
Copyright c© 2008 ICCES ICCES, vol.6, no.4, pp.239-244

Multilevel Incomplete Factorizations for Non-Linear FE
problems in Geomechanics

C. Janna1, M. Ferronato1, G. Gambolati1

Summary
The geomechanical simulation of a faulted producing reservoir is a strongly

non-linear problem due to the non-elastic behaviour of the depleted rocks and es-
pecially to the contact constraint prescribed on the fault surfaces. With penalty
interface elements for the fault modeling the stiffness matrix may be severely ill-
conditioned and the solution by the Preconditioned Conjugate Gradient requires the
development and the implementation of ad hoc preconditioners. The present com-
munication investigates the performance of a multilevel incomplete factorization
aimed at enhancing convergence and reducing the computational cost of a non-
linear geomechanical simulation.

Introduction
The structural behaviour of a producing faulted reservoir can be simulated

with the combined use of Finite Elements (FE) and Interface Elements (IE) with
a penalty formulation [1]. The resulting numerical problem is strongly non-linear.
The reason is twofold. First, while the porous medium outside the reservoir and
the connected aquifer can be satisfactorily described by a linear elastic constitu-
tive model, the depleted volume typically exhibits large effective stress variations,
hence significant changes of the related stiffness. Second, the opening or slip of
fault surfaces is simulated by a non-linear rigid-plastic constitutive model. The
final solution is obtained through a linearization procedure.

From a numerical viewpoint, the matrix of the linearized system is symmetric
and positive definite (SPD) and may suffer from the ill-conditioning arising from
the stiffness contrast between the elements lying inside and outside the depleted
porous medium and the presence of large penalty coefficients used to enforce the
contact constraints. The efficient solution of these systems by the Preconditioned
Conjugate Gradient (PCG) requires special ad hoc preconditioners to accelerate,
or even to allow for, convergence. Recently, the Mixed Constraint Preconditioner
(MCP) [2] has proved a robust and efficient alternative to more traditional precon-
ditoners. MCP exploits the block structure of the global SPD matrix:

A =
[

K B
BT C

]
(1)

where K is the stiffness block of the unknowns linked only to FE and C is the
penalty block linked to IE. Unfortunately, when a non-linear constitutive model
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is used for FE the structural block K is not completely invariant and this can de-
teriorate the MCP performance in a whole simulation. The proposed multilevel
incomplete factorization is intended to overcome the drawbacks of the native MCP
while perserving its good spectral properties.

The double non-linearity of the above geomechanical problem is addressed by
an explicit-explicit approach [1] with the total load subdivided into n steps and ap-
plied progressively. At the beginning of each step the jacobian is computed and the
linearized system is solved providing the displacement field to be used in the next
step. However, to solve accurately the IE non-linearity other substeps are needed
at each loading step. Thus, each loading step is further subdivided into m substeps
and two nested loops are set up: the part of the stiffness matrix depending on the
depleted plastic elements is updated only at each iteration of the outer loop, while
the part depending on the IE is updated at every inner iteration. If the unknowns
linked to the linear FE are numbered first, those linked to the non-linear FE are
numbered second and those linked to the IE are numbered last, the system matrix
takes on the following 9 block form:

A =

⎡
⎣ K1 B11 B12

BT
11 K2 B2

BT
12 BT

2 C

⎤
⎦ (2)

Note that with this ordering the matrices K1 and B1 = [B11,B12] do not change dur-
ing the whole simulation, K2 and B2 change every outer iteration, while C changes
every inner iteration.

