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Implicit Formulation of Homogenization Method for
Periodic Inelastic Solids
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Summary
In this study, to determine incremental, perturbed displacement fields in pe-

riodic inelastic solids, an incremental homogenization problem is fully implicitly
formulated, and an algorithm is developed to solve the homogenization problem. It
is shown that the homogenization problem can be iteratively solved with quadratic
convergences by successively updating strain increments in unit cells, and that the
present formulation allows versatility in the initial setting of strain increments in
contrast to previous studies. The homogenization algorithm developed is then ex-
amined by analyzing a holed plate, with an elastoplastic micro-structure, subjected
to tensile loading. It is thus demonstrated that the convergence in iteratively solving
the homogenization problem strongly depends on the initial setting of strain incre-
ments in unit cells, and that quick convergences can be attained if the initial setting
of strain increments is appropriate.

Introduction
There are macro-structures made of such inhomogeneous solids, as compos-

ite materials and cellular solids, which have explicit micro-structures. This kind
of macro-structures, in which macro-strain and macro-stress in general distribute
non-uniformly, can be analyzed as those made of homogeneous solids, if the macro-
properties of micro-structures are known. If micro-structures are periodic, their
macro-properties can be evaluated using the mathematical homogenization method
[1], which will be referred to as the homogenization method hereafter. However, if
micro-structures are inelastic, this method forces the inelastic finite element anal-
ysis of unit cells to be performed at all integration points in each increment in an-
alyzing that kind of macro-structures, resulting in very high computational loads.
It is therefore worthwhile to develop efficient computational algorithms so that the
homogenization method can be really effective for analyzing macro-structures with
periodic, inelastic micro-structures [2,3].

In this study, an incremental homogenization problem is fully implicitly formu-
lated so that macro-structures with periodic, elastoplastic micro-structures can be
effectively analyzed. To this end, the virtual work equation mentioned above is em-
ployed, along with a linearized constitutive relation and a micro/macro-kinematic
relation. An incremental boundary value problem based on the backward Euler
method is thus built to efficiently analyze elastoplastic unit cells. An algorithm is
then developed to iteratively solve the boundary value problem: this algorithm is
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shown to allow versatility in the initial setting of strain increments. The algorithm
developed is examined by analyzing a holed plate, with an elastoplastic micro-
structure, subjected to tensile loading.

Basic Equations
Let us consider a macro-structure B with a periodic micro-structure, which has

a unit cell Y . Let us assume that small deformation occurs in B. Then, by denoting
macro-strain in B as E, micro-strain in Y is expressed as

ε = E+ ε̃ , (1)

where ε̃ represents the perturbed strain in Y .

Since ε̃ satisfies the Y -periodicity, the following virtual work equation postu-
lated by Hill [4] is identically satisfied [5]:

Σ : δE = 〈σ : δε〉 , (2)

where Σ and σ signify macro-stress and micro-stress, respectively, δ indicates any
variation, and 〈 〉 represents the volume average in Y defined as

〈#〉= |Y |−1
∫

Y
#dY . (3)

Here |Y | denotes the volume of Y . Then, substituting Eq. 1 into Eq. 2, we obtain

Σ = 〈σ〉 , (4)

〈σ : δ ε̃〉 = 0. (5)

Eq. 4 is the relation between macro-stress and micro-stress, and Eq. 5 is regarded
as the virtual work equation concerning perturbed displacement. It is shown that
Eq. 5 represents the micro-stress balance in Y in the absence of body forces [5,6].

Let us suppose that elastoplastic deformation occurs in Y . Then, micro-stress
is expressed as

σ = De : (ε −ε p), (6)

where De indicates elastic stiffness, and ε p denotes micro-plastic strain.

Incremental Homogenization Problem
Let us consider the incremental step from n to n + 1. The problem discussed

here is then stated as follows: Given ΔEn+1(= En+1 −En) in addition to un and ε p
n

in Y , find macro-stress Σn+1 based on the backward Euler method. Here and from
now on, Δ indicates the increments in the step from n to n+1.



Implicit Formulation of Homogenization Method 203

To evaluate Σn+1 implicitly, we suppose that Eq. 1 and Eqs. 4-6 are satisfied at
n+1:

εn+1 = En+1 + ε̃n+1, (7)

Σn+1 = 〈σn+1〉 , (8)

〈σn+1 : δ ε̃〉 = 0, (9)

σn+1 = De
n+1 : (εn +Δεn+1 −ε p

n −Δε p
n+1). (10)

Here it is noted that εn+1 = εn +Δεn+1 and ε p
n+1 = ε p

n +Δε p
n+1. Let us linearlize Eq.

