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Summary
In the present work the significance of considering geometrical nonlinearity in

the application of piezoelectric materials in order to improve the dynamic and sta-
bility characteristics of thin structures is shown. For the numerical investigations
a finite shell element has been used which employs strain displacement relations
based on the first-order shear deformation moderate rotation theory. An ANS for-
mulation has been used to overcome membrane and shear locking. Two numerical
examples are shown. The first example deals with increasing the critical buckling
load by incorporating piezoelectric layers into the structure. In the second example
the nonlinear vibrations of a cantilevered beam are damped with a simple velocity
proportional control.

Introduction
In modern structural engineering weight reduction is a top priority. The amount

of required raw materials is reduced, the costs are lowered and weight reduction
may be beneficial in aesthetic point of view. A negative side effect is the stability
problem which occurs in both static as well as dynamic manner. One promising
solution seems to be integrating piezoelectric materials into these structures.

Governing Equations
The mechanical equilibrium equations, the equation for charge for a body B0

can be written in the weak formulation by introducing the potential functional

Π(u, ϕ) =
∫
B0

[
H −b ·u+

1
2

u̇ · u̇ρ
]

dV−
∫

∂t B0

t ·udA +
∫

∂qB0

qϕ dA (1)

where H is the electric enthalpy density H = σ : ε −D · E, σ and ε denote the
second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor, respec-
tively, D and E denote the dielectric displacement vector and the electric field
vector, respectively, b is the vector of the body force densities, u is the vector
of displacements, which in terms of a first order shear deformation theory can be

expressed as u =
0
v+Θ3 1

v. Here, the translation of the reference surface is denoted

by
0
v, the rotation of the reference surface normal by

1
v and Θ3 denotes the thickness

coordinate. Further ρ denotes the mass density, t the prescribed externally applied
traction vector on the surface ∂t B0, q is the prescribed externally applied charge
density on the surface ∂qB0, ϕ is the electric potential and finally (̇) denotes the
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derivative with respect to time. The electromechanical equilibrium is found when
δΠ = 0.

Assuming small strains, small rotations around the reference surface normal
and moderate rotations of the reference surface normal, the Green-Lagrange strains
can be expressed as [1]

εαβ = ε0
αβ +Θ3ε1

αβ +
(
Θ3)2 ε2

αβ , εα3 = ε0
α3 +Θ3ε1

α3, ε33 = 0, (2)

where the individual components, which are geometrically nonlinear, are further
described in [1].

The irrotational Lagrangean electric field is described by the negative gradient
of the electric potential along the undeformed shell parameters

E = −GRADϕ. (3)

For thin piezoelectric layers it is sufficient to assume a linear function for the elec-
tric potential. Not only are the degrees of freedom reduced this way, moreover the
kinematic assumption of equal potential on the electrode pairs can be more easily
applied without introducing additional Lagrangean multipliers. Due to this assump-
tion the electric field only exists in transverse direction and it can be expressed as

E3 = − ϕ
hp

, (4)

where hp is the thickness between an electrode pair. The electric potential ϕ there-
fore becomes a degree of freedom per electrode pair denoting the difference of the
electric potential between the electrodes.

The constitutive behaviour of the considered electromechanical structures is
described by the converse and direct piezoelectric effect

σ i j = ci jklεkl −ei jkEk

Di = eiklεkl +δ ikEk,
(5)

where c denotes the elasticity tensor at constant electric field, e the piezoelectric
coupling tensor and δ the dielectric permittivity tensor at constant strain. The com-
ponents of the constitutive tensors can be found e.g. in [2].

Finite Element Formulation
Due to geometrical nonlinearity in the present formulation the variation of the

potential in the unknown configuration is approximated by the first-order Taylor
series, which leads to the construction of the tangential stiffness matrix. After
approximating the fields by form functions, assembly of the elemental matrices
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and vectors and neglecting structural damping, the following set of equations need
to be solved [

M 0
0 0

]{
ü
ϕ̈

}
+

[
Kuu Kuϕ
KT

uϕ Kϕϕ

]{
Δu
Δϕ

}
=

{
Fe

Qe

}
−

{
Fi

Qi

}
, (6)

where M denotes the lumped mass matrix, Fe and Qe are the externally applied
forces and charges respectively, and Fi and Qi denote the in-balance forces and
charges respectively.

A nine-node element has been deployed using the ANS-formulation of Park
and Stanley [3], which was previously extensively tested by Kreja et al [4].

Numerical Examples
The first numerical example is taken from Sabir and Lock [5]. It deals with

a symmetrically hinged cylindrical roof as depicted in Fig. 1. The roof is loaded
with a uniform pressure field. In order to increase the critical buckling load the
structure is covered with piezoelectric patches on the bottom and the top surface
made of PZT G1195. It is attempted to increase the critical load by applying electric
potentials to the piezoelectric patches. One quarter of the roof is discretised by a
[4×4] mesh of 9 noded ANS elements. Each element constitutes one electrode pair
on the bottom and one on the top. In case the electric potential and the direction of
the macroscopic polarisation of the piezoelectric patches is constant throughout the
structure, the observed effect is minimal. In order to increase the intended effect
part of the patches were polarized in opposite direction. The optimal configuration
was obtained as shown in Fig. 1. The critical pressure (see Fig. 2), obtained at the
bifurcation point, for the PZT covered roof without actuation is 5.727.104 N/m2.
If a constant voltage of 500V is applied to each electrode pair, the critical pressure
increases to 5.952.104 N/m2, which is an improvement of 3.9 %.

The second example was originally experimentally investigated by Bailey and
Hubbard [6] within the range of geometrically nonlinear vibrations. Afterwards this
example was numerically investigated by Lammering [7] with a slightly modified
configuration. In the present work the configuration as described by Lammering [7]
is taken with consideration of the tip inertia, even though this does not result into
considerable differences. The beam is discretised by a [10×1] mesh of 9 noded
ANS elements. One electrode pair is applied to each piezoelectric layer.

In both the linear as well as the nonlinear case a transverse tip displacement of
2cm is enforced after which the beam is released to conduct velocity proportional
control in order to damp the vibrations. The tip displacement of 2cm is the one
originally used by Bailey and Hubbard [6]. On both cases tip velocity proportional
control is applied with a gain of g = −62.5Vs/m and g = −125Vs/m resulting
into a maximum applied voltage of approximately 50V and 100V per layer, respec-



204 Copyright c© 2008 ICCES ICCES, vol.6, no.4, pp.201-206

Figure 1: Hinged cylindrical roof covered with piezoelectric material

Figure 2: Symmetric and asymmetric buckling curves of the hinged roof

tively. This corresponds to the experiment of Bailey and Hubbard [6] who applied
maximum voltages of 100V and 200V, respectively, by using only one piezoelectric
layer. A significant difference between the linear and the nonlinear results is shown
in Fig. 4.

Summary
A geometrically nonlinear finite shell element for the investigation of thin

piezolaminated structures is presented. Two numerical examples are discussed in
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Figure 3: Piezolaminated cantilevered beam with a tip mass

Figure 4: Velocity proportional control of the cantilevered beam

which the geometrical nonlinearity plays a profound role. One example deals with
the static stability control of a hinged cylindrical roof and the other example deals
with the vibration control of geometrically nonlinear vibrations of a cantilevered
beam.
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