
Copyright c© 2007 ICCES ICCES, vol.4, no.4, pp.243-249, 2007

Extended Overstress Model with Overstress Tensor
K. Hashiguchi1 and T. Ozaki2

Summary
The overstress model is improved by incorporating the novel variable “over-

stress tensor” reaching the current stress from the subloading stress evolving in
an imaginary quasi-static process of elastoplastic deformation due to the extended
subloading surface model with the tangential inelastic strain rate.

Introduction
The elastoplastic stress is first defined as the stress which evolves as the actual

strain rate is induced in an imaginary quasi-static process of elastoplastic defor-
mation, while internal variables evolve with the viscoplastic strain rate calculated
by the viscoplastic constitutive equation. Further, the novel variable “overstress
tensor” reaching the current stress from the elastoplastic stress is defined. Thus,
the overstress model [1] is extended so as to describe also the tangential viscoplas-
tic strain rate induced by the overstress tensor component tangential to the yield
surface, extending the tangential inelastic strain rate [2]. Further, the viscoplastic
strain rate due to the change of stress inside the yield surface is incorporated by
adopting the concept of the subloading surface [3].

Extended Overstress Model with Tangential Inelasticity
Quasi-static process of elastoplastic deformation

Let the strain rate D (symmetric part of velocity gradient) be additively decom-
posed into the elastic strain rate De and the inelastic strain rate Di, while the latter
is further additively decomposed into the (normal-)plastic strain rate Dp

N and the
tangential inelastic strain rate Di

t induced by the stress rate components normal
and tangential, respectively, to the loading surface, i.e.

D = De+Di,Di = Dp
N +Di

t (1)

First, let De be related to the stress rate as

De = E−1 ◦σσσ (2)

The fourth-order tensor E is the elastic modulus and σσσ is the Cauchy stress, ( ◦ )
denoting the proper corotational rate with the objectivity.

Now, assume the following yield surface.

f (σ̂σσ,H) = F(H), σ̂σσ ≡ σσσ−ααα (3)
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where H is the isotropic hardening variable, ααα is the kinematic hardening variable
and H is the anisotropic hardening variable. f is assumed to be homogeneous
function of stress σσσ in degree-one.

The time-differentiation of Eq. (3) with the substitution of Eq. (2) leads to the
consistency condition

tr

{
∂ f (σ̂σσ,H)
∂σσσ

E
(
D−Dp

N

)}
− tr

(
∂ f (σ̂σσ,H)
∂σσσ

◦
ααα

)
+ tr

(
∂ f (σ̂σσ,H)
∂H

◦
H

)
= F′

•
H (4)

where ( • ) denotes the material-time derivative and F′ ≡ dF/dH.

Hereafter let it be assumed that the tangential-inelastic strain rate is normal to
the yield surface and thus it fulfills the following equation:

tr(
∂ f (σ̂σσ,H)
∂σσσ

Di
t) = 0 (5)

Assume the associated plastic-flow rule

Dp
N = ΛN(Λ > 0), N ≡ ∂ f (σ̂σσ,H)

∂σσσ
/

∣∣∣∣∣
∣∣∣∣∣∂ f (σ̂σσ,H)
∂σσσ

∣∣∣∣∣
∣∣∣∣∣ (||N|| = 1) (6)

where Λ is a positive proportionality factor, || || denoting the magnitude, which is
derived by substituting Eq. (6) into Eq. (4) as follows:

Λ =

tr

[
N

{
ED− F′

F

•
Hσσσ− ◦

ααα+
1
F

tr

(
∂ f (σ̂σσ,H)
∂H

◦
H

)
σσσ

}]

tr(NEN)
(7)

using ∂ f (σ̂σσ,H)/∂σσσ = {F/tr(Nσσσ)}N due to the Euler’s theorem.

The variation of internal structure of material is induced by the inelastic defor-
mation and is described by the evolution of internal variables. The inelastic part
of the strain rate is induced as the viscoplastic strain rate in the overstress model.
Then, the rates of internal variables in the consistency condition (4) have to be cal-
culated by the overstress model formulated later and thus the plastic-flow rule (6)
is not substituted to them.