10 as
σ (i+1)

n+1 −σ (i)
n+1 = D(i)

n+1 : (Δε (i+1)
n+1 −Δε (i)

n+1), (11)

where the superscript (i) denotes the i th iteration, and D(i)
n+1 is a consistent tangent

modulus
D(i)

n+1 = ∂σ (i)
n+1

/
∂Δε (i)

n+1. (12)

Then, representing Δε (i+1)
n+1 in Eq. 11 as

Δε (i+1)
n+1 = ΔEn+1 +Δε̃ (i+1)

n+1 , (13)

and assuming that σ (i+1)
n+1 in Eq. 11 satisfies Eq. 9, we obtain an incremental bound-

ary value problem〈
δ ε̃ : D(i)

n+1 : ∇yΔũ(i+1)
n+1

〉
= −

〈
δ ε̃ : σ (i)

n+1

〉
−

〈
δ ε̃ : D(i)

n+1 : (ΔEn+1−Δε (i)
n+1)

〉
.

(14)

Computational Algorithm
Eq. 14 can be in general solved for Δũ(i+1)

n+1 using FEM, if ΔEn+1 is prescribed,

and if D(i)
n+1, σ (i)

n+1 and Δε (i)
n+1 are known. Hence, we can consider the computa-

tional algorithm, in which micro-strain increment Δε (i)
n+1 is updated to Δε (i+1)

n+1 after

solving Eq. 14 for Δũ(i+1)
n+1 . If Δε (i+1)

n+1 satisfies a convergence condition, Σn+1 is
evaluated using Eq. 8.

Let us note that the initial value of micro-strain increment, Δε (0)
n+1, is arbitrarily

chosen in the algorithm, because Δε (0)
n+1 has not been replaced by ΔEn+1 + Δε̃ (0)

n+1

using Eq. 13 in deriving Eq. 14. Examples of Δε (0)
n+1 are

Δε (0)
n+1 = 0, (15)

Δε (0)
n+1 = Δεn, (16)

Δε (0)
n+1 = ΔEn+1, (17)

where Δεn indicates the micro-strain increment that converged in the preceding
incremental step.
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Example of Numerical Analysis
A holed plate with a micro-structure was analyzed using the system mentioned

above. The plate was subjected to longitudinal displacement u0
L at its ends under

the plane strain condition. A quarter of the plate was divided into finite elements,
as shown in Fig. 1(a). The displacement u0

L was increased from zero to u0
L,max =0.4

mm in N steps, so that the increment of u0
L was taken as Δu0

L = u0
L,max/N in the

analysis. The micro-structure was assumed to have the unit cell Y shown in Fig.
1(b).

The constituent of Y was an elastoplastic solid, for which the linear isotropic
hardening J2 plasticity model based on the following yield condition was employed
to specify ε̇ p:

f = σ̄2 − (σ0 +E p p)2, (18)

where σ0 and E p are material parameters, σ̄ denotes the equivalent micro-stress
defined in terms of deviatoric micro-stress s as σ̄ = ( 3

2s : s)1/2, p indicates the ac-
cumulated micro-plastic strain obtained by integrating ṗ = ( 2

3 ε̇ p : ε̇ p)1/2. The anal-
ysis was done by assuming the material parameters as follows: Young’s modulus
E =150 GPa, Poisson’s ratio ν =0.3, initial yield stress σ0 =120 MPa, and plastic
hardening modulus E p =5 GPa. The return mapping algorithm was employed to
compute σ (i)

n+1 and D(i)
n+1 in the homogenization algorithm.

The three initial settings of Δε (0)
n+1, Eqs. 15-17, were examined by performing

the analysis mentioned above. Then, Δε (0)
n+1 was found to have significant influences

(Table 1); Δε (0)
n+1 = Δεn was the best among them, Δε (0)

n+1 = 0 was fairly successful,
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but Δε (0)
n+1 = ΔEn+1 resulted in very bad convergences in iteratively solving the

incremental homogenization problem. Figs. 2(a)-(d) depict the configurations of
Y at macro-integration points P1 to P4 indicated in Fig. 1(a). It is seen from the
figures that the longitudinal cell walls were considerably bent at P2 to P4. It is
however noted that the initial setting of Δε (0)

n+1 = ΔEn+1 completely ignores the
bending of cell walls. This may account for the very bad convergences brought
about by Δε (0)

n+1 = ΔEn+1.

Conclusions
In this study, an incremental homogenization problem was fully implicitly for-

mulated to determine perturbed displacement fields in periodic elastoplastic solids,
and an algorithm was developed to solve the homogenization problem. It was
pointed out that the present formulation allows versatility in the initial setting
of micro-strain increment Δε (0)

n+1 in contrast to those by Terada and Kikuchi [2]

and Miehe [3]. Three initial settings of Δε (0)
n+1, i.e., Δε (0)

n+1 = 0, Δε (0)
n+1 = Δεn and
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Δε (0)
n+1 = ΔEn+1, were considered. A holed plate with a micro-structure was then

analyzed as a numerical example, resulting in the following finding: Δε (0)
n+1 = Δεn

was the best among the three, Δε (0)
n+1 = 0 was fairly successful, but Δε (0)

n+1 = ΔEn+1

gave very bad convergences in iteratively solving the incremental homogenization
problem.
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