ̃ k
13 and σ̃ k

23 turn out to
be constant along both the ξ1 and the ξ2 direction, providing a too stiff element
[see [12]].

Finally, the Cartesian strain components of the k-th lamina, ε∗k
i j defined in the

natural reference system need to be expressed in the local (or physical) reference
system; the corresponding Cartesian components, εk

i j are defined by the following
transformation rule:

ε k
mn = Jimε∗k

i j J jn, (45)

where Jim denotes the elements of the Jacobian matrix of the isoparametric trans-
formation (34); see for instance [7].

Even though the formulation can be extended to cover the case of distorted
element, only simple cases — like the rectangular one — where the Jacobian of the
element is constant (and therefore coincides with its value at the centroid) will be
discussed here.

The displacement field
In the following, the displacement field can be conveniently expressed in terms

of the transverse displacements ũ �
3 (� = 1, . . .,4) and of the rotations ϕ̃ �

i (with
i = 1,2) of transverse line elements, evaluated at the four nodes of the plate.

The components of the assumed displacement field are then functions of these
nodal dofs and are expressed in terms of the shape functions (34) as follows:

u1 = −x3

4

∑
�=1

N�(ξ i)ϕ̃ �
1 (46)

u2 = −x3

4

∑
�=1

N�(ξ i)ϕ̃ �
2 (47)

u3 =
4

∑
�=1

N�(ξ i)ũ �
3. (48)

As a short-hand notation, the following generalized nodal displacement vector
is introduced:

q =
{

ũ1
3 , ϕ̃ 1

1 , ϕ̃ 1
2 , ũ2

3 , ϕ̃ 2
1 , ϕ̃ 2

2 , ũ3
3 , ϕ̃ 3

1 , ϕ̃ 3
2 , ũ4

3 , ϕ̃ 4
1 , ϕ̃ 4

2

}T
. (49)
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It should be remarked that in the HASL element, the displacement field com-
ponents ûi (i = 1,2,3), occurring in Eq. (33) are defined by the same shape func-
tions (46)–(48), but need to be defined only on the element edges ξ1 = ±1 and
ξ2 = ±1.

The finite element stiffness matrix
The stiffness matrix K of the HASL element is derived by substituting the

interpolation fields defined in the previous Sections 4.1 and 4.2 into the modified
Hu-Washizu functional (33).

The two independently discretized fields of displacements ui, ûi and strains, εi j

written in the physical reference system xi (i = 1,2,3) of the finite element read as
follows:

ui(xi) = Nu(xi)q (50)

εi j(xi) = Nε(xi)β , (51)

where Nu(xi) denotes the matrix of the shape functions for the displacement field (46)–
(48); Nε(xi) denotes the matrix of the shape functions for the strain field (36)–(38),
whereas the corresponding vectors q, β are defined in Eqs. (49) and (39).

Substitution of Eqs. (50) and (51) into (33) yields the following discretized
variational principle:

ΠH,e
HW,mod = −1

2
β THββ β +β TGq−FTq, (52)

where:

β THββ β = ∑
k

[∫
Ω̃e

Ck
i jmn

∫ hk

hk−1

εk
i jεk

mndx3dA

]
; (53)

β TGq = ∑
k

[
−

∫
Ω̃e

Ck
i jmn

∫ hk

hk−1

εk
mn, juidx3dA

+
∫

ΩLe
Ck

i jmn

∫ hk

hk−1

εk
mnn jûidx3dl

]
; (54)

FTq =
∫

Ω̃e
b̂3u3dA. (55)

All the above integrals, defined in the physical configuration, are evaluated,
with the usual techniques employed in isoparametric formulation, on the reference
(i.e. natural) configuration.

It should be outlined that the first term on the right-hand side of Eq. (52) rep-
resents (to within the sign) the element strain energy, Ue, as it clearly appears in
Eq. (53). In the present context, by virtue of the symmetric lamination scheme and
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of the load conditions (2)–(4), it can be shown that the strain energy can be written
as Ue = Ue

b +Ue
s i.e. it splits into two contributions, the former, Ue

b , due to bending
stresses, the latter, Ue

s , to transverse (or out-of-plane) shear stresses.

The strain energy due to these transverse shear stresses — see Eqs. (24)–(25)
and (45) — is given by:

Ue
s = ∑

k

∫
Ω̃e

∫ hk

hk−1

2
[
Ck

55(εk
13)

2 +Ck
44(εk

23)
2
]

dx3dA, (56)

and, with a procedure similar to that adopted in [12] it follows that when h → 0,
then Ue

s → 0 like h5. Since it can be proven, with the same method, that the bending
strain energy Ue

b is a cubic function of the laminate thickness h, when thickness
becomes smaller and smaller, the shear strain energy Ue

s is negligible if compared
to the bending strain energy, i.e. the ratio Ue

s /Ue
b goes to zero with the correct order

in the thin plate limit.

