
Copyright c© 2008 ICCES ICCES, vol.5, no.2, pp.47-53
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Summary
The authors have proposed Fractal and Hierarchical Multi-Grid Methods for

solving ultra large FE problems [1, 2]. In these methods, the domain to be analyzed
is subdivided into multi-grid which has fractal or hierarchical structure and the
solution is obtained by solving equations for small cells or nodes at each hierarchy
successively. In this research, potential capability of a Hierarchical Multi-Grid
method is examined through simple example problems.

Introduction
To solve ultra large scale FE problems, iterative solution methods may be supe-

rior to the direct solution methods in terms of computing time and required mem-
ory. Hierarchical Multi-Grid Method is one of the iterative method in which the
approximate solution is obtained through node by node error correction procedure
in the hierarchical manner according to the minimum potential energy principle [2].
Its potential capability is demonstrated through two and three dimensional simple
problems. Also thermal deformation of cast part after taking out from the mold is
analyzed as an example of practical problems.

HMG Based on Minimum Potential Energy Theorem
The proposed HMG is an iterative solution procedure to solve ultra large scale

elastic or thermal problems. The model to be analyzed is defined in a cubic grid
space which has a hierarchical structure. The displacement or the temperature at a
node (or a grid) is computed successively in hierarchical order based on the vari-
ational theorem. In case of elastic problem, the displacement u can be computed
using the Minimum Potential Energy Theorem which is given by the following
functional.

Π(u) =
1
2

∫
[σ ]{ε}dv−

∫
[g]{u}dv−

∫
[τ ]{u}dsσ (1)

where, u: displacement, σ : stress, g: body force, τ : traction applied as the external
load. In HMG, the displacement field u is approximated using the interpolation
function with hierarchical structure consists of H levels, i.e.

u =
H

∑
h=1

uh =
H

∑
h=1

[Ah]{Uh} (2)
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where, [Ah] is the interpolation function and {Uh} is the nodal displacement at H-th
level. Using Eq. (2), the strain-displacement relation and the stress-strain relation
can be described in the following form.

{ε} =
H

∑
h=1

[Bh]{Uh} (3)

{σ} = [D]{ε}= [D]
H

∑
h=1

[Bh]{Uh} (4)

Substituting Eqs. (3) and (4) into Eq. (1), the functional Π(u) can be rewritten in
terms of the nodal displacement parameter {Uh} with hierarchical structure.

Π(U1, . . . ,Uh, . . .,UH) =
1
2

∫ ( H

∑
h=1

[Uh] [Bh]
T

)
[D]

(
H

∑
h=1

[Bh]{Uh}
)

dv

−
∫

[g]

(
H

∑
h=1

[Ah]{Uh}
)

dv−
∫

[τ ]

(
H

∑
h=1

[Bh]{Uh}
)

dsσ

(5)

Based on the stationality condition of the above functional, iterative solution pro-
cedure can be constructed. Let assume, that {U1, . . .,Uh, . . . ,UH} is the current
approximation and {ΔUh} is the correction for{Uh}. The correction vector {ΔUh}
can be obtained through the stationality condition of the following functional.

Π(U1,Uh +ΔUh, . . .,UH)

=
1
2

∫
[ΔUh] [Bh]

T [D] [Bh]{ΔUh}dv+
∫

[ΔUh] [Bh]
T [D]

(
H

∑
h=1

[Bh]{Uh}
)

dv

−
∫

[ΔUh] [Ah]
T {g}dv−

∫
[ΔUh] [Bh]

T {τ}dsσ

(6)

Since the displacement parameter {Uh} consists that of a set of nodes (from 1
to Nh), the correction is made node by node, i.e.

{Uh +ΔUh}=
[
U1

h ,U2
h , . . .,Un

h +ΔUn
h . . . ,UNh

h

]T
(7)
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Thus, the stationality condition can be written as,

δΠ(δΔUn
h )

=
∫

[δΔUn
h ] [Bn

h]
T [D] [Bn

h]{ΔUn
h}dv+

∫
[δΔUn

h ] [Bn
h]

T [D]

(
H

∑
h=1

[Bh]{Uh}
)

dv

−
∫

[δΔUn
h ] [An

h]
T {g}dv−

∫
[δΔUn

h ] [An
h]

T {τ}dsσ

=0

(8)

Since Eq. (8) must hold for arbitrary value of
{

δΔUn
h

}
, the following equation is

derived.
{ΔUn

h }= [Kn
h ]−1{ f n

h } (9)

where,
{

f n
h

}
is the residual error at the n-th node in the h-th level and,

{ f n
h } = −

∫
[Bn

h]
T {σ}dv+

∫
[An

h]
T {g}dv+

∫
[An

h]
T {τ}d

[Kn
h ] =

∫
[Bn

h]
T [D] [Bn

h]dv
(10)

The detail of the solution procedure is as follows.

1. As initial values of nodal displacement parameters and stresses, zero is as-
sumed.

2. For the n-th node on the 1-st level, solve Eq. (9) to obtain {ΔUn
1}.

3. Update {Un
1} using {ΔUn

1}.

