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Summary
In this paper, a combined formulation of the Finite Volume Method (FVM) and

the Meshless Local Petrov-Galerkin (MLPG) is investigated to solve elasto-static
problem. Accuracy and computational efficiency study between the combined for-
mulation and the Finite Element Method (FEM) is presented. Some problems of
beam under various loading and boundary conditions are analyzed by the proposed
method, and the numerical results are compared with analytical solution and re-
sult of other numerical method which is obtained by well-known FEM software
ABAQUS. The advantages of the FVM combined MLPG (FVMLPG) with respect
to the FEM are illustrated. Higher accuracies and computational efficiencies of the
FVMLPG in comparison with the FEM are the most important its benefits.

keywords: Meshless Local Petrov-Galerkin, Finite volume method, Finite
element method

Introduction
In computational mechanics many considerable research has been devoted to

the development of meshless methods recently. In these methods, the domain of in-
terest is discretized by a scattered set of points. The main objective of meshless or
meshfree methods is to get rid of or, at least, alleviate the difficulty of meshing and
remeshing the entire structure by only adding or deleting nodes in the entire struc-
ture. One of the earliest developments in meshless methods was the SPH method.
The foundation of the SPH method is the kernel estimate introduced by Monaghan
(1982, 1988) [1, 2]. In this method, partial differential equations, such as conser-
vation laws, are transformed into integral equations, and the kernel estimate then
provides the approximation to estimate field variables at discrete points. Other
path in the evolution of meshless methods has been the development of general-
ized finite difference (GFD) method, also called meshless finite difference method.
One of the early contributors to the former was Perrone and Kao (1975) [3], but
the most robust of these methods was developed by Liszka and Orkisz (1980) [4],
using moving least squares (MLS) interpolation. The diffuse element method de-
veloped by (Nayroles et al., 1992 [5]) was the first meshless method developed for
structural analysis. They proposed a Diffuse Element Method that employs moving
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least-squares approximation in conjunction with the Galerkin method to provide a
mesh-free computational formulation. Belytschko et al. (1994) [6] developed an
alternative implementation using moving least squares approximation as defined by
Lancaster and Salkauskas (1981) [7]. They called their approach the Element Free
Galerkin (EFG) method. In their work, Belytschko and his co-workers have intro-
duced a background cell structure in order to carry out integration by numerical
quadrature and Lagrange multipliers to enforce essential boundary conditions. Liu
et al. (1995) [8] has recently proposed a different kind of “grid-less” multiple scale
methods based on reproducing kernel and wavelet analysis (RPKM method), to im-
prove the accuracy of the SPH method for finite domain problems. In this method,
the kernel function is modified by introducing a correction function to meet the
reproducing conditions.

On the one hand, Duarte and Oden (1996) [9] and, on the other, Babuska and
Melenk (1997) [10] have shown how meshless methods can be based on the par-
tition of unity. In this line, the first authors have developed a new method that
they denominate h–p clouds. Oñate et al. (1996) [11] focused on the application to
fluid flow problems with a standard point collocation technique. Recently a method
based on local sub-domains, rather than a global problem domain, was introduced
by Atluri and his colleagues. A truly meshless method, called the Meshless Lo-
cal Petrov–Galerkin (MLPG) method, has been developed (Atluri and Zhu, 1998,
2000a, 2000b; Atluri et al.) [12, 13, 14]. The MLPG method is based on a local
weak form and a moving least square (MLS) approximation. In the MLPG method,
an integration method in regularly shaped local domains (such as spheres, rectan-
gles, and ellipsoids) is used. The MLPG method does not need any ‘element’ or
‘mesh’ for either field interpolation or background integration. The flexibility in
choosing the size and the shape of the local sub-domain leads to a more conve-
nient formulation in dealing with non-linear problems. All these methods can be
considered as Finite Point or Meshless Methods.

One of the most important advances in the field of numerical methods was the
development of the FEM in the 1950s. In the FEM, a continuum with a compli-
cated shape is divided into elements, finite elements. The individual elements are
connected together by a topological map called a mesh. The FEM is a robust and
thoroughly developed method, and hence it is widely used in engineering fields
due to its versatility for complex geometry and flexibility for many types of lin-
ear and non-linear problems. Most practical engineering problems related to solids
and structures are currently solved using well developed FEM packages that are
commercially available.

However, the FEM has the inherent shortcomings of numerical methods that
rely on meshes or elements that are connected together by nodes in a properly
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predefined manner. The following limitations of FEM are becoming increasingly
evident [15]:

1.1 High cost in creating an FEM mesh
The creating of a mesh for a problem domain is a prerequisite in using any
FEM code and package. Usually the analyst has to spend most of the time
in such a mesh creation, and it becomes the major component of the cost of
a computer aided design (CAD) project. Since operator costs now outweigh
the cost of CPU (central processing unit) time of the computer, it is desirable
that the meshing process can be fully performed by the computer without
human intervention. This is not always possible without compromising the
quality of the mesh for the FEM analysis, especially for problems of complex
three-dimensional domains.