By invoking now the stationarity conditions of ΠH,e
HW,mod with reference to β

and q, the following system of simultaneous linear algebraic equations is obtained:
[ −Hββ G

GT O

]{
β
q

}
=

{
0
F

}
. (57)

By making use of static condensation techniques on β , the following discrete equi-
librium equations are obtained from Eq. (57):

Kq = F, (58)

where the stiffness matrix K appearing in Eq. (58) can be evaluated as follows:

K = GT H−1
ββ G. (59)

In this way, when the strain parameters are eliminated at the element level, at the
assembly stage the element has exactly the same number and type of dofs as a
standard displacement-based one. For this reason, the solution procedure is that of
a standard stiffness formulation, and it is allowed mixing an element of this type
with displacement-formulated ones.

For the HASL element under consideration — dual hybrid, according to [6] —
matrix Hββ has to be positive-definite in order to satisfy the ellipticity condition,
and this is verified for the assumed strain shape functions, as it can be checked.
Therefore it is possible to evaluate β element by element, once the nodal displace-
ment values q are known, by the following equation:

β = H−1
ββ Gq. (60)
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The discrete inf-sup condition for dual-hybrid methods can be verified by perform-
ing a singular value decomposition of matrix K, see [48]; [13]. With the assumed
strain distribution only the three zero eigenvalues corresponding to the three rigid
body motions are found.

Numerical examples
Several numerical examples are discussed for both thick and thin laminated

plates to evaluate the performances of the presented element.

The obtained results are compared with those available in the technical liter-
ature and with the solutions provided by the commercial finite element code AN-
SYS version 5.3: brick elements with assigned material properties have been used
to model each layer.

In particular, results provided by the following elements have been reported:
the partial-mixed models EML4 by [2]; the Partial-Hybrid Stress Laminated plate
(denoted here by PHSL) by [51]; the isoparametric displacement-based elements
QUAD4 and QUAD9 by [53]; the CTMQ20 Timoshenko-Mindlin quadrilateral fi-
nite element with 20 dofs by [8]; the Discrete Shear Triangular (DST) plate-bending
element by [16]; the REC56-Z0 (with 56 dofs) and REC72-Z0 (with 72 dofs) ele-
ments by [37]. Finally, where it has been possible, analytical series solutions given
for the 3-D case by [22] and for the 2-D case (i.e. corresponding to FSDT) by [32]
have been reported, along with the Higher order laminated plate solutions by [18].

The following material constants have been used for all the considered exam-
ples:

E1/E2 = 25; G12 = G13 = 0.5E2; G23 = 0.2E2;

ν12 = ν13 = 0.25,

corresponding to a high-modulus orthotropic graphite-epoxy composite material.

1-D analysis of laminated plate
As a preliminary series of test, some cylindrical bending problems are consid-

ered: a laminated cantilever plate is constrained in such a way that its behavior is
equivalent to that of a cantilever beam.

Cantilever laminated plate under tip line-load
The first considered problem is a four-layer [0/90/90/0] laminated cantilever

plate subjected to a shear load applied to the free end (see Figure 5).

Each layer has equal thickness h/4; a one-element discretization and a four-
elements discretization have been considered (see Figure 5a and 5b). Results have
been compared with those provided by the 2-D analytical FSDT solution.

Table 1 shows the deflection at the free end of the laminate element for dif-
ferent thickness values. Results are expressed in normalized form, by dividing the
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Figure 5: Four-layer laminated cantilever plate under shear load at the free end. (a)
One element discretization; (b) Four elements discretization.

numerical results by the theoretical one, provided in [32] [Table 4.3.1, page 193]. It
should be noticed that for all thickness values the results are in excellent agreement
with those of the analytical solution and no locking phenomena are encountered.

Table 1: Normalized deflection, u3, at the free end of a laminated [0/90/90/0] can-
tilever plate under tip line-load

a/h el. 1000 100 10 1
HASL 1 1.002 1.002 1.001 0.992
HASL 4 1.002 1.002 1.001 0.993
FSDT — 1.000 1.000 1.000 1.000

Figure 6 presents the distribution of the shear stress σ13(x3) for the problem
under consideration (with a/h = 1), produced by the ANSYS code when a finite
element analysis with eight-noded brick elements is performed.

Figure 7 shows instead the profile of the shear stress σ13(x3) for the one-
element discretization (again in the case a/h = 1), which is compared with the
one provided by the finite element analysis already performed with brick elements.

