Copyright © 2007 ICCES ICCES, vol.4, no.3, pp.151-157, 2007

PDSL and SDSL Parallel Visualization Algorithms for
Large-scale Finite Element Analysis Data in Distributed
Parallel Computing Environment

Jin Yeon Cho!, Yun Hyuk Choi?, You Me Song3 and Chang Sik Kim*

Summary
In this work, PDSL(pre-detection sort last) and SDSL(strip-wise decomposi-

tion sort last) parallel visualization algorithms are proposed for efficient visual-
ization of massive data generated from large-scale parallel finite element analysis
through investigating the characteristics of distributed parallel finite element anal-
ysis procedure. The proposed parallel visualization algorithms are based on the
sort last approach, and designed to be highly compatible with the characteristics
of domain-wise computation in parallel finite element analysis. To investigate the
performances of proposed algorithms, in-house software is developed by applying
the binary tree network communication pattern along with the proposed sorting
algorithms, and benchmarking test for parallel visualization is carried out.

Introduction
Currently, a considerable research effort has been given to the field of high per-

formance computing (HPC). In HPC research, there are two major driving forces.
One is the ever-increasing requirement for safety and preciseness in engineering
design and analysis, and the other is the drastic reduction of computing cost caused
by the splendid progress in computing hardware technologies such as parallel com-
puting architectures. The representative nation-wide HPC research projects include
US ASClI(Accelerated Strategic Computing Initiative), US ASC(Advanced Simula-
tion and Computation), Japanese earth simulator project, Korean e-science project
and so on. Through the projects, researchers are having solved the unprecedented
problems which were never challenged before because of tremendous degrees of
freedom.

As a result, extremely large sized data sets are inevitably produced from the
high fidelity simulations, and the demands for highly efficient and affordable par-
allel visualization methodologies are being increased greatly in order to visualize
the massive data [1, 2]. To meet the requirements for visualizing massive analysis

! Associate Professor, Department of Aerospace Engineering, INHA University, Incheon 402-751,
Korea

2Research Assistant, Department of Aerospace Engineering, INHA University, Incheon 402-751,
Korea

3Research Assistant, Department of Aerospace Engineering, INHA University, Currently
Hyundai Motors

4Research Assistant, Department of Aerospace Engineering, INHA University, Currently Sam-
sung Electronics

152 Copyright © 2007 ICCES ICCES, vol.4, no.3, pp.151-157, 2007

data, several high performance visualization tools have been developed. Among
them, Chromium [3] is one of the most widely utilized general-purpose parallel
visualization tools. However, it has some disadvantages in special purpose such as
visualization of large sized data sets generated from distributed parallel finite ele-
ment analysis, since it is designed for general purpose. Therefore this work aims to
develop efficient parallel visualization framework and algorithms, which are highly
compatible with distributed parallel finite element analysis procedure [4], with spe-
cial consideration of domain-wise characteristics.

Parallel Rendering Framework

In distributed parallel finite element procedure, the whole domain of problem
is decomposed into several sub-domains, and each decomposed sub-domain is al-
located to each computer node in cluster system. After assigning the decomposed
data, parallel finite element analysis is carried out through the network communi-
cation between computer nodes, and the final analysis results are stored in each
computer node especially when the size of data is extremely large. Because the
size of data is so large to handle in single conventional PC, traditional visualization
system requires a high performance graphic server and expensive storage device
such as RAID to store and retrieve the data. Further, one may redistribute the huge
sized data into the visualization dedicated rendering cluster system. The situation
is similar when the Chromium is utilized.

Here, one may easily notice that there is time-consuming duplicated work in
this conventional visualization practice. It is collection and redistribution of huge
sized data. Actually, if one changes the strategy in visualization of distributed par-
allel finite element analysis data, the time-consuming collection and redistribution
of large data can be avoided because the data set resulted from distributed parallel
finite element analysis procedure was already distributed domain-wisely in each
computer node. Furthermore, one may avoid expensive hardware for visualization
of massive data if one utilizes the computer nodes of cluster system for the purpose
of data rendering as well as finite element computing. Based on the observation,
we construct the following streamlined visualization strategy where parallel finite
element analysis and parallel rendering are performed in the same computer nodes
as shown in Fig. 1.

One can see that collection and redistribution of large data are avoided, and
each computer node, which is utilized for finite element computing, is re-utilized
for the purpose of rendering of each analysis data stored in each computer node.
Through the strategy, one can reduce hardware cost as well as the duplicated cum-
bersome job.

Parallel Visualization Compatible with Parallel FE Analysis
In 1991, Molnar [5] classified parallel rendering (visualization) algorithms into

PDSL and SDSL Parallel Visualization Algorithms 153

Mesh j a@olver PixelDATA
Image
M odel Mesh j s&olver, PixelDATA CombS D
Partitoning s Som sty Rasterization PixelRead & I
A Jgorithr Mesh f a@olver PixelDATA Depth Chk g
Algorithm L
Mesh j s@olver PixelDATA A
Y
A A\ L\ -
Y ~Nr ~"
M odelBased DATA ElementBassd DATA PixelBassdDATA
Peerto peernetw ork ssrver

Figure 1: Parallel rendering system dedicated to distributed parallel finite element
analysis

three categories based on the position of sorting procedure in the rendering pipeline.
Those are sort-first (sort before geometry processing), sort-middle (sort between
geometry processing and rasterization), and sort-last (sort after rasterization).