While the inelastic strain rate is induced also by the tangential stress rate, it
depends only on the divoiatoric component of tangential stress rate [4]. Then, let
the tangential-inelastic strain rate be given by the following equation [2].

Di
t = T (σσσ,H,ααα,H)

◦
σσσ∗t (8)

where
◦
σσσ
∗
t is the deviatoric-tangential stress rate given as follows:

◦
σσσ
∗
=
◦
σσσ
∗
n+

◦
σσσ
∗
t ,

◦
σσσ
∗
n = tr(n∗ ◦σσσ)n∗, ◦

σσσ
∗
t =

◦
σσσ
∗ − ◦
σσσ
∗
n, n∗ ≡ N∗/||N∗|| (||n∗|| = 1) (9)
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Hereafter, let the elastic modulus be given in Hooke’s type of rate form, i.e.

Ei jkl = {K − (2/3)G}δi jδkl +G(δikδ jl +δilδ jk) (10)

where K and G are the elastic bulk and shear moduli, respectively, and δi j is the
Kroneker’s delta.

It holds from Eqs. (1), (2), (6) and (10) that

D∗ = ◦
σσσ
∗
/(2G)+ΛN∗ +T

◦
σσσ
∗
t (11)

from which, noting N∗ − tr(n∗N∗)n∗ = 0, we have D∗t ≡D∗ − tr(n∗D∗)n∗ ={(1/2G)+
T } ◦σσσ∗t . Substituting it into Eq. (8), the tangential-inelastic strain rate is described by
the stress rate as follows:

Di
t = [1+1/ {2GT (σσσ,H,ααα,H)}] ◦σσσ∗t (12)

The stress rate is given from Eqs. (1), (2), (6), (7) and (12) by the following equa-
tion, noting the positiveness of the proportionality factor Λ.

◦
σσσ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ED−〈Λ〉EN− 2G

(1/2G)+T (σσσ,H,ααα,H)
D∗t for f (σ̂σσ,H)−F(H) = 0

ED for others
(13)

where 〈 〉 is the McCauley’s bracket.

Overstress model with overstress tensor
Let D be additively decomposed into the elastic strain rate De and the vis-

coplastic strain rate Dvp which is further additively decomposed into the normal-
viscoplastic strain rate Dvp

N and tangential-viscoplastic strain rate Dvp
t , i.e.

D = De+Dvp, Dvp = Dvp
N +Dvp

t (14)

The overstress has been evaluated merely by the scalar quantity describing the ex-
pansion of the dynamic-loading surface from the yield surface. Here, we introduce
the imaginary stress defined as the stress on the yield surface, which evolves as
the actual strain rate is induced in an imaginary quasi-static process of elastoplastic
deformation, and let it be called the elastoplastic stress, denoting it by the notation
σσσep. The viscoplastic strain rate could be formulated more precisely by introducing
the tensor of stress reaching the current stress from the elastoplastic stress. The
elastoplastic stress rate is given by the following equation with the replacement of
the stress σσσ to σσσep in Eq. (13).

◦
σσσ

ep
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ED−Λep ENep

tr(NepENep)
− 2G

1+1/{2GT (σσσep,H,ααα,H)}D
ep∗
t for (σ̂σσ,H)−F(H) = 0

ED for others
(15)
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where

Λep ≡
tr

[
Nep

{
ED− F′

F

•
Hσσσep− ◦

ααα+
1
F

tr(
∂ f (σσσep,H)
∂H

◦
H)σσσep

}]

tr(NepENep)
(16)

•
H = tr{fH(σσσep,H,ααα,H)Dvp

N },
◦
ααα= fα(σσσ

ep,H,ααα,H)||Dvp
N ||,

◦
H= fH(σσσep,H,ααα,H)||Dvp

N ||
(17)

Nep ≡ ∂ f (σσσep)
∂σσσep /

∣∣∣∣∣
∣∣∣∣∣∂ f (σσσep)
∂σσσep

∣∣∣∣∣
∣∣∣∣∣ (||Nep || = 1), nep∗ ≡ Nep∗

||Nep∗|| (||nep∗|| = 1) (18)

Dep∗
t ≡ D∗ − tr(nep∗D∗)nep∗ (19)

The second-order tensor fH and the scalars fα and fH are functions of σσσep,H,ααα,H.