{Un
1 }= {Un

1 +ΔUn
1 } (1 < n < N1) (11)

4. Using updated {U1}, update {σ} according to Eq. (4).
5. From updated {σ} and Eq. (9), compute {ΔUn

2} (1 < n < N2).
6. Repeat 2) through 5) for levels up to h=H.
7. Compute residual error

{
en

h

}
and its norm Error.

{en
h} = { f n

h }= −
∫

[Bn
h]

T {σ}dv+
∫

[An
h]

T {g}dv+
∫

[An
h]

T {τ}dsσ

(1 < n < Nh) (12)

Error =

(
H

∑
h=1

Nh

∑
n=1

{en
h}T {en

h}
)1/2

(13)
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8. Repeat 2) through 7) until the error norm Error becomes smaller than the
tolerance.

9. Substitute the final value of {Uh} into Eqs. (2), (3) and (4) to compute dis-
placement u, strain ε and stressσ .

The details of the computational scheme may be different when the problem to
be solved is different, such as heterogeneous or nonlinear problems. In case of two
and three dimensional elastic problems, Eq. (9) becomes simultaneous equations
with two and three unknowns, respectively.

Numerical Examples
Two dimensional elastic problems are taken as examples. The problem (a),

(b) and (c) in Fig. 1 are the uniform stretch of a plate, stretch of a clamped plate
and that of a plate with center crack. In case (c), the width of plate is 20 mm and
the length of crack is 2 mm. Computations are done using Intel Xeon 5160. The
computational time is summarized with respect to the degree of freedom (DOF)
in Fig. 2. In these computations, the error tolerance is 10−5 in terms of the norm
defined by Eq. (13) normalized by its initial value. The red line indicates the case
in which the computational time is proportional to DOF and it takes one second per
10,000 DOF. As seen from Fig. 2, the computational time is almost proportional to
DOF in all three cases and it is roughly 1 second per 10,000 DOF in case of cramped
plate. Figure 3 shows the distribution of the stress component in the stretching
direction near the crack tip. The red line represents the analytically predicted stress
distribution near the crack tip. Regardless of the hierarchical levels, the computed
stress distribution agrees well the analytical value.

Mises stressDisplacemen

t

Displacemen

t

   (a) uniform stretch       (b) stretch of            (c) plate with center 
                                              clamped plate          crack 

Figure 1: Models for two dimensional problems

Second examples are the uniform stretching of a cubic block and the stretch
of a clamped block. Though the computational time is larger compared to the two
dimensional cases, it is roughly proportional to DOF as shown in Fig.4. In case
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Figure 2: Relation between computa-
tional time and DOF (2D problems)
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Figure 3: 3 Stress distribution near
crack tip
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Figure 4: Relation between computa-
tional time and DOF (3D problems)
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Figure 5: Comparison among direct
method, HMG and combined method

of clamped cube, two HMG methods are employed. One is the straight forward
HMG and another is the combination of direct solution method and HMG in which
the m-levels from the top is computed using direct method and HMG is used for
levels lower than m. As seen from Fig. 5, if the level m is appropriately chosen, the
computational time can be reduced.

Thermal Deformation of Cast Part
In case of casting, it is necessary to know the thermal deformation of the cast

part after taking out from the mold. When the finite difference type mold flow
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simulation program is employed, it is convenient to use pixel type FEM since the
physical values at grid points can be directly transferred to the nodes. The proposed
HMG is applied to compute the thermal deformation of a cast part as shown in
Fig. 6. The size is 332x168x84 mm. The temperature distribution of the cast
part right after taking out from the mold is shown in Fig. 7. Table 1 shows the
total degree of freedom and that of elements when HMG with 7, 8 and 9 levels
are employed. In case of 9 levels, the total number of nodes which forms the cast
part is 1,123,997 while that of the nodes in full cubic space is 5133 = 1.35×108.
The same computations are done using ABAQUS and the computation times are
compared with HMG in Table 1. When DOF is 3,371,991, computation was not
accepted by ABAQUS. As seen from the table, the computational time by HMG
increases roughly linearly with DOF. Figure 8 shows the distribution of the Mises
stress computed by HMG and ABAQUS using the model with 8 levels.
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Figure 6: Model of cast part

[oC][oC][oC][oC]

Figure 7: Temperature distribution

ABAQUS HMG
[MPa]

ABAQUS HMG
[MPa]

Figure 8: Distribution of Mises stress (DOF=548,247)

Conclusions
Potential capability of the Hierarchical Multi-Grid Method is examined using

simple two and three dimensional elastic problems. It is shown that the solution
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Table 1: Models and computational time
Level of Total number of Total number of Computational time (sec)
HMG DOF elements HMG ABAQUS

(ratio) (ratio) (ratio) (ratio)
7 97,293 (1.0) 22,816 (1.0) 30 (1.0) 166 (1.0)
8 548,247 (5.6) 145,975 (6.4) 217 (7.7) 1567 (9.4)
9 3,371,991 (35) 983,387 (43) 1338 (45) -

time for simple case is about one second per 10,000 DOF and it is about three
seconds per 10,000 DOF in case with complex geometry as the cast part.
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