In sort-first approach, screen space is partitioned into non-overlapping two di-
mensional tiles or regions which will be rendered independently, and the geometric
primitives (such as elements or meshes) are sorted for each screen space. From
the reason, it is indispensable to collect the domain-wisely distributed analysis data
and redistribute the massive data according to screen spaces. Therefore, the sort-
first approach is not appropriate for visualization of distributed parallel finite ele-
ment analysis data. In case of sort-middle approach, it is difficult to utilize in soft-
ware level, because conventional commercial graphic accelerators do not provide
API (application program interface) which makes it possible to access the graphic
pipeline stage between geometry processing and rasterization.

In Sort-last approach, each computer (rendering) node makes a separated sub-
image independently, and the local sub-images are combined into a single final im-
age through depth comparison in order to make an entire image. Thus, the domain-
wisely decomposed data stored in each computer node for distributed parallel finite
element analysis procedure can be directly utilized without any collection and re-
distribution in this approach. Therefore, we can notice that the sort-last approach is
compatible with domain-wise characteristics of distributed parallel finite element
analysis.

Sort-last approach may be classified into sort-last-full and sort-last-sparse [6]
according to the usage of frame buffer. Generally, in sort-last full approach, full
frame pixel data set is utilized to make local sub-images, and the full frame pixel
data set is transferred to other computer (rendering) node for image composition as
shown in Fig. 2. Therefore the transfer of full frame pixel data may increase the net-
work communication. (If one has display device with 1024 x768 resolution, then
full frame means 1024 x 768 pixel data.) To reduce the network communication, the

154 Copyright © 2007 ICCES ICCES, vol.4, no.3, pp.151-157, 2007

sort-last sparse approach utilizes only the bounding box pixel area containing the
sub-image as shown in Fig. 2. After network communication between computer
rendering nodes, image composition is performed through the depth comparison
[7] for the entire region of transferred bounding box sub-image area.

PDSL and SDSL Algorithms

As noted before, in conventional sort-last sparse approach, depth comparison
is carried out for the whole bounding box sub-image area which is transferred from
the other computer nodes, even though the actual overlapped data set, for which
depth test should be performed, is much smaller than the whole transferred bound-
ing box sub-image area. Furthermore, since the sort-last sparse approach utilizes
rectangular region of bounding box sub-image area, large amount of non-effective
blank pixel data is still incorporated in the network communication.

Based on the aforementioned observation about the drawbacks of sort last
sparse method, PDSL (pre-detection sort last) and SDSL (strip-wise decomposi-
tion sort last) algorithms are proposed in this work. PDSL (pre-detection sort last)
algorithm is devised in order to reduce the depth comparison area, and SDSL (strip-
wise sort last) algorithm is developed with the aim of reducing pixel data size for
communication.

In PDSL algorithm, the bounding rectangular area for overlapped region is de-
tected by simple communication of information about the vertices of bounding box
for each sub-image before communicating valid pixel data as denoted in Fig. 2. By
this pre-detection procedure for overlapped region, one can greatly reduce work-
load for depth comparison in image composition stage. In SDSL algorithm, the
region of sub-image is decomposed into strip-wise rectangular pieces in order to
approximate the shape of valid pixel, and the decomposed strip-wise rectangular
pieces are utilized instead of the bounding box of sub-image area for data commu-
nication as shown in Fig. 2.

Sort-hstFull Sort-hstSparse PDSL SDSL
A N VA‘ N VA‘ é
O @ @ =
[pXxeldata forcom m uniatbn] | regbn Prdepth com parison |

Figure 2: Pixel data for communication and depth comparison in sorting algorithms

Therefore, one can avoid the non-valid blank pixel data in network communi-
cation, and considerably minimize network burden which is one of the major rea-

PDSL and SDSL Parallel Visualization Algorithms 155

sons for degradation of parallel visualization performance. Further, similar to the
PDSL algorithm, the overlapped region is detected before depth comparison for
each decomposed strip, and the depth test is carried out only for the pre-detected
overlapped region. Therefore, one can also reduce workload for depth compari-
son in image compositing stage like the PDSL algorithm. The pre-detection time
for SDSL algorithm is larger than that for PDSL algorithm because pre-detection is
carried out for each decomposed strips in SDSL algorithm. However, it is noted that
the increased time is negligible compared with the time saving resulted from the re-
duction of network communication in SDSL algorithm. Especially, it is noted that
the SDSL algorithm is much more effective in case of complicated model where
the portion of blank pixel in the bounding box of sub-image area is large.