Define the overstress tensor to be the tensor of stress reaching the current stress
from the elastoplastic stress and denote it by←−σσσ , i.e.

←
σσσ ≡ σσσ−σσσep (20)

Then, the deviatoric part
←
σσσ
∗

is decomposed into the normal-deviatoric component
←
σσσ
∗
n and the tangential-deviatoric component

←
σσσ
∗
t as follows:

←
σσσ
∗ ≡ Ī∗←σσσ = ←σσσ∗n+

←
σσσ
∗
t ,

←
σσσ
∗
n = tr(n∗←σσσ)n∗,←σσσ∗t =

←
σσσ
∗ −←σσσ∗n (21)

Then, let Dvp
N and Dvp

t be given by

Dvp
N =CN (σσσ,H,ααα,H,T)〈 f (σ̂σσ,H)

F(H)
−1〉NN, (22)

Dvp
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ct (σσσ,H,ααα,H,T)

←
σσσ
∗
t

F(H)
for f (σ̂σσ,H)−F(H) ≥ 0

0 for others
(23)

where N is the material constant and T is the absolute temperature. Then, the strain
rate and the stress rate are given from Eqs. (2), (14), (22) and (23) by

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

E−1 ◦σσσ+CN (σσσ,H,ααα,H,T)〈 f (σ̂σσ,H)
F(H)

−1〉NN

+Ct(σσσ,H,ααα,H,T)
←
σσσ
∗
t

F(H)
if f (σ̂σσ,H)−F(H) ≥ 0

E−1 ◦σσσ for others

(24)

◦
σσσ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ED−CN (σσσ,H,ααα,H,T)〈 f (σ̂σσ,H)
F(H)

−1〉NEN

−2GCt(σσσ,H,ααα,H,T)
←
σσσ
∗
t

F(H)
if f (σ̂σσ,H)−F(H) ≥ 0

ED for others

(25)
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Subloading-overstress model
The dynamic-loading surface on which the current stress lies for the normal-

yield surface of Eq. (3) is described as

f (σ̄σσ,H) = R̄F(H), σ̄σσ ≡ σσσ− ᾱαα, ᾱαα ≡ R̄ααα+ (1− R̄)s (ααα− s = R̄(ααα− s)) (26)

where R̄ is the ratio of the size of dynamic-loading surface to that of normal-yield
surface, called the dynamic-loading ratio. ᾱαα is the conjugate point in the subloading
surface for the back stressααα in the normal-yield surface. s is the similarity-center of
the normal-yield and the dynamic-loading surfaces. On the other hand, the elasto-
plastic stress lies on the subloading surface, fulfilling

f (σ̄σσep,H) = R̄epF(H), σ̄σσep ≡ σσσep− ←αααep,
←
αααep = s− R̄epŝ (27)

where R̄ep is the ratio of the size of subloading surface to that of normal-yield
surface, called the subloading ratio. The material-time derivative of Eq. (26) leads
to

tr

{
∂ f (σ̄σσep,H)
∂σσσep E(D−Dp

N)

}
− R̄eptr(

∂ f (σ̄σσep,H)
∂σσσep

◦
ααα)+ tr

(
∂ f (σ̄σσep,H)
∂H

◦
H

)
− R̄epF′

•
H

− (1− R̄ep)tr

(
∂ f (σ̄σσep,H)
∂σσσep

◦s
)
−

{
F − tr

(
∂ f (σ̄σσep,H)
∂σσσep

s
)}

•
R̄

ep
= 0

(28)

Substituting the associated flow rule

Dp
N = Λ̄N̄ep (Λ̄ > 0), N̄ep ≡ ∂ f (σ̄σσep,H)

∂σσσep /

∣∣∣∣∣
∣∣∣∣∣∂ f (σ̄σσep,H)
∂σσσep

∣∣∣∣∣
∣∣∣∣∣ (||N̄ep|| = 1) (29)

into Eq. (28), the elastoplastic stress is derived as follows:

