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Elastic-plastic constitutive equation taking account of
particle size
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Summary
Composite materials have complicated microstructures. These structures affect

macroscopic deformation. In this study, we focus on the particle size effect in
composite materials. For this purpose, we derived an elastic-plastic constitutive
equation considering size effect by using Eshelby’s theory and the strain gradient
theory of plasticity. We performed a homogenized finite element analysis using the
elastic-plastic constitutive equation. The results obtained from the analysis show
increase of the strength with decrease of the particle size in composite materials.

Introduction
Composite materials have inhomogeneous microstructures, and the inhomo-

geneity affects mechanical properties of composites. The finite element method
can be used to clarify how the macroscopic behaviors of solid structures are in-
fluenced by the microstructures. In such a case, if the whole structure including
the microstructure is modeled by the finite elements, an enormous number of finite
elements and enormous amount of computational time are required. To overcome
such difficulties, various studies have been performed on the macroscopic constitu-
tive equation for particle-dispersed composites in order to predict their mechanical
behaviors. Among them, the Eshelby′s equivalent inclusion method [1] has been
used for predicting mechanical behaviors of particle-dispersed composites. For ex-
ample, Mori and Tanaka [2] developed the mean field theory based on the Eshelby′s
equivalent inclusion method. They assumed that stress and strain are uniform in
each phase of a composite, and derived the elastic constitutive equation of the com-
posite. On the other hand, Tandon and Weng [3] extended the Mori-Tanaka′s theory
to an elastic-plastic constitutive equation for a particle-dispersed composite.

We focus on the particle size effect in particle-dispersed composites. Experi-
mental results [4][5] show that strength of the composite has dependence on particle
size. From the view point of material design, it is important to clarify how much
particle size affects the macroscopic deformation. Zbib[6] presented a finite ele-
ment formulation for the strain gradient theory of plasticity which make it possible
to consider the particle size effect on the strength of particle-dispersed composites.
When we carry out the finite element analysis of structures made of composite ma-
terials, micro-structures of composite materials are often homogenized to reduce
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the total degrees-of-freedom of a finite element model. Without such homogeniza-
tion, it is practically impossible to apply the strain gradient theory of plasticity to
the finite element stress analysis of composite materials.

In this study, we tried to combine the equivalent inclusion method (Eshelby′s
theory) with the strain gradient theory of plasticity to consider the particle size
effect. In Mori-Tanaka′s model and Tandon-Weng′s model, the stress and strain
distributions are not taken into account in deriving the elastic-plastic constitutive
equation. So we developed a new model to take account of the strain distribution
around particles in the macroscopic constitutive equation. Then we combined this
model with the strain gradient plastic theory. We performed a homogenized fi-
nite element analysis using the elastic-plastic constitutive by base on the Eshelby′s
theory and the strain gradient theory of plasticity newly derived in this paper.

Eshelby’s theory
We assume that a single particle or inclusion exists in uniform infinite matrix.

According to the Eshelby′s equivalent inclusion method, we can evaluate stresses
and strains in the inclusion and matrix under the uniform loading, assuming that the
real inclusion is replaced by the virtual inclusion or the equivalent inclusion with
the same material of the matrix and a certain arbitrary eigenstrain. The total strain
of the equivalent inclusion is given as follows:

ε2 = εe
2 +ε∗

2 (1)

where ε∗ is the eigenstrain, and the subscripts 0, 1 and 2 indicate the matrix at
the infinite location, the matrix and the inclusion, respectively. We assume that
a composite is subjected to a uniform strain ε0 at the infinite location. Here, we
define the strain difference between ε1 and ε0 as εc

0, and that between ε2 and ε2 as
εc

2 , respectively.

ε1(x) = ε0 +εc
1(x), ε2 = ε0 +εc

2 (2)

In Eq.(2), ε1(x) and εc
1(x) indicate the functions of position. On the other hand,

ε2 and εc
2 in the inclusion are assumed to be constant. We can obtain εc

1(x) and εc
2

from the Eshelby tensors (Sout(x),Sin) and eigenstrain.

