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General Corotational Rate Tensor and Replacement to
Corotational Derivative of Yield Function

K. Hashiguchi1

Summary
General corotational rate of tensors in arbitrary order having the objectivity is

shown first, and then it is verified that the material-derivative of yield condition can
be replaced generally to the corotational derivative, i.e. the consistency condition.

Introduction
Mechanical property of materials are observed to be identical independent of

states of observers. Then, it should be described by a unique equation independent
of mutual configuration and/or rotation between material and observers. This fact is
called the principle of material-frame indifference [1]. On account of this principle,
all of physical quantities used in constitutive equations have to be described by the
tensor quantities obeying the common translation rule, called the objective transfor-
mation, between coordinate systems. In particular, constitutive equation of inelastic
deformation has to be formulated as the relation between rate variables through the
stress and internal variables. Whilst all state quantities obey the objective trans-
formation, pertinent tensors obeying the objective transformation independent of
material rotation have to be adopted for their rate variables. In addition, they have
to be physical quantities capable of describing rates of mechanical state appropri-
ately evaluating a rotation of material. They can be given by the corotational rate
tensors which have components obtained by the objective inverse-transformation
from the components observed by the coordinate system rotating with material to
the fixed coordinate system describing the constitutive relation.

Besides, in the formulation of plastic constitutive equation the consistency con-
dition is obtained first by material-time differentiation of yield condition. In order
to use it as a constitutive relation one has to translate the stress rate and rates of
internal variables to their corotational rate.

In this note a general corotational rate for tensors in arbitrary order having the
objectivity is shown first. Further, it is verified that the material-derivative of yield
condition involving arbitrary tensors can be replaced to the corotational derivative,
i.e. the consistency condition which can be used as a constitutive relation.

General Corotational Rate Tensor
Consider the normalized-orthogonal coordinate systems {O − xi} (i=1, 2, 3)

with the base {ei} and {O′ − x′i (t)} (t: time) with the base {e′i (t)}. Here, let {ei} be
the fixed standard base and {e′i(t)} the movable base, provided that the latter has
coincided with the former in the initial state (t = 0). Let it be assumed that the
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material particle P which had the position vector X at t = 0 has the components
xi(X, t) and x∗i (X, t) in the coordinate systems {O− xi} and {O′ − x′i (t)}, respectively.
Further, let the position vector of the origin O′ of the coordinate system {O′ − x′i(t)}
have the components ci(t) in the coordinate system{O− xi}. Then, the following
relations holds between these components.

x∗i (X, t) = Qir(t)(xr(X, t)− cr(t)), xi(X, t) = Qri(t)x
∗
r (X, t)+ ci(t) (1)

where the Einstein’s summation convention is used throughout this note. Eq. (1) is
rewritten in the symbolic notation as

x∗(X, t) =Q(t)(x(X, t)− c(t)), x(X, t) =QT (t)x∗(X, t)+ c(t) (2)

where the notation ()T stands for the transpose. Hereafter, the superscript ∗ is added
to the components for the movable base {e′i (t)}. Q(t) is the orthogonal tensor of the
base {e′i (t)} with respect to the standard base {ei} and has the components

Qi j(t) ≡ e′i(t)• e j (3)

where the dot • denotes the scalar product. The symbol (t) describing the time
dependence is omitted hereafter.

From Eq. (3) one has the relation

ei(= (ei • e′r)e′r) = Qrie′r, e′i(= (e′i • er)er) = Qirer (4)

between these bases. It holds that QQT =QTQ = I, where I is the second-order
identity tensor having the components of Kronecker’s delta δi j = 1 for i = j, δi j = 0
for i � j and thus I ≡ ei ⊗ ei = δi jei ⊗ e j. The tensor Q is described in the following
form with the bases.

Q = Qi jei ⊗ e j = Qi je′i ⊗ e′j or Q = er ⊗ e′r (5)

due to Eq. (4). The relation between these bases is also described from Eq. (5) as
follows:

ei(= er ⊗ e′re′i ) =Qe′i , e′i (= e′r ⊗ erei) =QT ei (6)

Introduce the second-order tensor

Ω ≡ •e′r ⊗ e′r (7)

where ( • ) denotes the material-time derivative. Eq. (7) is rewritten as

Ω ≡ •
QriQr jei ⊗ e j, Ω ≡

•
QT Q (8)
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due to Eq. (4). It is known that Ω is the skew-symmetric tensor from Eq. (8) and
means the spin of the base {e′i } from the equation

•e′r = Ωe′r (9)

obtained from Eq. (7).