Multilevel Incomplete Factorization (MIF)
The partial incomplete factorization of a symmetric matrix A can be defined

as:

A =
[

A11 A12

AT
12 A22

]
� M =

[
L1 0
H1 I

][
D1 0
0 S1

][
LT

1 HT
1

0 I

]
= L1D1L

T
1

(3)
where L1 is a lower triangular matrix, H1 is a rectangular matrix, D1 is a diagonal
matrix and S1 is in general a full square matrix called Schur complement. Note that
L1D1LT

1 is the incomplete root-free factorization of the A11 block, H1 = AT
12L−T

1 D−1
1

and S1 = A22 −H1D1HT
1 . The application of M−1 as a preconditioner in a PCG

iteration requires the solution to:

M v = r (4)

that can be carried out with a forward substitution L1z = r, the solution of a block
diagonal system D1y = z and a backward substitution L T

1 v = y. In the second
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stage of the procedure the solution of the block diagonal system can be found as
follows: [

D1 0
0 S1

]{
y1

y2

}
=

{
z1

z2

}
→

{
y1 = D−1

1 z1

y2 = S−1
1 z2

(5)

The computation of y1 is straightforward because D1 is diagonal, while a generally
full system with matrix S1 has to be solved for y2. This can be done approximately
by performing a partial incomplete factorization of S1, too.

The basic idea of some multilevel preconditioners, e.g. [3] [4] [5] and the
present one, is to use recursively a partial incomplete factorization of the Schur
complement of each level:

Si �
[

Li+1 0
Hi+1 I

][
Di+1 0

0 Si+1

][
LT

i+1 HT
i+1

0 I

]
(6)

with Li+1Di+1LT
i+1 � Si11 , Hi+1 � Si12 L−T

i+1D−1
i+1 and Si+1 � Si22 − Hi+1Di+1HT

i+1,
starting with S0 = A . A dropping strategy similar to that of [6] and [7] is de-
fined to reduce the memory occupation and increase the performance. The fill-in
degree is controlled at each level by two parameters:

ρi, i.e. the maximum allowable number of nonzeroes for each row of Li+1 in
excess to those of the 11 block of Si;

ρ̃i, i.e. the maximum allowable number of nonzeroes for each row of Si+1 in
excess to those of the 22 block of Si.

Such a strategy has the advantage of preserving the nice spectral properties of
MCP [2]. Moreover, in conjunction with the explicit-explicit approach described in
[1], it allows for a significant saving of CPU time also in the preconditioner compu-
tation. As outlined previously, the geomechanical problem of a faulted producing
reservoir can be recasted in a three-level block structure. The first level is relative
to linear elastic elements, hence the 11 block does not change during the simulation
with L1, D1 and H1 computed only once in a pre-processing stage. Furthermore the
calculation of the second level block matrices L2, D2 and H2 is performed at each
outer loop, so only S2 and L3 have to be computed at each inner iteration. This
provides an effective, low-memory demanding and relatively cheap preconditioner,
as it will be shown in the next section.

Numerical Results
A large size geomechanical problem addressing the deformation of a 3D real

faulted gas reservoir is considered. The model discretizes a porous volume with
an areal extent of 35x50 km and a depth of 10 km, with fixed bottom and lateral
boundaries and a traction-free top surface. Sixteen regional faults have been con-
sidered and modelled with the penalty IE developed in [1]. The Young modulus of
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Figure 1: Level structure of the system matrix.

the porous medium varies according to the constitutive law in [8] with the penalty
parameters set between 5 and 6 orders of magnitude larger. The number of un-
knowns belonging to each level is summarized in table 1, while the level structure
of the global matrix A is shown in figure 1.

Table 1: Number of unknowns of each level.
Level 1 Level 2 Level 3 Total

# of unknowns 435,207 163,581 20,014 618,802

As a benchmark of the new preconditioner (MIF) an incomplete Cholesky fac-
torization (ILLT) of A has been chosen. Its fill-in degree is controlled by a single
parameter ρILLT with the same meaning as ρi. The performances have been com-
pared in terms of CPU time and memory occupation. All the simulations have been
run on a scalar computer equipped with an Intel Core2 Duo processor at 2.13 GHz,
2GB of core memory and 2 MB of secondary cache. The convergence of PCG is
achieved when the real relative residual is smaller than 10−6. The memory occupa-
tion is evaluated by the preconditioner density μ , i.e. the ratio between the memory
needed to store the preconditioner and the system matrix A .