Benchmarking Test

Benchmarking test is carried out to investigate the performances of the pro-
posed PDSL and SDSL parallel visualization algorithms through the developed
in-house software. In benchmarking test, self-made 16 node PC cluster system is
utilized as a test bed. The cluster system is designed in order to utilize for parallel
visualization as well as for parallel finite element analysis. The computer nodes
of cluster system are interconnected by 3Com 1Gbit switching hub, and each com-
puter node of cluster system is composed of Intel Pentium IV 2.8GHz CPU, Sam-
sung 1Gbyte RAM, Intel 1Gbit network card, and GeForce FX5700 commercial
graphic accelerator.

To observe the parallel visualization performances of the proposed PDSL and
SDSL algorithms, parallel visualization benchmarking test is carried out for the fi-
nite element model composed of 1,329,027 tetrahedral elements as shown in Fig.
3, and those performances are compared with that of conventional sort-last sparse
algorithm. The parallel visualization performance is measured by the time per rev-
olution required to visualize the finite element model in rotating motion. For data
communication between the computer rendering nodes, binary tree communication
pattern [8] is utilized along with sorting algorithms in order to precisely measure
the performances of each sorting algorithms concerning the depth comparison and
communication overhead. It is noted that one can reduce the image composition
time by the binary-tree communication pattern, since the network communication
time of binary-tree structure is proportional to the number of computer rendering
nodes logarithmically. In Fig. 3, one can observe that both of SDSL and PDSL
algorithms are more efficient than sort last sparse algorithm. Especially, it is noted
that the parallel visualization performance is increased around 13% in case of SDSL
algorithm, compared with sort last sparse algorithm.

Conclusions
In this work, PDSL(pre-detection sort last) and SDSL(strip-wise decomposi-

156 Copyright ©) 2007 ICCES ICCES, vol.4, no.3, pp.151-157, 2007

e B PDSL [SDSL —#- SL-Sparse +ﬁeajr ‘+ﬁeal——sLSpaxse -8~ PDSL —-SDSL
18 120
” /
—i00
. e o \,\A
[oRE @80
3 o 8 Q\Q:TN_.\A
w0 g
bt / @ &0 L,
& L - g ——
T
4 3]
' il Hﬁ .
2 2 ﬂ
'_“_,‘J — 0
= 123 4 5 6 7 8 9101112131415 12 3 45 6 7 8 9 10111213 14 I
Num berofNodes Num berofNodes
4

Figure 3: Comparison of parallel visualization performances of sorting algorithms

tion sort last) parallel visualization algorithms are proposed for efficient parallel vi-
sualization of massive data generated from large-scale parallel finite element anal-
ysis through investigating the characteristics of distributed parallel finite element
analysis procedure. From the benchmarking test, it is known that both of PDSL
and SDSL algorithms have better performances compared with the sort last sparse
algorithm. Especially, the SDSL algorithm yields 13% improvement in parallel
performance compared with the sort last sparse algorithm. From the result, it is ex-
pected that the proposed visualization algorithms can be efficiently utilized in high
performance visualization of massive data generated from the distributed parallel
finite element analysis in distributed parallel computing environment with afford-
able cost.

Acknowledgement
Authors would like to acknowledge the financial support from Agency for De-

fense Development through VT-41 project of Flight Vehicle Research Center.

References

1. Kenneth Moreland, Brian Wylie, Constantine Pavlakos, Vasily Lewis, (2001):
“Scalable rendering on PC clusters”, IEEE Computer Graphics and Applica-
tions, Vol. 21(4), pp. 85-154.

2. Kenneth Moreland, Brian Wylie, Constantine Pavlakos, (2001): “Sort-Last
Parallel Rendering for Viewing Extremely Large Data Sets on Tile Displays”,
IEEE Symposium on parallel and large data visualization & graphics, pp.
85-154.

3. Greg Humphreys, Mike Houston, Ren Ng, Sean Arhen, Randall Frank, Peter
Kirchner, James T Klosowski, (2002): “Chromium : A Stream processing
framework for interactive on clusters”, Proceedings of SIGGRAPH 2002,
Vol. 21(3), pp. 693-702.

4. Kim S.J., Lee C.S., Kim J.H., Joh M.S., Lee S.S., (2003): “IPSAP : A
High-performance Parallel Element Code for Large-scale Structural Anal-
ysis Based on Domain-wise Multifrontal Technique”, Proceedings of the

PDSL and SDSL Parallel Visualization Algorithms 157

ACM/IEEE SC2003 Conference, pp. 32.

5. Steve Molnar, Michael Cox, David Ellsworth, Henry Fuchs, (1991): “A Sort-
ing classification of parallel rendering”, IEEE Computer Graphics and Ap-
plications, Vol. 14(4), pp. 23-32.

6. Don-Lin Yang, Jen-Chih Yu, Yeh-Ching Chung, (2001): “A Sorting classifi-
cation of parallel rendering”, The Journal of supercomputing, Vol. 18(2), pp.
201-220.

7. Foley J., Dam A., Feiner S., Huges J., (1997): “Computer Graphics : Princi-
ples and practice”, ADDISON WESLEY, Second Edition, pp. 668-672.

8. Steve Molnar, (1991): “Image Composition Architectures for Real-time Im-
age Generation”, Univ. of North Carolina at Chapel Hill , Technical Report
TR91-04.