The following equation is obtained from Eq. (2).

v∗ = •
x∗ =Qv+

•
Qx−Q

•
c− •

Qc =Qv+Ω̄x∗ −Q
•
c− •

Qc (10)

where v is the velocity of material particle P in the movable base {e′i } and Ω̄ is the
second-order skew-symmetric tensor given by

Ω̄ ≡ •
QQT = −QΩQT (11)

The transformation rule of m-th order tensor T describing the mechanical state of
material is given by

T ∗p1 p2 ···pm
= Qp1q1 Qp2q2 · · ·QpmqmTq1q2···qm

Tp1 p2 ···pm = Qq1p1 Qq2p2 · · ·Qqm pmT ∗q1q2···qm

}
(12)

The material-time derivative of Eq. (12) is given as
•
T ∗p1p2 ···pm

=
•

Qp1q1 Qp2q2 · · ·QpmqmTq1q2 ···qm +Qp1q1

•
Qp2q2 · · ·QpmqmTq1q2···qm + · · ·

+Qp1q1 Qp2q2 · · ·
•

QpmqmTq1q2···qm +Qp1q1 Qp2q2 · · ·Qpmqm

•
Tq1q2···qm (13)

or inversely
•

T=p1 p2 ···pm

•
Qq1p1 Qq2p2 · · ·Qqmpm Tq1q2···qm +Qq1p1

•
Qq2p2 · · ·Qqm pmT ∗q1q2···qm

+ · · ·

+Qq1p1

•
Qq2p2 · · ·Qqm pmT ∗q1q2···qm

+ · · ·+Qq1p1 Qq2p2 · · ·
•

Qqm pmT ∗q1q2···qm

+Qq1p1 Qq2p2 · · ·Qqm pm

•
T ∗q1q2···qm

(14)

which are rewritten as
•

T ∗p1 p2 ···pm
= Qp1q1 Qp2q2 · · ·Qpmqm(

•
Tq1q2···qm

−Ωq1r1Tr1q2 ···qm −Ωq1r2Tq1r2 ···qm −Ωq1rmTq1q2 ···rm ) (15)

or inversely •
T=p1 p2···pm

Qq1p1 Qq2p2 · · ·Qqm pm{
•

T ∗q1q2 ···qm

−Ω̄q1r1T ∗r1q2···qm
− Ω̄q2r2 T ∗q1r2···qm

+ · · · − Ω̄qmrmT ∗q1q2···rm
} (16)

The rate of tensor quantity used for constitutive equations in rate forms has to fulfill
the following conditions.
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1. It obeys the objective transformation since the material properties are inde-
pendent of the observers.

2. The components in the standard fixed coordinate system describing constitu-
tive equation changes only when the components observed in the coordinate
system moving with material changes.

As known from Eqs. (13)-(16) the material-time derivative does not obey the
objective transformation and it changes even if the components observed by the
coordinate system rotating with material does not change, provided that the coordi-
nate system {e′i } rotates with material, selecting the spin Ω as the spin of material.
In other words, the material-time derivative violates both conditions 1 and 2.

Then, consider the tensor having the components obtained from the compo-
nents observed in the coordinate system rotating with material by the objective
inverse transformation rule, and let it be called the corotational rate, denoting it by
•
T, i.e.

◦
Tp1p2 ···pm = Qq1 p1 Qq2p2 · · ·Qqm pm

•
T ∗q1q2 ···qm

=
•

Tp1 p2 ···rm −ωp1r1 Tr1p2 ···pm −ωp2r2Tp1r2···pm − ·· · −ωpmrmTp1 p2 ···rm (17)

where the corotational spinωωω is the second-order skew symmetric tensor describing
the spin of material and thus obeys the transformation rule

ωωω∗ =Q(ωωω−Ω)QT (18)

◦
T obeys the objective transformation rule as known from

◦
T
∗
p1 p2 ···pm

=
•
T ∗p1 p2 ···pm

−ω∗p1r1
T ∗r1 p2 ···pm

−ω∗p2r2
T ∗p1r2···pm

− · · ·−ω∗pmrm
T ∗p1 p2 ···rm

=
◦

Qp1q1 Qp2q2 · · ·Qpmqm{(
•
Tp1 p2 ···pm −Ωp1 r1Tr1 p2 ···pm −Ωp2 r2Tp1r2 ···pm − · · · −ΩpmrmTp1 p2 ···rm)

−(ωp1r1 −Ωp1 r1)Tr1 p2 ···pm − (ωp2r2 −Ωp2 r2)Tp1r2···pm − · · ·− (ωpmrm −Ωpmrm)Tp1 p2 ···rm}
= Qp1q1 Qp2q2 · · ·Qpmqm (

•
Tp1 p2 ···pm −ωp1r1Tr1 p2 ···pm −ωp2r2 Tp1r2···pm − · · ·−ωpmrmTp1 p2 ···rm)

= Qp1q1 Qp2 q2 · · ·Qpmqm

◦
T p1 p2 ···pm (19)

Introduce the following notation for the orthogonal transformation.