It should be noticed that in any standard laminate theory (viz. CLT or FSDT),
as in the present HASL model, the shear stress distribution does not vary along
the x1-axis, whereas the 3-D solution (and, consequently, the finite element result
produced by solid brick elements) takes into account the boundary-layer effects
[see [38]] and therefore exhibits a different behavior close to the boundary (i.e for
x1 = 0.5) and in a generic section like that, here considered, defined by x1 = 6.5.

As it is expected, the element shows a good ability to compute in a satisfactory
way the through-the-thickness and inter-laminar shear stress, by satisfying exactly
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Figure 6: Distribution of shear stress σ13 for the [0/90/90/0] laminated plate (with
a/h = 1) subjected to tip line-load, analyzed with brick elements: the finite element
mesh is also shown.

Figure 7: Distribution of shear stress σ13 along the thickness for the [0/90/90/0]
laminated plate (a/h = 1) under tip line-load: comparison between HASL and brick
model results.

both inter-laminar and top and bottom equilibrium conditions.

Cantilever laminated plate under uniformly distributed load
The second 1-D test is a four-layer [0/90/90/0] laminated cantilever plate sub-

jected to a uniform load acting on the top surface Ω+ (see Figure 8). As in the
previous problem each layer has equal thickness (h/4).

Again, two different discretizations have been considered, one consisting of
four elements, the other of eight elements; results, in terms of normalized tip de-
flection, have been compared with those provided by the FSDT analysis, which
provides a reference solution given by [32] [Table 4.3.1, page 193].

These results in terms of normalized tip deflection at the middle surface of
the HASL element are given in Table 2. The results are compared with the FSDT
solution for several values of the depth-to-thickness ratio. Figure 9 presents the
distribution of the shear stress σ13(x3) for the problem under consideration (with
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Figure 8: Four-layer laminated cantilever plate under uniformly distributed load.
(a) Four elements discretization; (b) Eight elements discretization.

Table 2: Normalized deflection u3 at the free end of a laminated [0/90/90/0] can-
tilever plate under uniformly distributed load acting on the upper surface.

a/h el. 1000 100 10 1
HASL 4 1.022 1.022 1.022 1.005
HASL 8 1.007 1.007 1.007 0.994
FSDT — 1.000 1.000 1.000 1.000

a/h = 1), produced by a finite element analysis performed with eight-noded brick
elements.

Figure 9: Distribution of shear stress σ13 for the [0/90/90/0] laminated plate (with
a/h = 1) subjected to uniformly distributed load, analyzed with ANSYS brick ele-
ments: the finite element mesh is also shown.
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Figure 10 shows the shear stress profile σ13(x3) for the 4-elements discretiza-
tion (in the case a/h = 1) which is compared with the one produced by a brick finite
element analysis.

Figure 10: Distribution of shear stress σ13 along the thickness for the [0/90/90/0]
laminated plate (a/h = 1) under uniformly distributed load: comparison between
HASL and brick model results.

It should be noticed that, while in the HASL model the shear stress is constant
along the x1- and x2-axes in each element, this does not happen in the brick model:
for this reason the stress profiles which are relevant to several values of the x1

coordinate are shown. Obviously, also in this case boundary layer affects are taken
into account in the 3-D solution only, as shown in [38].

Composite laminate plates
In order to establish the performance of the proposed element in a truly 2-D

environment, a simply-supported square laminated plate has been considered. The
plate side length is denoted by a, whereas its thickness is h. The following boundary
conditions have been adopted (corresponding to hard boundaries):

@ x1 = 0 and x1 = a : u2 = u3 = 0, ϕ1 = 0

@ x2 = 0 and x2 = a : u1 = u3 = 0, ϕ2 = 0.

The symmetric three-layer (i.e. [0/90/0]) and four-layer (i.e. [0/90/90/0]) cross-ply
laminates have been separately considered, as shown in Figure 11.

The plate has been loaded either by a uniformly distributed load (UDL), q0,
or by a doubly-sinusoidal load (SSL), q = q0 sin(πx1/a) sin(πx2/a), acting on the
upper surface, Ω+.

Due to geometric and loading symmetry only a quarter of the plate was studied,
and different meshes were adopted.
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Figure 11: Simply-supported square laminated plate under distributed loads: the
pattern of mesh refinement is partially shown. In (a) the [0/90/0] three-layer lami-
nate is shown, in (b) the [0/90/90/0] four-layer one.

Symmetric [0/90/0] cross-ply laminated plate
In this case, shown in Figure 11a, the following normalization of the deflec-

tion of the plate center has been used when presenting the results [see Table 7.2.1,
page 385 in [32]]:

ū3 =
100E2h3

q0a4 u3. (61)

UDL: Uniformly distributed load
Table 3 presents the normalized transversal displacement at the plate center

for the considered load case. For comparison purposes, the FSDT analytical solu-
tion and the results obtained by the hybrid 4-node (EML4) and the isoparametric
displacement-based 4-node (QUAD4) and 9-node (QUAD9) elements are reported
as well.