1.2 Low accuracy of stress
Many FEM packages do not accurately predict stress. The stresses obtained
in FEM are often discontinuous at the interfaces of the elements due to
the piecewise (or element-wise) continuous nature of the displacement field
assumed in the FEM formulation. Special techniques (such as the use of
the so-called super-convergence points or patches) are required in the post-
processing stage to recover accurate stresses.

1.3 Difficulty in adaptive analysis
One of the current new demands on FEM analysis is to ensure the accuracy
of the solution; we require a solution with a desired accuracy. To achieve this
purpose, a so-called adaptive analysis must be performed.
In an adaptive analysis using FEM, remeshing (rezoning) is required to en-
sure proper connectivity. For this remeshing purpose, complex, robust and
adaptive mesh generation processors are limited to two-dimensional prob-
lems. Technical difficulties have precluded the automatic creation of hex-
ahedron meshes for arbitrary three-dimensional domains. In addition, for
three-dimensional problems, the computational cost of remeshing at each
step is very expensive analysis requires “mappings” of field variables be-
tween meshes in successive stage of the analysis. This mapping process can
often lead to additional computation as well as a degradation of accuracy in
the solution.

1.4 Limitation in the analyses of some problems

• Under large deformations, considerable loss in accuracy in FEM results
can arise from the element distortions.

• It is difficult to simulate crack growth with arbitrary and complex paths
which do not coincide with the original element interfaces.
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• It is very difficult to simulate the breakage of material with large num-
ber of fragments; the FEM is based on continuum mechanics, in which
the elements cannot be broken; an element must either stay as a whole,
or disappear completely. This usually leads to a misrepresentation of
the breakage path. Serious error can occur because the problem is non-
linear and the results and the results path-dependent.

The root of these problems is the use of elements or mesh in the formulation stage.
The idea of getting rid of the elements and meshes in the process of numerical
treatments has naturally evolved, and the concepts of meshfree or meshless meth-
ods have been shaped up.

MLPG approximation
If there is a body Ω with boundary Γ in 2-D coordinates xI = {x1

I ,x2
I } with

essential and natural boundary conditions in addition a body force as shown in Fig.
1, for a linear elastic body undergoing infinitesimal deformations the governing
differential equation can be obtained by the linear momentum balance

σi j, j + fi = 0 (1)

with the boundary conditions

ui = ūi on Γu (2a)

ti = σi jn j = t̄i on Γt (2b)

where σi j is the stress tensor, fi is the body force, ūi is the prescribed displacements
on the displacement boundary Γu and t̄i is the prescribed tractions on the traction
boundary Γt , n j is the unit vector outward normal to the boundary Γ.

Γ

Ω

uΓ

tΓ

1x

2x

u

t

Figure 1: Arbitrary body with displacement and traction boundary conditions
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Figure 2: Arbitrary sub-domain around a point

In each numerical method such as the finite element method (FEM), the bound-
ary element method (BEM), the finite difference method (FDM), and the finite vol-
ume method (FVM) it is usually considered some sub-domains which in the FEM
and the BEM these sub-domains are elements in the FDM and the FVM these are
meshes. Solving the problem in sub-domains is a way to approach to the solution in
the whole of the domain. In the meshless local Petrov-Galerkin method (MLPG),
sub-domain Ωs is contained only some points which are surrounded in an area or a
volume with arbitrary shape, Fig. 2. In general form there is a distribution of field
variable in the domain; in other words, each point has a magnitude of field variable
which the aim is to determine it. It is better to state here field variable is target
of the solution of problem. For example in an elastic body undergoing a traction
field variable can be displacement, or reaction force, or etc. To approximate field
variable distribution there are some methods; one of the best approximation meth-
ods is moving least squares method (MLS). In cause of existence of completeness,
continuity and robustness in the MLS, it is possible to interpolate random data with
a reasonable accuracy [16]. If field variable be a function such as u(x) with the
MLS the distribution of u in Ωs can be approximated over a number of scattered
local points xI , (I = 1, 2, 3, . . . , n) as

u(x) = pT(x)a(x) ∀x ∈ Ωs (3)

where pT(x) = [p1(x), p2(x), . . . , pm(x)]1×m is a monomial basis of order m, for
2-D problem

pT(x) =
[
1, x1, x2] linear basis m = 3 (4a)

pT(x) =
[
1, x1, x2,

(
x1)2

, x1x2,
(
x2)2

]
quadratic basis m = 6 (4b)

and a(x) = [a1(x), a2(x), . . . , am(x)]T1×m is a vector containing coefficients which
are functions of the global Cartesian coordinates [x1, x2]T , depending on the mono-
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mial basis. These coefficients are determined by minimizing a weighted discrete
L2 norm with respect to nodal points, defined as

J(x) =
m

∑
I=1

wI(x)
[
pT (xI)a(x)− ûI]2

= [P · a(x)− û]T W [P · a(x)− û]
(5)

where wI(x) is the weight function associated with the node I, with wI(x) > 0 for
all x in the support of wI(x), xI denote the value of x at node I, n is the number of
nodes in Ωs for which the weight functions wI(x) > 0, the matrices P and W are
defined

P =

⎡
⎢⎢⎢⎣

pT (x1)
pT (x2)

...
pT (xn)

⎤
⎥⎥⎥⎦

n×m

(6)

W =

⎡
⎢⎣

w1(x) · · · 0
...