εc
1(x) = Sout(x) : ε∗, εc

2 = Sin : ε∗ (3)

The eigenstrain given by Eq.(3) is arbitrary. We consider equivalent condition for
the stress between the real inclusion and equivalent inclusion, and obtain the fol-
lowing equation.

σ2 = σeqv = De
1 : (ε2−ε∗), σ2 = De

2 : ε2 (4)
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where De
1 and De

2 are the elastic matrix for the matrix material and that for the
inclusion, respectively. Using Eqs.(2)-(4), we obtain the eigenstrain as a function
of ε0 that satisfies the equivalent condition.

ε∗ = A0 : ε0 (5)

A0 =
[(

I ⊗ I − (De
1)

−1 : De
2

)−1 −Sin

]−1
(6)

where I denotes the unit matrix. By substituting Eq.(5) into Eq.(3) and using Eq.(2),
we can obtain the strains in the matrix and the inclusion, respectively, as follows:

ε1(x) = (I ⊗ I +Sout(x) : A0) : ε0 (7)

ε2 = (I ⊗ I +Sin : A0) : ε0 (8)

As shown in Eqs.(7) and (8), both the strains in the matrix and the inclusion are
calculated from the strain at the infinite location and the several material properties
included in De

1 and De
2. Then the stresses in the matrix and the inclusion are written

as

σ1(x) = De
1 : (I ⊗ I +Sout(x) : A0) : ε0 (9)

σ2 = De
2 : (I ⊗ I +Sin : A0) : ε0 (10)

Macroscopic constitutive law
In this section, we derive a macroscopic constitutive equation from the equa-

tions shown in the previous section. Fig. 1 shows a unit cell in the present model
consisting of a lot of background cells for numerical integration, which will be
mentioned later. For the unit cell, we define the average strain of the matrix ε1 and
that of the inclusion ε2 as follows:

ε1 =
1

V1

∫
V1

ε1dV, ε2 =
1

V2

∫
V2

ε2dV (11)

where V1, V2 and V are the volume of matrix, that of inclusion and the overall
volume, respectively. We assume that the average strain of the overall volume ε is
given as:

ε = (1− f )ε1 + f ε2, (12)

where f is the volume fraction. By substituting Eqs.(7), (8) and (11) into Eq.(12),
ε is written as a function of ε0 as follows:

ε = α : ε0, (13)

α =
1
V

[∫
V1

I ⊗ I +Sout(x) : A0dV +
∫

V2

I ⊗ I +Sin : A0dV

]
(14)
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Figure 2: Numerical model

Similarly, the average stress in the matrix σ 1, that in the inclusion σ2 and that of
the overall volume σ are written as:

σ1 =
1
V1

∫
V1

σ1dV, σ2 =
1

V2

∫
V2

σ2dV, (15)

σ = β : ε0, (16)

β =
1
V

[∫
V1

De
1 (I ⊗ I +Sout(x) : A0)dV +

∫
V2

De
2 (I ⊗ I +Sin : A0)dV

]
, (17)

The average stress σ is written as a function of ε0 as well as the average strain ε. α
and β are 4th order tensors that relate the average strain and the average stress with
the strain at the infinite location. Finally, we obtain the relationship between the
average stress and the average strain by eliminating ε0 from Eq.(13) and Eq.(16) as
follows:

σ = D
e

: ε = β : α−1 : ε (18)

We can regard the above equation as a constitutive equation for a particle-dispersed
composite. When the matrix material is in a plastic state and the inclusion remains
elastic, a constitutive equation for an elastic-plastic problem can be obtained by
changing the elastic matrix of the matrix material De

1 in Eqs.(6) and (17) to the
elastic-plastic matrix of the matrix material Dep

1 and revising Eq.(18) to an incre-
mental form. Conclusively, a constitutive equation for an elastic-plastic problem of
a particle-dispersed composite is given as follows:

dσ = D
ep

: dε = β : α−1 : dε , (19)