SSL: Double sinusoidally distributed load
Table 4 reports the normalized transversal deflection at the plate center for the

present load case. Analogously as before, the analytical solution and some results
available in the literature are presented for comparison purposes.

Symmetric [0/90/90/0] cross-ply laminated plate
The considered case is shown in Figure 11b; as before the two load conditions

are considered separately.

UDL: Uniformly distributed load
The same normalized displacement given by Eq. (61) is used here in the pre-

sentation of results. Table 5 provides the normalized deflection at the plate center
for the considered load case.

For comparison purposes, the FSDT analytical solution and the results obtained
by ANSYS with the shell 99 element are reported as well.

In Figure 12 the distribution of out-of plane shear stresses σ13(x3) and σ23(x3)
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Table 3: Normalized deflection, u3, measured at the center of a simply-supported
square laminated [0/90/0] plate under UDL.

a/h mesh 100 10
HASL 3×3 0.6756 1.0445

6×6 0.6711 1.0293
12×12 0.6700 1.0262

EML4 3×3 — 1.0235
6×6 — 1.0223

12×12 — 1.0220
QUAD4 3×3 — 1.0331

6×6 — 1.0243
12×12 — 1.0225

QUAD9 6×6 — 1.0222
12×12 — 1.0219

FSDT — 0.6697 1.0219

Table 4: Normalized deflection, u3, measured at the center of a simply-supported
square laminated [0/90/0] plate under SSL.

a/h mesh 100 20 10
HASL 6×6 0.4343 0.4932 0.6726
EML4 3×3 — — 0.6696

6×6 — — 0.6694
12×12 — — 0.6693

QUAD4 3×3 — — 0.6708
6×6 — — 0.6696

12×12 — — 0.6694
QUAD9 6×6 — — 0.6694

12×12 — — 0.6693
FSDT — 0.4337 0.4921 0.6693

at point x1 = a/12, x2 = a/12 are plotted for several values of the side-to-thickness
ratio a/h.

SSL: Double sinusoidally distributed load
In this case, the following normalization of displacement is used in the presen-

tation of results, instead of Eq. (61):

ū3 =
π4Qh3

12q0a4
u3, (62)
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Table 5: Normalized deflection, u3, measured at the center of a simply-supported
square laminated [0/90/90/0] plate under UDL.

a/h mesh 100 20 10
HASL 3×3 0.6884 0.7751 1.0364

6×6 0.6844 0.7689 1.0253
ANSYS 3×3 0.6894 0.7693 1.0249

6×6 0.6844 0.7694 1.0250
FSDT — 0.6833 0.7694 1.0250

Figure 12: Distribution of shear stresses σ13 and σ23 at point (a/12, a/12) for the
laminate [0/90/90/0] under UDL for different a/h ratios.

where

Q = 4G12 +
E1 +E2(1+2ν23)

1−ν12ν21
. (63)

Table 6 presents the normalized deflection of the plate center for the present
load case. Along with some numerical results available in the literature, the follow-
ing analytical solutions are reported for comparison purposes: FSDT; Higher order
plate theory by [18]; 3-D elastic theory, provided by [22].

Finally, in Figure 13 the distribution of transversal shear stresses σ13(x3) and
σ23(x3) at point x1 = a/12, x2 = a/12 are plotted for several values of the side-to-
thickness ratio a/h.
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Table 6: Deflection, u3, normalized according to Eq. (62) measured at the center of
a simply-supported square laminated [0/90/90/0] plate under SSL.

a/h mesh 100 50 10
HASL 6×6 1.007 1.024 1.548
EML4 5×5 — — 1.727
PHSL 4×4 1.0060 1.0306 1.7154

CTMQ20 4×4 1.007 1.031 1.735
8×8 1.008 1.031 1.729

16×16 1.008 1.031 1.728
DST 10×10 — 1.067 1.727

REC56-Z0 2×2 0.956 0.993 1.445
REC72-Z0 2×2 0.962 1.006 1.663

FSDT — 1.006 — 1.537
Higher order — 1.0034 1.0275 1.6712

3-D — 1.008 1.031 1.733

Figure 13: Distribution of shear stresses σ13 and σ23 at point (a/12, a/12) for the
laminate [0/90/90/0] under SSL for different a/h ratios.

It should be noticed, by making reference to the transversal deflection, that the
results provided by the HASL element are in good agreement with those of the 3-D
solution for all the side-to-thickness ratio. Like in all other cases no shear-locking
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phenomena occurs in the thin plate limit.
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