...
...

0 · · · wn(x)

⎤
⎥⎦

n×n

(7)

and
ûT =

[
û1 û2 · · · ûn

]
(8)

Here it should be noted that ûi, i = 1, 2, . . . , n in Eqs. (5) and (8) are the fictitious
nodal values. The stationarity of J in Eq. (5) with respect to a(x) leads to the
following linear relation between a(x) and ûi.

A(x)a(x) = B(x)û (9)

where the matrices A(x) and B(x) are defined by

A(x) = PT WP = B(x)P =
n

∑
i=1

wi(x)p(xi)pT (xi) ∀ x ∈ Ωs (10)

B(x) = PT W = [w1(x)p(x1) , w2(x)p(x2) , . . . , wn(x)p(xn)] ∀x ∈ Ωs (11)

The MLS approximation is well defined only when the matrix A in Eq. (9) is
non-singular.

The shape function may be found as

u(x) = pT(x)A−1(x)B(x) û ≡ ΦT (x)û ∀x ∈ Ωs (12)
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The weight function in Eq. (5) has a compact circular support, and it defines in-
fluence range of node I. In this work weight function is a fourth order spline as
below

wI(x)

⎧⎨
⎩1−6

(
dI
rI

)2
+8

(
dI
rI

)3 −3
(

dI
rI

)4
0 ≤ dI ≤ rI

0 dI ≥ rI

(13)

where dI = |x−xI | is the Euclidean distance from node xI to the point x; and rI

is the size of the support for the weight function wI which determines the support
of node xI. Since the spline weight function Eq. (13) is C1 continuous over the
entire domain Ω then the shape functions Φ(x) and the trial function are also C1

continuous over the entire domain.

Finite volume MLPG (FVMLPG) approach
The finite volume (FV) discretization is based on the integral form of the equa-

tion over the control volume or sub-domain Ωs. In other words, the FV discretiza-
tion uses the integral form of Eq. (1) over the sub-domain Ωs around node I as [17,
18, 19] ∫

Ωs

(σi j, j + fi)dΩ = 0 (14)

and if the divergence theorem is applied to the first integral term then

∫
∂Ωs

σi jn jdΓ−
∫

Ωs

fidΩ = 0. (15)

where n j is the outward normal to the local boundary ∂Ωs. At this point the con-
servative nature of the FVM is established as the flux, stress σi j , is integrated over
the local boundary ∂Ωs.

By considering the traction boundary conditions from Eq. (2) and imposing in
Eq. (15) it changes to

∫
Ls

tidΓ+
∫

Γsu

tidΓ+
∫

Γst

t̄idΓ−
∫

Ωs

fidΩ = 0 (16)

In Eq. (16), as shown in Fig. 4, there are two sets local boundaries; one is the
boundary which is completely inside of global domain, it is shown by Ls; the
other is the boundary which has common side with boundary of global domain,
this shared part is indicated by Γs. If the common part be on the displacement
boundary Γu it is calledΓsu, in other words, Γsu = Γs ∩Γu; and if the shared part be
on the traction boundary Γt it is named Γst or in other words, Γst = Γs ∩Γt .

The equation (16) represents a physical meaning in the balance law of the local
sub-domain Ωs as conventional FVM with the traction boundary conditions being
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Figure 4: Different types of boundary of local domain

enforced. Hence it is called the finite volume MLPG (FVMLPG) formulation of
the equilibrium equation in two-dimensional problem of linear elasticity, Eq. (1).

The constitutive relations of isotropic linear elastic homogeneous solid is used
in the tractions of Eq. (2b)

ti = σi jn j = Ei jklεkln j (17)

the strain-displacement relations for linear elasto-statics problem are

εkl =
1
2

(uk,l +ul,k) (18)

The strain can be interpolated with the same shape function in Eq. (12)

εkl(x) =
n

∑
K=1

Φ(K)(x)ε (k)
kl (19)

At now Eq. (16) is discretized by substituting Eq. (17) and (19) in it

−
n

∑
K=1

[∫
Ls

Φ(K)(x)Ei jkln jdΓ
]

ε (K)
kl −

n

∑
K=1

[∫
Γsu

Φ(K)(x)Ei jkln jdΓ
]

