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Constitutive Relation for Friction Describing Transition
from Static to Kinetic Friction and Vice Versa

K. Hashiguchi1 and S. Ozaki2

Summary
The subloading-friction model with a smooth elastic-plastic sliding transition

is extended so as to describe the reduction from the static to kinetic friction and the
recovery of static friction. The reduction is formulated as the plastic softening due
to the separations of the adhesions of surface asperities induced by the sliding and
the recovery is formulated as the creep hardening due to the reconstructions of the
adhesions of surface asperities during the elapse of time under a quite high actual
contact pressure between edges of asperities.

Introduction
Description of the friction phenomenon as a constitutive equation has been

attained first as a rigid-plasticity, and further it has been extended to an elastoplas-
ticity in which the penalty concept, i.e. the elastic springs between contact surfaces
is incorporated[1]. However, the interior of the sliding-yield surface has been as-
sumed to be an elastic domain and thus the plastic sliding velocity due to the rate
of traction inside the sliding-yield surface is not described. Therefore, the accu-
mulation of plastic-sliding due to the cyclic loading of contact traction cannot be
described by these models. On the other hand, the first author of the present article
has proposed the subloading surface model[2] within the framework of unconven-
tional plasticity, which is capable of describing the plastic strain rate by the rate
of stress inside the yield surface. Based on the concept of subloading surface, the
authors proposed the subloading-friction model[4, 5], which describes the smooth
transition from the elastic to plastic sliding state and the accumulation of sliding
displacement during a cyclic loading of tangential contact traction.

A high friction coefficient is first observed as a sliding between bodies com-
mences, which is called the static friction. Then, the friction coefficient decreases
approaching the lowest stationary value, which is called the kinetic friction. There-
after, if the sliding stops for a while and then it starts again, the friction coefficient
recovers and a similar behavior as that in the first sliding is reproduced. These are
fundamental characteristics in the friction phenomenon, which have been widely
recognized for a long time.

In this article, the subloading-friction model[2, 3] is extended so as to describe
the reduction of friction coefficient from the static to kinetic friction as the plastic
softening due to the sliding and the recovery of friction coefficient as the viscoplas-
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tic hardening due to the creep phenomenon induced with the elapse of time under
a high contact pressure between surface asperities.

Formulation of the Constitutive Equation for Friction
The subloading-friction model[2, 3] is extended below so as to describe the

static-kinetic friction transition, i.e. the transition from static and kinetic friction,
and vice versa.

Decomposition of sliding velocity
The sliding velocity v̄ is defined as the relative velocity to the other body and is

additively decomposed into the normal component v̄n and the tangential component
v̄t as follows:

v̄ = v̄n + v̄t (1)

which are given by v̄ as

v̄n = (v̄•n)n = (n⊗n)• v̄, v̄t = v̄− v̄n = (I−n⊗n)• v̄ (2)

where n is the unit outward-normal vector at the contact surface, (•) and ⊗ denote
the scalar and the tensor products, respectively, and I is the second-order identity
tensor having the components of Kronecker’s delta δi j = 1 for i = j, δi j = 0 for
i �= j. On the other hand, it is assumed that v̄ is additively decomposed into the
elastic sliding velocity v̄e and the plastic sliding velocity v̄p, i.e.

v̄ = v̄e + v̄p (3)

v̄n = v̄e
n + v̄p

n , v̄t = v̄e
t + v̄p

t (4)

v̄e
n = (v̄e •n)n = (n⊗n)• v̄e, v̄e

t = v̄e − v̄e
n = (I−n⊗n)• v̄e (5)

v̄p
n = (v̄p •n)n = (n⊗n)• v̄p, v̄p

t = v̄p − v̄p
n = (I−n⊗n)• v̄p (6)

The contact traction f acting on the other body is decomposed into the normal part
fn and the tangential part ft as follows:

f = fn + ft (7)

where the above-mentioned n is also the normalized direction vectors of fn and t is
the normalized direction vectors of ft , respectively, i.e.

n ≡ fn/||fn||, t ≡ ft/||ft|| (8)

and fn and ft are the normal and the tangential components of the contact traction
f, i.e.

fn ≡−||fn|| = n• (−f), ft ≡ ||ft|| = t• f (9)
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where the sign of fn is selected to be plus for compression.

