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Homogenized response of jointed rock masses with
periodic fields
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Summary
Rock masses with relatively high concentration of discontinuities or joints are

considered. Being aware of limitations of various averaging techniques such as the
self consistent or Mori-Tanaka methods in providing reliable estimates of generally
nonlinear macroscopic response of jointed rock masses, the paper introduces a no-
tion of statistically equivalent periodic unit cell (SEPUC). Such a unit cell contains,
in order to reduce the problem complexity, of the orders of magnitude less number
of joints in comparison with the actual material system. In analogy with two-phase
composites, the SEPUC is expected to be found in a statistical sense by matching
suitable microstructure descriptors of both the actual microstructure and periodic
one. A possibility of using the second order intensity function as a informative
descriptor of the cracks distribution is investigated and possible improvements, al-
though without computational support, are proposed. These will be described in
the following paper.

Introduction
Modeling of highly jointed rock masses presents a formidable challenge ow-

ing to the large complexity of the problem. It has been recognized long ago that
discrete modeling of each joint is in such a case not only impractical, but com-
putationally infeasible. Instead, elements of homogenization rooted in analyses of
composites have been employed. Application of micromechanics based averag-
ing techniques essentially demanding separation of scales is admissible, since rock
joints, although of the order of meters, are still considerably smaller in size when
compared with the dimensions of the analyzed problem (large underground cav-
erns, deep seated tunnels, etc). Introduction of homogenization then transforms
the original discontinuous body into a continuum with certain equivalent material
properties as schematically depicted in Fig. 1.

In this context the jointed rocks can be viewed as a special class of solids weak-
ened by cracks. Estimates of overall elastic moduli of such material systems can
be obtained by several well known methods including the self-consistent [1] and
Mori-Tanaka methods [2]. A variant of the dilute approximation has been intro-
duced in [3] to seek macroscopic nonlinear response of highly jointed rocks ex-
ploiting the dilation constitutive model presented in [6]. A particular application of
the Mori-Tanaka method to the analysis of cracked rocks can be found in [4]. A
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Figure 1: Jointed rock mass and equivalent continuum model

comprehensive survey of various averaging techniques available for a number crack
geometries also suggesting their potential drawbacks and essentially promoting the
most simple ones, the dilute approximation and the Mori-Tanaka method, is given
in [5]. Although computationally very attractive, the observed deficiencies of sim-
ple averaging techniques, further reviewed in the next section, may open the way
to a more accurate approach presented in the framework of statistically equivalent
periodic unit cells [9].

Evaluation of homogenized response of cracked solids - reasons for
unit cell models

A key point in the derivation of macroscopic or homogenized response is a
proper definition of macroscopic volume averages of stress and strain fields. To that
end, consider a generally heterogeneous material weakened by cracks and loaded
by remote displacements or remote tractions consistent with macroscopically uni-
form strain E or stress Σ fields. Further denote the displacement jump along the
two crack faces

[[u]]i = u+
i −u−i , m+

i = −m−
i , (1)

where m+
i ,m−

i represent the outer unit normals along the opposite crack faces.
Standard volume averaging then provides

〈
εi j(x)

〉
=

1
V

∫
VM

εi j(x)dV +
1

2V

∫
Γ+

([[ui]]m+
j +[[u j]]m+

i )dΓ = εi j,M +Ji j.(2)

The above equation receives a slightly different format when applied to material
systems that assume geometrical periodicity. In such a case, the local displacement
field ui(x) and the corresponding local strain εi j(x) admit the following decompo-
sition [7]

ui(x) = Ei jx j +u∗i (x), εi j(x) = Ei j +ε∗
i j(x), (3)

where ui(x) is a fluctuation part of the total displacement being periodic. Thus
for periodic fields, taking into account the fact that [[Ei jx j]] = 0 and limiting our
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Figure 2: Parallel distribution of cracks - homogenized coefficient of the effective
stiffness matrix which change as a function of crack density γ

(a) (b) (c) (d)
Figure 3: Two possible arrays of randomly distributed cracks of various sizes but
the same crack density: (a), (b); random distribution of parallel cracks: (d) one
group of cracks, (c) two groups of cracks

attention to a homogeneous matrix with cracks, Eq. (2) modifies as

〈
εi j(x)

〉
=

1
V

∫
VM

εi j(x)dV +
1

2V

∫
Γ+

([[u∗i ]]m+
j +

[[
u∗j

]]
m+

i )dΓ, (4)

〈ε〉 = 〈εM〉+J∗. (5)