ε (K)
kl

=
∫

Γst

t̄idΓ+
∫

Ωs

fidΩ (20)

The advantage of Eq. (20) is that there is not any shape function derivative in
it; because the meshless approximation is not efficient in calculating such deriva-
tive everywhere in the domain, especially when the MLS approximation is used.
Hence it is the benefit resulting from this work in comparison with the traditional
MLPG [primal] displacement method; in other words, in the primal MLPG the dis-
placement is approximated directly therefore the derivative of the shape function
will be appeared in the discretized local form. In addition since in the FVMLPG
the strain, which is the secondary field variable, is approximated independently of
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the displacement the requirement of the completeness and continuity of the shape
function is reduced by one-order. In fact with this method requires lower-order
polynomial terms in the meshless approximation, and a smaller nodal influence
size of local domain, to speed up the shape function calculation. On the other hand,
Eq. (20) shows the number of equations is less than the number of the independent
strain variables, because the nodal strain variables are more than the displacement
ones for example in 2D problem there are three nodal-strain variables, but only
two displacement nodal variables. It is possible to reduce number of variables by
transforming the strain variables back to the displacements without any changes to
Eq. (20). Hence by applying Eq. (19) only at each nodal point xI instead of the
entire solution domain the nodal strain variables are expressed in terms of the nodal
displacement variables

εkl (xI) = ε I
kl =

1
2

(uk,l +ul,k) I = 1, 2, . . . , n (21)

Now with the displacement approximation

u(x) =
n

∑
J=1

φ J(x)ûJ (22)

the two sets of nodal variables can be transformed through a linear algebraic matrix

ε̂ I
kl = ĤIJ

klmûJ
m (23)

where the transformation matrix H is banded. After substituting Eq. (23) in (20)
the relation between displacement and force is obtained as

K u = f (24)

where

KIJ =
[∫

Ls

Φ(I)(x)Ei jkln jdΓ−
∫

Γsu

Φ(I)(x)Ei jkln jdΓ
]

H(I)(J)
klm (25)

is the stiffness matrix, u is the displacement vector, and

fI =
∫

Γst

t̄idΓ+
∫

Ωs

fidΩ (26)

is the force vector.
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Imposition of boundary conditions
In this section it is discussed how the boundary conditions, given by Eqs. (2a)

and (2b), can be incorporated efficiently. With the meshless approximation, another
problem is that the essential boundary conditions can not be imposed directly. In
the FVMLPG neither penalty parameters nor Lagrange multipliers appear in the
equations because essential boundary conditions can be imposed by the collocation
method. For a nodal point x(I), if its ith displacement DOF belongs to the displace-
ment boundary, i.e., u(I)

i ∈ Γsu, the corresponding system equation can be replaced
by the one generated from the collocation for this particular DOF, as

αui

(
x(I)

)
= α ūi

(
x(I)

)
(27)

This standard collocation still keeps the system equations sparse and banded.

Numerical integration
Numerical integration is an important ingredient of a meshless method. In

order to integrate it needs the integrals to be evaluated over the boundary of local
sub-domains. By definition the tractions, t̄i = σi jn j, contain the normal n to the
boundary it involves the trigonometric functions. Polynomial expressions can not
be expected over the entire local boundary, which may not be covered by all local
nodes. Therefore it is not possible to apply the conventional numerical quadrature
schemes are designed for polynomials in trigonometric functions, because however
a 2-point Gauss quadrature evaluates

∫ 1
0 x3dx accurately the numerical experiments

show that, it gives an error of about 0.07% when 4-point Gauss quadrature is used
to evaluate one dimensional integral

∫ 1
0 x3 sin2πxdx over a 2D circle, in which only

one trigonometric function is involved.

There are two ways for controlling the numerical errors; one is to increase the
order of Gauss quadrature scheme, and another is to subdivide the domain of the
integration into small segments for better accuracy. The numerical experiments
show the second way is much more efficient than the first one. For those nodes on
the global boundary consider a local circular sub-domain centered at node I, x(I),
with a radius denoted by r(I)

0 . By drawing a line from node I to its neighbor node
J

{
x(J)}, (J = 1, 2, . . . , m), a point can be obtained at the intersection between

the line and the local circle, denoted by
{

y(J)
}

, (J = 1, 2, . . ., m). A subset of
these intersecting points is used to divide integration domain, i.e. the local circle. It
should be pointed out that the intersection points between the local and the global
boundaries are automatically included in y(J).

The shape of sub-domain is circle and its size is related the nodal distance.
Normally, it should be so great to make sure that there are enough points to support
the nodes on the global boundary. The size of the sub-domain affects the accuracy
of the solution and the efficiency of the method.
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Figure 5: Numerical integration over local boundary

Implementation routine
The implementation of the method can be carried out according to the follow-

ing routine [12]:

1. Choose a finite number of nodes in the domain Ω and on the boundary Γ of
the given physical domain; decide the basis functions and weight functions
such that the MLS approximation is well defined.