Now, let the elastic-sliding velocity be given by the following hypo-elastic re-
lation, whilst the elastic sliding velocity is usually far small compared with the
plastic sliding velocity in the friction phenomenon.

v̄e
n =

1
αn

f̊n, v̄e
t =

1
αt

f̊t (10)

where f̊n and f̊t are the normal component and tangential component, respectively,
of f̊, (

◦
) denoting the corotational rate, which are related to the material-time deriva-

tive denoted by (
•
) as follows:

f̊ = ḟ−Ωf, f̊n = ḟn −Ωfn, f̊t = ḟt −Ωft (11)

where the skew-symmetric tensor Ω is the spin describing the rigid-body rotation of
the contact surface. αn and αt are the contact elastic moduli in the normal and the
tangential directions to the contact surface. On the other hand, the sliding velocity
v̄ is not an absolute velocity but the relative velocity, and thus it can be adopted to
the constitutive relation as it is since it has the objectivity. It follows from Eq. (10)
that

f̊ = f̊n + f̊t = Cev̄e (12)

where the second-order tensor Ce is the fictitious contact elastic modulus tensor
given by

Ce = αnn⊗n+αt (I−n⊗n), Ce−1 =
1

αn
n⊗n+

1
αt

(I−n⊗n) (13)

Normal-sliding and sliding-subloading surfaces
Assume the following isotropic sliding-yield surface with the isotropic harden-

ing/softening, which describes the sliding-yield condition.

f (f) = F (14)

where F is the isotropic hardening/softening function denoting the variation of the
size of sliding-yield surface.

In what follows, we assume that the interior of the sliding-yield surface is not
a purely elastic domain but that the plastic sliding velocity is induced by the rate
of traction inside that surface. Henceforth, let the surface described by Eq. (14) be
renamed the normal-sliding surface.

Then, in accordance with the concept of subloading surface (Hashiguchi, 1980,
1989), we introduce the sliding-subloading surface, which always passes through
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the current traction point f and keeps a similar shape and orientation to the normal-
sliding surface with respect to the zero traction point f = 0. Then, let the ratio of the
size of the sliding-subloading surface to that of the normal-sliding surface be called
the normal-sliding ratio, denoted by R̄ (0 ≤ R̄ ≤ 1). Therefore, the normal-sliding
ratio R̄ plays the role of three-dimensional measure of the degree of approach to the
normal-sliding state. Then, the sliding-subloading surface is described by

f (f) = R̄F (15)

The material-time derivative of Eq. (15) leads to

∂ f
∂ f

• f̊ = R̄Ḟ + ˙̄RF (16)

while the direct transformation of the material-time derivative to the corotational
derivative is verified for the general scalar function[6].

Evolution rules of the hardening function and the normal-sliding ratio
It could be stated from experiments that

1. If the sliding commences, the friction coefficient reaches first the maximal
value of static-friction and then it reduces to the minimal stationary value
of kinetic-friction. Physically, this phenomenon could be interpreted to be
caused by the separations of the adhesions of surface asperities between con-
tact bodies due to the sliding. Then, let it be assumed that the reduction
is caused by the contraction of the normal-sliding surface, i.e. the plastic
softening due to the sliding.

2. If the sliding ceases after the reduction of friction coefficient, the friction
coefficient recovers gradually with the elapse of time and the static-friction
is reproduced after an elapse of sufficient time. Physically, this phenomenon
could be interpreted to be caused by the reconstructions of the adhesions of
surface asperities during the elapsed time under a quite high contact pressure
between edges of surface asperities. Then, let it be assumed that the recovery
is caused by the viscoplastic hardening due to the creep phenomenon.