To derive the macroscopic response it is advantageous, particularly with reference
to averaging techniques, to proceed in the stress control regime. Then, the available
analytical solutions of a single crack in an infinite medium loaded by a remote uni-
form stress Σ, the stepping stone of all averaging schemes, are readily applicable.
Introducing a volume average of a certain crack influence function H such that

〈ε〉 = MMΣ+J = (MM +H)Σ, (6)

provides together with Eq. (2) the macroscopic compliance matrix M in the form

M = MM +H. (7)

Specific estimates of matrix H are evaluated here by the dilute approximation
and the self-consistent, Mori-Tanaka and Cai-Horii methods. The influence of indi-
vidual methods on the prediction of overall response appears in Fig. 2 immediately
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Figure 4: Concept of statistically equivalent periodic unit cell

disclosing their major drawback - severe overestimation of the interaction effect. In
view of these results, the dilute approximation appears as the most reliable method
when compared with the finite element solutions, see also [5] for detailed discus-
sion on this subject. Note that the finite element results were derived with the help
of 1st order homogenization method, e.g. [7], [9], assuming periodic distribution of
cracks within a certain unit cell such as the one plotted in Fig. 3(c).

Another drawback arises when implementing averaging techniques in the frame-
work of multiscale analysis [3]. The specific format of local stresses (3× 1 vec-
tor of surface tractions) developed within joints does not allow for straightforward
up-scaling to the macroscopic stress tensor. Incremental solutions in the form of
the forward Euler integration scheme are therefore required, which may lead to
erroneous results especially for larger load increments since equilibrium on the
macroscale is not specifically enforced. The detailed finite element analysis on
the other hand presents no such complications. Additional weighty reason for us-
ing more complicated approaches is general inability of averaging techniques to
rigorously account for actual microstructural details. Being dependent solely on a
given crack density these methods cannot clearly distinguish between the two crack
patterns depicted in Fig. 3(a)(b).

Concept of statistically equivalent periodic unit cell
Images of real rock masses generated by Global positioning system receivers

combined with geologic mapping, digital photography, remote sensing and tomog-
raphy that show rock formation including distribution of fractures (joints) will soon
become commonly available. It is therefore imperative to develop a general mod-
eling concept that would take detailed information about real “microstructure” into
account and if possible in an efficient way. A concept of statistically equivalent
periodic unit cell (SEPUC) developed in our previous works for various classes of
two-phase composites, see e.g. [9], presents one particular option.

The leading idea of this approach, evident from Fig. 4, is to replace a com-
plex non-periodic microstructure by a certain periodic unit cell (PUC), which still
optimally resembles the original microstructure in a proper sense. To reduce the
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Figure 5: K(r)− r plot: (a) Various orientations of cracks - the same density and
the same crack length, (b) two crack systems with variable crack length but the
same density, (c) variable density - different number of cracks of the same length,
(d) variable intensity - the same number of cracks of different length; ∑ Ik − r plot:
(e) - as (b), (f) - as (c)

problem complexity the periodic unit cell is described by a substantially smaller
number of parameters. It has been found [9] that the predictive capabilities of the
resulting SEPUCs strongly depend on the microstructure quantification by suitable
geometrical descriptors.

Being inspired by our previous work, see also [8] and references therein, we
offer as a possible descriptor of the microstructure morphology the second order
intensity function K(r) given by

K(r) =
A

N2

N

∑
k=1

Ik(r), (8)

where Ik(r) is the number of points (centers of joints) within a circle with radius
r centered at the k-th joint, N is the total number of joints in the sample and A is
the sample area. Periodicity of the analyzed sample is often assumed to account
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for points outside the sampling area. Examples of this function for various crack
patterns are shown in Fig. 5.

It becomes evident from these plots that this function, as a descriptor of the
points distribution, is not capable of capturing the essential differences between
various crack patters. It cannot discriminate between different crack orientations,
Fig. 5(a), different crack lengths, Fig. 5(a), and even different densities, Figs. 5(c)(d).
Certain differences arise, by no surprise, when removing the scaling factor from
Eq. 8, Figs. 5(e)(f). It appears that applicability of this function is thus limited to
artificial or well defined crack patterns such as those displayed in Fig. 3 providing
the same crack pattern is assumed for both the real microstructure representative
and statistically equivalent periodic unit cell.

More sophisticated geometrical descriptors are therefore needed if we wish to
address in situ observed crack patterns. Intuitively, a variant of the above technique
that incorporates certain elements of the lineal path function can be adopted. In
such a case, a segment of a given length and orientation is thrown into a medium
and the number of cracks crossed by this segment is calculated. Such an approach
would not only account for different crack patterns both with respect to the crack
length and orientation, but would also reflect the possible statistical homogeneity,
unlike the function K(r) a-priori assuming a statistically isotropic medium.
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