2. Determine the local sub-domain Ωs and its corresponding local boundary
∂Ωs for each node.

3. Loop over all node located inside the global domain and at the global bound-
ary Γ.

• Determine Gaussian quadrature points xQ in Ωs and on ∂Ωs.

• Loop over quadrature points xQ in the sub-domain Ωs and on the local
boundary ∂Ωs

(a) determine the nodes xi located in the domain of definition of the
MLS approximation for the trial function at point xQ, i.e., those
nodes with wi (xQ) > 0;

(b) for those nodes in the domain of the definition of the MLS approx-
imation of trial function at point xQ; calculate φi (xQ);

(c) evaluate numerical integrals
(d) assemble contributions to the linear system for all nodes in K, f;
(e) End quadrature point loop

4. End node loop.
5. Solve the linear system for the fictitious nodal values.
6. Calculate the value of the unknown variable at those sample points under

consideration.
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Numerical examples
This method is evaluated by the following three examples. Those are presented

to illustrate the implementation, accuracy and efficiency of the present FVMLPG
approach.

Example 1 Cantilever beam subjected to end shear

A cantilever beam with a transverse load is considered as shown in Fig. 6. The
characters of beam are L length, c half width, E module of elasticity; υ Poisson’s
ratio; P transverse load.

x

y

2c

L

P

Figure 6: A cantilever beam under a transverse load

This example is solved in state of plane stress with the following properties:

L = 24, c = 2, E = 1, υ = 0.25, P = 1.

For displacement boundary conditions

ux (0,0) = uy (0,0) = 0 and ux (0,c) = ux (0,−c) = 0

The exact solution for this problem is given in Timoshenko and Goodier [20]
as:

ux = − Py
6EI

[
3x(2L−x)+(2+υ)

(
y2 −c2)] (28a)

uy =
P

6EI

[
x2 (3L−x)+3υ (L−x)y2 +(4+5υ)c2x

]
(28b)

where I is the area moment of inertia of the beam and it is given as I = 2 t c3/3
where t is a constant beam thickness where in this example t = 1. The correspond-
ing stresses are

σx = −P
I

(L−x)y (29)

σy = 0 (30)

σxy = − P
2I

(
y2 −c2) (31)
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In order to perform a FVMLPG solution to the problem it needs to consider some
nodes which are selected by numerical experiment. Here regular uniform nodal
configurations with nodal distances, d, of 2.0, 1.0 and 0.5 are used. The non-
dimensional number d is the distance between two nodes neighbourhood in x or y
direction which determined by division the beam length by the number of nodes
in the direction of the beam length. The number of nodes are 39, 125 and 441
respectively. For comparison purpose, FE meshes are also constructed from the
nodal configurations by using the 4-node bilinear plane stress quadrilateral, incom-
patible modes element of the well-known FE software ABAQUS. In other words,
the FE meshes are 12×2, 24×4 and 48×8 in x and y direction respectively. This
kind of element gives the best results for this problem with respect to other kind of
elements of ABAQUS. The FVMLPG nodal configuration and the FE mesh with
nodal distance 1.0 are shown in Fig. 7.

a FVMLPG 

b FEM 

Figure 7: a The FVMLPG nodal configuration with nodal distance d = 1.0. b the
FE mesh with nodal distance d = 1.0

The normalized vertical displacement of the beam with nodal distance 0.5 is
shown in Fig. 8. The essential boundary conditions are imposed only in three
points; one point in the origin of the coordinate system, middle of the left side of
the beam which is fixed in two directions of x and y while two other points in the
top edge and the bottom edge of the left side of the beam which are fixed only in
x−direction.

A shear load is applied to the free end of the cantilever beam and the problem
is solved by using the FVMLPG. The numerical results of the shear deformation
are shown in Figure 9, which agree with the analytical solution very well. The
maximum relative vertical displacement error of the FVMLPG is 0.0001389% but
the error of the FEM is 0.07661% which the both of them occur in nodal distance of
0.5. It is clear from Fig. 9 the accuracy of the FVMLPG in vertical displacement is
very better than the one of the FEM which is obtained by ABAQUS in this example.