Taking account of these facts, let the evolution rule of the isotropic harden-
ing/softening function F be postulated as follows:

Ḟ = −κ
{(

F
Fk

)m

−1

}
||v̄p||+ξ

{
1−

(
F
Fs

)n}
(17)

where Fs and Fk(Fs ≥ F ≥ Fk) are the maximum and minimum values of F for
the static and kinetic frictions, respectively. κ and m are the material constants
influencing the decreasing rate of F due to the plastic-sliding, and ξ and n are the
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material constants influencing the recovering rate of F due to the elapse of time,
while they would be functions of absolute temperature in general.

It is observed in experiments that the tangential traction increases almost elas-
tically with the plastic sliding when it is zero but thereafter it increases gradually
approaching the normal-sliding surface and it does not increase any more when
it reaches the normal-sliding surface. Then, we assume the evolution rule of the
normal-sliding ratio as follows:

˙̄R = Ū(R̄)||v̄p|| for v̄p �= 0 (18)

where Ū(R̄) is a monotonically decreasing function of R̄ fulfilling the following
conditions.

Ū(R̄) → +∞ for R̄ → 0, Ū(R̄) = 0 for R̄ = 1 (Ū(R̄) < 0 for R̄ > 1) (19)

The simplest function Ū fulfilling Eq. (19) is given by

Ū(R̄) = −ū ln R̄ (20)

where ū is the material constant.

Relationships of sliding velocity and contact traction rate
The substitution of Eqs. (17) and (18) into Eq. (16) gives rise to the consistency

condition for the sliding-subloading surface:

∂ f
∂ f

• f̊ = R̄{−κ
{(

F
Fk

)m

−1

}
||v̄p||+ξ

{
1−

(
F
Fs

)n}
+Ū ||v̄p

t ||F (21)

Assume the following sliding-plastic flow rule.

v̄p = λ̄M (||M||= 1) (22)

where λ̄ (> 0) is a positive proportionality factor and the unit vector M is the func-
tion of stress and internal variables.

Substituting Eq. (22) into Eq. (21), the proportionality factor λ̄ is derived as
follows:

λ̄ =
∂ f (f)

∂ f • f̊−Mc

M f , v̄p =
∂ f (f)

∂ f • f̊−Mc

M f M (23)

where

M f ≡ −κ
{(

F
Fk

)m

−1

}
R̄+FŪ, Mc ≡ ξ

{
1−

(
F
Fs

)n}
R̄ (≥ 0) (24)
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Substituting Eqs. (12) and (23) into Eq. (21), the sliding velocity is given by

v̄ = Ce−1 ◦
f+

∂ f (f)
∂ f • ◦

f−Mc

M f M (25)

The positive proportionality factor in terms of the sliding velocity, denoted by the
symbol Λ̄, is given from Eqs. (25) as

Λ̄ =
∂ f (f)

∂ f •Ce • v̄−Mc

M f + ∂ f (f)
∂ f •Ce •M

(26)

The traction rate is derived from Eqs. (3), (12), (22) and (26) as follows:

f̊ = Ce

{
v̄−

〈 ∂ f (f)
∂ f •Ce • v̄−Mc

M f + ∂ f (f)
∂ f •Ce •M

〉
M

}
(27)

The function f (f) for the closed normal-sliding surface is given by

f (f) = fng(χ), χ ≡ η/M, η ≡ ft/ fn (28)

The simple example is g(χ) = exp(χ2/2) having the tear-shape[4].

On the other hand, the normal-sliding and the sliding-subloading surfaces for
the circular cone of the Coulomb friction condition are given by putting

f ( f ) = ft/ fn, F = μ (29)

as follows:
ft/ fn = μ , ft/ fn = R̄μ (30)

where μ is the friction coefficient.
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