◦
σσσ

ep
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ED− Λ̄epEN̄ep− 2G

1+
1

2Gξ̂ep(σσσ,H,ααα,H)R̄epτ

D̄ep∗
t for R̄ > R̄ep or Λ̄ep > 0

ED− 2G

1+
1

2Gξ̂ep(σσσ,H,ααα,H)R̄epτ

D̄ep∗
t for others

(30)
where

Λ̄ep ≡

tr

[
N̄ep

{
ED− R̄ep ◦ααα− 1

R̄epF

{
F′

F

•
H − tr

(
∂ f (σ̄σσep,H)
∂H

◦
H

)}
σ̄σσep

−(1− R̄ep)
◦s−

•
R̄ep

R̄ep
σ̃σσep

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎦

tr(N̄epEN̄ep)
(31)
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where the rate of subloading ratio R̄ep (0 ≤ R̄ep ≤ 1) is given by

•
R̄

ep
= Ūep(R̄ep)||Dvp

N || for Dvp
N � 000 (32)

Ūep is the monotonically-decreasing function of R̄ep fulfilling the conditions Ūep→
∞ for R̄ep = 0 and Ūep = 0 for R̄ep = 1. τ is the material constant. The explicit
example is given by Ūep = −u ln R̄ep, u being the material constant. The rate of s is
given as

◦s = c||Dvp
N ||
σ̃σσep

R̄ep
+
◦
ααα+

1
F

{
F′

•
H− tr

(
∂ f (ŝ,H)
∂H

◦
H

)}
ŝ, σ̃σσep ≡σσσep− s, ŝ ≡ s−ααα (33)

N̄ep ≡ ∂ f (σ̄σσep,H)
∂σσσep /

∣∣∣∣∣
∣∣∣∣∣∂ f (σ̄σσep,H)
∂σσσep

∣∣∣∣∣
∣∣∣∣∣ (||N̄ep|| = 1), n̄ep∗ ≡ N̄ep∗

||N̄ep∗|| (34)

D̄ep∗
t = D∗ − tr(n̄ep∗D∗)n̄ep∗ (35)

τ is the material constant.

The strain rate and the stress rate are given by

D = E−1 ◦σσσ+ ĈN (σσσ,H,ααα,H,T)〈R̄− R̄ep〉NN̄+ ζ̂t(σσσ,H,ααα,H,T)R̄κt
le f tarrow

σ̄σσ
∗
t

F
(36)

◦
σσσ = ED− ĈN (σσσ,H,ααα,H,T)〈R̄− R̄ep〉NEN̄−2Gζ̂t(σσσ,H,ααα,H,T)R̄κt

le f tarrow

σ̄σσ
∗
t

F
(37)

where
←
σσσ =

le f tarrow

σ̄σσ
∗
n+

le f tarrow

σ̄σσ
∗
t ,

le f tarrow

σ̄σσ
∗
n = tr(n̄∗←σσσ)n̄∗,

le f tarrow

σ̄σσ
∗
t =

le f tarrow

σ̄σσ
∗
−le f tarrow

σ̄σσ
∗
n (38)

κt is the material constant.

Concluding Remarks
The rational formulation of the extended subloading-overstress model with the

overstress tensor which is capable of describing the smooth elastic-plastic transition
and the tangential viscoplastic strain rate. On the other hand, the former formula-
tion [4], in which the novel physical quantity “overstress tensor” was introduced
first, involves the impertinence that the plastic flow rule was substituted into the
evolutions of the subloading ratio and the similarity-center, although they have to
be updated by the viscoplastic strain rate. Therefore, the elastoplastic stress rate in
that formulation leads irrationally to tr

(
N̄ep ◦σσσ

ep)
� 0 in the infinite rate of deforma-

tion (||D|| →∞: D =De,Dvp
N =O) although in fact tr

(
N̄ep ◦σσσ

ep)
= 0 must hold for that

rate as fulfilled in Eq. (30) on account of
•

H =
•
R̄ = 0,

◦
ααα =

◦
H =

◦
s =O.
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