The time of run of computer code or software versus the accuracy indicates
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computational efficiency. Here the computational efficiency in the maximum ver-
tical displacement of two methods is indicated in Fig. 10. It is clear CPU time
or time consumption of the FVMLPG in nodal distances d = 2.0 (39 node) and
d = 1.0 (125 node) is lower than the one of the FEM and also the accuracy of the
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Figure 8: Normalized vertical displacement of a cantilever beam under a shear load
(441 nodes)
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FVMLPG & FEM



Accuracy and Computational Efficiency of the FVMLPG Method 225

0 5 10 15 20 25 30
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Time (s)

M
ax

im
um

 V
er

tic
al

 D
is

pl
ac

em
en

t 
E

rr
or

 (
%

)
FVMLPG 39 node
FVMLPG 125 node

FVMLPG 441 node

FEM (ABAQUS) 39 node

FEM (ABAQUS) 125 node
FEM (ABAQUS) 441 node

FVMLPG

FEM (ABAQUS)

Figure 10: Computational efficiency of the FVMLPG and the FEM in the maximum
vertical displacement
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Figure 11: Normalized bending stress and its error in the middle section of the
beam, x = L/2 by the FVMLPG & FEM



226 Copyright c© 2008 ICCES ICCES, vol.5, no.4, pp.211-238

0 5 10 15 20 25 30
-1

0

1

2

3

4

5

6

7

8

9

Time (s)

M
ax

im
um

 B
en

di
ng

 S
tr

es
s 

E
rr

or
 (

%
)

FVMLPG 39 node
FVMLPG 125 node

FVMLPG 441 node

FEM (ABAQUS) 39 node

FEM (ABAQUS) 125 node
FEM (ABAQUS) 441 node

FVMLPG

FEM (ABAQUS)

Figure 12: Computational efficiency of the FVMLPG and the FEM in the maximum
bending stress in the middle section of the beam, x = L/2

FVMLPG in nodal distances 2.0 and 1.0 is lower than the corresponding accuracy
of the FEM, but the accuracy of the FVMLPG in nodal distance d = 0.5 (441 node)
is very higher than the one of the FEM; however its CPU time is high.

In addition the results of the normalized bending stress in the section of the
middle of the beam, x = L/2, by the FVMLPG and the FE are lied on the exact
solution [21], as shown in Fig. 11. The maximum error in the FVMLPG is 0.02%,
and in the FEM that is 0%; both of these errors are in nodal distance 0.5.

In bending stress the computational efficiency of this method, as shown in Fig.
12 is lower than the efficiency of the FEM because the accuracy of the FVMLPG
in nodal distance 2.0 and 1.0 is lower than the ones of the FEM. The FEM gives
exact solution in bending stress in three nodal distances.

Finally in Fig. 13 the normalized shear stress distribution in the middle section
of the beam, x = L/2, in the FVMLPG is well but in the FEM there is some devi-
ation near the upper and lower boundaries of the beam. The minimum shear stress
error of the FVMLPG is 0.01251%and the maximum error is 0.7086% but in the
FE the minimum shear stress error is 2.083% and the maximum error is 22.92% on
the upper and lower boundaries nodes. There are two advantages for the FVMLPG
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Figure 13: Normalized shear stress and its error in the middle section of the beam,
x = L/2 by the MPLGFV & FEM
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Figure 14: Computational efficiency of the FVMLPG and the FEM in the maximum
shear stress in the middle section of the beam, x = L/2
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results, the first is lower error and the second is no high deviation in the results near
the boundaries which are clear in Fig. 13.

The study of computational efficiency of shear stress shows with increasing
nodal distance shear stress error of the FVMLPG decreases better than the one of
the FE. In Fig. 14, the minimum error of the maximum shear stress in the nodal
distance 0.5 is 0.7086% however this error in the FE is 22.92%. At all the shear
stress computational efficiency of the FVMLPG is higher than the one of the FEM.

Example 2 Cantilever beam subjected to compression load

The second example is a cantilever beam under compression load as Fig. 15.

P

x

y

2c

L
Figure 15: A cantilever beam under a compression load

This example is solved for plane stress case with following magnitudes:

L = 24, c = 2, E = 1, υ = 0.25, P = 1

which by the two methods, the FEM and the FVMLPG method the results are
obtained in non-dimensional forms. The normalized axial displacement obtained
from the FVMLPG is very better than the one of the FEM. Primary geometry of
the beam and its normalized axial displacement are shown in Fig. 16. The nodal
distance of the two methods is 0.5.

As shown in Fig. 17 the maximum error in the axial displacement by the
FVMLPG is 6.14× 10−10 % however, this value of the FEM is 0.1546%. The
accuracy of the FVMLPG in axial displacement of this example is very well in
comparison with the one of the FEM which is obtained by ABAQUS.

Computational efficiency of two methods in the axial displacement is shown in
Fig. 18. The computational efficiency of the FVMLPG in the axial displacement is
very higher than the one of the FEM because of the higher accuracy of this method.
However, the time of running of the FVMLPG is higher than the one of the FEM
but high accuracy of FVMLPG makes up this time delaying in return.

The normal stress in normalized form in the middle section of the beam, x =
L/2 and its error with respect to exact solution are shown in Fig. 19. Both methods
give very well results; there is only a very small deviation in the FEM results in the
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Figure 16: Normalized axial displacement of a cantilever beam under a compres-
sion load (441 nodes)
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Figure 17: Normalized axial displacement and its error of the beam by the
FVMLPG & FEM
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Figure 18: Computational efficiency of the FVMLPG and the FEM in the axial
displacement
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Figure 19: Normalized normal stress and its error of the beam by the FVMLPG &
FEM in the middle section of the beam, x = L/2
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Figure 20: Computational efficiency of the FVMLPG and the FEM in the normal
stress
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Figure 21: A simply supported beam with uniform distributed lateral load

upper and lower surface of the beam which it is not important because its value is
0.0001%. This deviation is not appeared in the FVMLPG result which is benefit of
this method.