The best time performance of ILLT in the solution of a single system has been
obtained setting ρILLT = 70. Table 2 shows μILLT , the number of iterations and the
CPU time for the preconditioner calculation and the PCG iterations.

The best time performance of MIF in the solution of a single system has been
obtained setting ρ1 = 30, ρ̃1 = 40, ρ2 = 40, ρ̃2 = 10 and ρ3 = 120 (note that ρ̃3 is
unneccessary because the level 3 Schur complement is not computed). Table 2 re-
ports the number of iterations, the CPU time to compute each level and the time for
the PCG iterations. The memory occupation is evaluated by two parameters μ(1)

MIF

and μ(2)
MIF , denoting the memory to store the preconditioner and the total amount

needed for its computation, respectively. Both indices are helpful because, though



Multilevel Incomplete Factorizations for Non-Linear FE problems in Geomechanics 243

the main program requires at least μ(2)
MIF , in a real field application part of the mem-

ory equal to μ(2)
MIF −μ(1)

MIF may be reused later for other variables. In the solution of
a single system MIF outperforms ILLT by a factor 2 requiring slightly less mem-
ory. The memory saving can be further increased setting ρ1 = 10, ρ̃1 = 10, ρ2 = 30,

ρ̃2 = 10 and ρ3 = 100, giving μ(1)
MIF = 1.89 and μ(2)

MIF = 2.35, though with a slight
loss of performance.

Table 2: Comparison of ILLT and MIF memory requirement and best time perfor-
mance.

ILLT MIF
μ1

MIF 2.68
μILLT 3.92 μ2

MIF 3.29
# iter. 75 # iter. 53

Lev. 1 [s] 23.17
Lev. 2 [s] 11.29

Fact. [s] 108.69 Lev. 3 [s] 17.04
PCG [s] 36.43 PCG [s] 21.26
Total [s] 145.12 Total [s] 72.76

Note that the CPU time for level 1 and level 2 computations can be actually
spread among several non-linear iterations. Compare now the performance pro-
vided in a whole transient simulation. The production of the considered faulted
gas reservoir has been simulated with 150 outer steps, each one subdivided into
5 substeps for the IE non-linearity. Table 3 shows the total simulation time along
with the time spent for calculating the preconditioners, the time for the PCG iter-
ations and the overhead, i.e. the total time spent for the system assembly and the
elements update. The overhead is negligibly small and the PCG iteration time is
almost the same for the two approaches. The main advantage of MIF is that it is
a much cheaper preconditioner with the same iteration count as ILLT. In this real
field example, MIF compares very favourably with ILLT showing a total speed-up
of 3.5.

Table 3: ILLT and MIF time performance in a real field transient simulation.
ILLT MIF

Prec. Calc. 26h 57m 33s 4h 44m 10s
PCG Iter. 3h 45m 42s 3h 41m 06s
Overhead 22m 45s 21m 13s
Total 31h 06m 0s 8h 46m 29s

Conclusions
The non-linear problem arising from a FE-IE discretization of a faulted pro-

ducing gas reservoir shows typically ill-conditioned stiffness matrices whose effi-
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cient solution by PCG requires the use of special ad hoc preconditioners. Block
constraint preconditioners have shown to provide a good performance in problems
where linear FE are combined with non-linear IE, however they cannot be as ef-
ficient when dealing with non-linear FE due to the relatively high pre-processing
cost. In the present communication a three-level incomplete factorization has been
developed with almost the same spectral properties as constraint preconditioners
but cheaper to compute. In the solution of any single system MIF provides a bet-
ter time performance than the general algebraic preconditioner ILLT. The speed-up
is even larger in a complete transient simulation because its setup is made up for
in several non-linear iterations. Hence MIF appears to be a quite promising and
cost-effective tool for the iterative solution to non-linear multilevel problems.
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