(Q [[T]])p1p2 ···pm ≡ Qp1q1 Qp2q2 · · ·QpmqmTq1q2···qm

(QT [[T]])p1 p2···pm ≡ Qq1p1 Qq2p2 · · ·Qqmpm Tq1q2···qm

}
(20)

By use of this notation Eqs. (12), (17) and (19) are rewritten as follows:

T∗ =Q [[T]] ,T =QT [
[ T∗ ]

]
(21)
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and ◦
T
∗
=Q[[

◦
T]],

◦
T =QT [[

◦
T
∗
]] (22)

◦
T =QT [[

•
T
∗
]] (23)

One must select explicitly the physically pertinent spin of material for ωωω. The
velocity gradient L, the strain rate D and the continuum spin W are given by

L ≡ ∂v/∂x, D ≡ (L+LT ), W ≡ (L−LT )/2 (24)

the transformations of which are given as

L∗ =Q(L−Ω)QT =QLQT +Ω̄ (25)

D∗ =QDQT ,W∗ =Q(W−Ω)QT =QWQT +Ω̄ (26)

It is known that the continuum spin W obeys the same translation as that in Eq.
(18) forωωω.

The following corotational rate with the continuum spin W is regarded as the
generalization of Zaremba-Jaumann rate.
�
Tp1 p2 ···pm =

•
Tp1 p2···rm −Wp1r1 Tr1 p2···pm −Wp2r2 Tp1r2···pm − ·· · −Wpmrm Tp1p2 ···rm (27)

Jaumann rate is determined merely geometrically by an external appearance of
body independent of material properties and deformation history.

While the corotational spin would have to reflect the rotation of substructure in
material, it is not so large as calculated by the continuum (material) spin W when
a plastic deformation is induced. Then, the corotational rate with the following
elastic spin We would be physically pertinent [2].

We ≡W−Wp (28)

where Wp is called the plastic spin and could be given as follows [3]:

Wp = μ(σσσ,H,H)(Dpσσσ−σσσDp) (29)

where Dp is the plastic strain rare, and μ is the material function of stress σσσ and
internal variables of scalar quantity H for isotropic hardening/softening and tensor-
valued quantity H for inherent and/or induced anisotropy. Obviously We obeys the
same translation as that in Eq. (18) ofωωω, i.e.

We∗ =Q(We −Ω)QT (30)

The generalized corotational rate
∗
T based on the plastic spin is given as follows.

∗
Tp1 p2 ···pm =

•
Tp1 p2···rm −We

p1r1
Tr1 p2···pm −We

p2r2
Tp1r2···pm − ·· · −We

pmrm
Tp1p2 ···rm (31)

The corotational rate has to be adopted for rates of tensor valued state variables, i.e.
the stress and tensor-valued internal variables for describing anisotropy.
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Transformation to Corotational Tensors in Consistency Condition
In order to obtain the consistency condition from the material-time derivative

of yield condition, which is pertinent as a constitutive relation, one has to translate
the stress rate and rates of internal variables to their corotational rate.

Yield condition is described generally as

f (A,B, · · · ) = 0 (32)

where A,B, · · · are the arbitrary tensors. The material-time derivative of Eq. (32) is
described as

•
f (A,B, · · · ) = tr

(
∂ f (A,B, · · · )
∂A

•
AT

)
+ tr

(
∂ f (A,B, · · · )
∂B

•
BT

)
+ · · · = 0 (33)

Here, f is a scalar-valued function and then it holds that

f (A,B, · · · ) = f
(
A∗,B∗, · · · ) , •

f (A,B, · · · ) = •
f
(
A∗,B∗, · · · ) (34)

where

•
f (A∗,B∗, · · · ) = tr

(
∂ f (A∗,B∗, · · · )

∂A∗
•
A∗

T
)
+ tr

(
∂ f (A∗,B∗, · · · )

∂B∗
+ · · ·

= tr

(
Q

[[
∂ f (A,B, · · · )
∂A

]]
•
A∗

T
)
+ tr

([[
∂ f (A,B, · · · )
∂B

]]
•
B∗

T
)
+ · · ·

= tr

(
∂ f (A,B, · · · )
∂A

◦
A

T
)
+ tr

(
∂ f (A,B, · · · )
∂B

◦
B

T
)
+ · · · (35)

using Eq. (23) and the following relation for two arbitrary tensors T and S .

f (Q [[T]]ST ) = Qp1q1 Qp2q2 · · ·QpmqmTq1q2···qmS =p1p2 ···pm
f (T(QT [[S]])T ) (36)

From Eqs. (33), (34) and (35) we have

tr

(
∂ f (A,B, · · · )
∂A

◦
AT

)
+ tr

(
∂ f (A,B, · · · )
∂B

◦
BT

)
+ · · · = 0 (37)

Then, it is concluded that the material-time derivative of the yield function can
be directly replaced to the corotational derivative, while the notation of transpose
can be omitted for stress and anisotropic hardening variables which are symmetric
tensors.
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