α =
1
V

[∫
V1

I ⊗ I +Sout(x) : A0dV +
∫

V2

I ⊗ I +Sin : A0dV

]
, (20)

β =
1
V

[∫
V1

Dep
1 (I⊗ I +Sout(x) : A0)dV +

∫
V2

De
2 (I ⊗ I +Sin : A0)dV

]
, (21)
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where

A0 =
[(

I ⊗ I −(
Dep

1

)−1
: De

2

)−1
−Sin

]−1

(22)

Numerical integration is required to calculate α and β both for an elastic problem
and for an elastic-plastic problem. Fig. 1 also shows the background cells for the
numerical integration. Due to the symmetry, the numerical integration is performed
for a half region. When the matrix material is in a plastic state and the inclusion
remains elastic, the incremental strain and incremental stress in the matrix material
are given as follows, by replacing De

1 in Eqs.(6) and (9) with :

dε1(x) = (I⊗ I +Sout(x) : A0) : dε0, (23)

dσ1(x) = Dep
1 : (I ⊗ I +Sout(x) : A0) : dε0. (24)

Table 1: Material paramaters

E [GPa] σy [MPa] ν B [MPa] n
Matrix 30.0 60.0 0.33 135.02 7.79
Particle 130.0 - 0.33 - -

Strain gradient theory of plasticity
Zbib and Aifantis [7] proposed an elastic-plastic constitutive equation includ-

ing strain gradient in 1988. Based on the strain gradient theory of plasticity, the
gradient-dependent yield stress τ is given by

τ = κ(γ)−c∇2γ (25)

where κ is the conventional strain hardening term, and ∇2γ the strain gradient term
which leads to allowing to include the length scale into the plastic constitutive
law. We used Eq.(25) as a plastic potential and devided a microscopic constitutive
equation Dep

1 which is Prandtl-Reuss equation including strain gradient term in
Eqs.(21)-(22). Finally, we can incorporate the strain gradient into macroscopic
constitutive equation (Eqs.(19)).

Analysis and results
We performed a homogenized finite element analysis using the elastic-plastic

constitutive equation based on the Eshelby′s theory and the strain gradient theory
of plasticity. In this analysis, we consider two domains, a macroscopic domain
and microscopic domain. Fig. 2 shows the concept of this analysis. We apply
the usual finite element method to the macroscopic domain with a homogeneous
material subjected to uniaxial tensile loading. In the macroscopic analysis, we
employ the elastic-plastic constitutive equiation derived in the present paper. In
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Figure 3: Stress-strain curve depending on particle size

the microscopic domain, we calculate the strain and stress distributions around a
particle with the use of strain obtained from the macroscopic analysis. The material
properties used in the present study are given in Table 1, where E,σy and ν denote
Young’s modulus, yield stress and Poisson’s ratio, respectively, and B and n are the
coefficients of Ramberg-Osgood relation given by

ε = (σ/E)+(σ/B)n (26)

Additionally, c the coefficient of the strain gradient term in Eq.(25) is 1.0×10−3

[N]. The results of the stress-strain relation at the loading location are shown in
Fig. 3 for the volume fraction of the particle f of 3%, 12% and 28%. We consid-
ered eight cases of particle size, 100nm, 300nm, 600nm, 1μm, 3μm, 6μm, 10μm,
and 100μm. When the particle size is big, the stress-strain curves are almost in-
dependent of the particle size. As the particle size becomes smaller, the tangent
modulus in a plastic range becomes larger. This fact agrees with the experimental
results [4] that a particle-disparsed composite with smaller particle size has a larger
mechanical strength.

Summary
In the present study, we derived an elastic-plastic constitutive equation based

on Eshelby′s theory and the strain gradient theory of plasticity. Using this consti-
tutive equation, we performed a homogenized finite element analysis of a particle-
dispersed composite material. As a results, we obtained the effect of particle size
on the strength of a composite material, which agrees with experimental results.
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