Computational efficiency of two methods in normal stress is shown in Fig. 20.
Since accuracy of two methods is very close to each other then there is not a very
important difference between computational efficiency of these methods.

Example 3 Simply supported beam with uniform distributed lateral load

The third example is a simply supported beam with uniform distributed lateral
load, as shown in Fig. 21.
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Figure 22: Normalized lateral displacement of a simply supported beam under a
uniform distributed lateral load (441 nodes)
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Figure 23: Normalized lateral displacement and its error of a simply supported
beam by the FVMLPG & FEM
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Figure 24: Computational efficiency of the FVMLPG and the FEM in the lateral
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Figure 25: Normalized bending stress and its error of the simply supported beam
by the FVMLPG & FEM
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Figure 26: Computational efficiency of the FVMLPG and the FEM in the bending
stress in the middle section of the beam, x = L/2
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Figure 27: Normalized shear stress and its error of the simply supported beam by
the FVMLPG & FEM
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Figure 28: Computational efficiency of the FVMLPG and the FEM in the shear
stress in the middle section of the beam, x = L/2

This example is solved for plane stress case with following magnitudes:

L = 24, c = 2, E = 1, υ = 0.25, P = 1

The lateral displacement of beam obtained by the FVMLPG is shown in Fig. 22.

The maximum lateral displacement error obtained by the FVMLPG is 0.03078%
with respect to the maximum lateral displacement of exact solution, as shown in
Fig. 23.

After running this example in the FEM the maximum lateral displacement error
is 1.507%, as shown in Fig. 23. It is clear the difference between errors of two
methods is high. This shows the accuracy of the FVMLPG with respect to the
FE in lateral displacement of this example. The computational efficiency of these
methods in lateral displacement is shown in Fig. 24. It is clear the computational
efficiency of the FVMLPG is better than the one of the FEM.

In bending stress results of two methods lay in the analytical solution but the
result of the FVMLPG has minimum error with respect to the result of the FEM.
Maximum error of bending stress which is obtained by the FVMLPG is 0.03153%
and its minimum error is 0.0009071% however maximum error of bending stress
which is obtained by the FEM is 0.1555%; this error is error in the upper and lower
plane of the beam while this error in the FVMLPG is only 0.003505%. In the error
of the FVMLPG there are two nodes which have a jumping in their bending stress
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errors.

Computational efficiency of the FVMLPG and the FEM in the bending stress
in the middle section of the beam, x = L/2 is shown in Fig. 26. Accuracy of two
methods increases by decreasing in nodal distance but accuracy of the FVMLPG is
higher than the one of the FEM however the CPU time of the FVMLPG in nodal
distance 0.5 is greater than the corresponding CPU time of the FEM.

Behavior of two methods in shear stress is indicated in Fig. 27. It shows a
good agreement between the result of the FVMLPG and the exact solution with
respect to the result of the FEM. The maximum error of the FVMLPG is 0.6127%
however, the error of the FEM is 2.085%. In addition there is a great deviation in
shear stress of the element beside the upper and lower surface of the beam while
this deviation of the FVMLPG is very small.

The accuracy of the FVMLPG in shear stress is very better than the one of the
FEM. These good results in shear stress are obtained in nodal distance 0.5. Also
accuracy of the FVMLPG in nodal distance 1.0 is higher than the accuracy of the
FEM; at all the computational efficiency of the FVMLPG in shear stress is better
than the one of the FEM, as shown in Fig. 28.

Conclusion
In this paper, a combined formulation (FVMLPG) of the Finite Volume Method

(FVM) and the Meshless Local Petrov-Galerkin (MLPG) is developed to solve elas-
tostatic problems by using the FVM directly in these problems. For the meshless
interpolation scheme in this method, the conventional moving least squares inter-
polation is applied. With the FVMLPG, by choosing the strains as independent
variables in the local weak form it is not necessary to differentiate the shape func-
tion because of interpolating the strains directly. In addition the continuity require-
ment on the trial function reduces by one-order then it is possible to use a smaller
support size in the meshless approximations with a lower-order polynomial ba-
sis. This procedure is implemented in a computer code in MATLAB. Accuracy
and computational efficiency of the FVMLPG is investigated with analytical solu-
tion of some examples in elasto-static. In addition performance of this method is
compared with the performance of the traditional FEM by using well-known FE
software ABAQUS in the same examples. In the first example, a cantilever beam
under a tip concentrated load is analyzed by the present method. The comparisons
between two methods shows the FVMLPG is very more accurate than the FEM in
vertical displacement so that its result in vertical displacement is very close to the
analytical solution of this example. The result of the bending stress of the FVMLPG
has a small error with the exact solution but by the FEM there is not error in bending
stress. In investigation of shear stress in this example, the result of the FVMLPG
has very good agreement with the exact solution with respect to the one of the
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FEM. In part of the computational efficiency the FVMLPG has a higher efficiency
with respect to the FEM, except in the bending stress. In the second example,
a cantilever beam with a compression force, the results of the FVMLPG in axial
displacement is more accurate than the one of the FEM and in normal stress two
methods have the same good results with respect to the analytical solution. Com-
putational efficiency of the FVMLPG in axial displacement is very higher than the
efficiency of the FEM but the normal stress efficiency of the FVMLPG is almost
in the same order of the one of the FEM. In the third example, a simply supported
beam under uniform lateral load, the FVMLPG lateral displacement results is very
more accurate than the FEM results; also in bending and shear stress the FVMLPG
gives very good results in comparison to the one of the FEM. At all the complexity
and high computational time are the main barriers for the meshless approaches to
fully fulfil their application potentials. In the FVMLPG method is tried to keep a
balance the accuracy and efficiency. Only the run time in the FVMLPG is more
than the FEM.

References
1. Monaghan, J.J. (1982): Why particle methods work. SIAM J. Sci. Statist.

Comput. 3, 422–433.

2. Monaghan, J.J. (1988): An introduction to SPH. Comput. Phys. Comm. 48,
89–96.

3. Perrone, N.; Kao, R. (1975): A general finite difference method for arbitrary
meshes. Comp. Structures 5, 45–58.

4. Liszka, T.; Orkisz, J. (1980): The finite difference method at arbitrary irreg-
ular grids and its application in applied mechanics. Computer and Structures
11, 83–95.

5. Nayroles, B.; Touzot, G.; Villon, P. (1992): Generalizing the finite element
method: diffuse aproximation and diffuse elements. Comput. Mech. 10,
307–318.

6. Belytschko, T.; Lu, Y.Y.; Gu, L. (1994): Element-free Galerkin method. Int.
J. Numer. Methods Engrg. 37, 229–256.

7. Lancaster, P.; Salkauskas, K. (1981): Surfaces generated by moving least
squares methods. Math. Comput. 37, 141–158.

8. Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T. (1995): Reproducing
kernel particle methods for structural dynamics. Int. J. Numer. Methods
Engrg. 38, 1655–1679.

9. Duarte, A.; Oden, J.T. (1996a): H-P cloud – An h-p meshless method. Nu-
mer. Methods Partial Differential Equations 12, 673–705.



238 Copyright c© 2008 ICCES ICCES, vol.5, no.4, pp.211-238

10. Babuska, I.; Melenk, J.M. (1997): The partition of unity method. Int. J.
Numer. Methods Engrg. 40, 727–758.

11. Oñate, E.; Idelsohn, S.; Zienkiewicz, O.C.; Taylor, R.L. (1996): A finite
point method in computational mechanics. Aplications to convective trans-
port and fluid flow. Int. J. Numer. Methods Engrg. 39, 3839–3866.

12. Atluri, S.N.; Zhu, T. (1998): A new meshless local Petrov–Galerkin (MLPG)
approach in computational mechanics. Comput. Mech. 22, 117–127.

13. Atluri, S.N.; Zhu, T. (2000a): New concepts in meshless methods. Int. J.
Numer. Methods Engrg. 47, 537–556.

14. Atluri, S.N.; Zhu, T. (2000b): The meshless local Petrov–Galerkin (MLPG)
approach for solving problems in elasto-statics. Comput. Mech. 25, 169–
179.

15. Liu, G.R.; Gu, Y.T. (2005): An introduction to meshfree methods and their
programming. Springer, 479 pages.

16. Atluri, S.N. (2005): Methods of computer modeling in engineering & the
sciences. Vol. I, 600 pages.

17. Oñate, E.; Cervera, M.; Zienkiewicz, O.C. (1994): A finite volume format
for structural mechanics. Int. J. Numer. Methods Engrg. 37, 181–201.

18. Demirdzic I.; Muzaferija S. (1994): Finite volume method for stress analysis
in complex domains. Int. J. Numer. Methods Engrg. 37, 3751–3766.

19. Jasak, H.; Weller, H.G. (2000): Application of the finite volume method and
unstructured meshes to linear elasticity. Int. J. Numer. Methods Engrg. 48,
267–287.

20. Atluri, S.N.; Zhu, T. (1998): A new meshless local Petrov-Galerkin (MLPG)
approach in computational mechanics. Computational Mechanics 22, pp.
117–127.

21. Timoshenko, S.P.; Goodier, J. N. (1976): Theory of elasticity. 3rd edition,
McGraw Hill.


