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Summary
An efficient method for quick analysis and design of a class of metal forming

processes is proposed. The method is based on the upper bound theorem and deals
with continued deformation. Its main advantage is that numerical minimization
involved in the upper bound method and solving differential equations for updat-
ing the configuration of deforming material are uncoupled. It significantly reduces
computation time. Even though the accuracy of the method is unknown in ad-
vance, a procedure for verifying its accuracy a posteriori is proposed. The method
is applied to plane strain compression of a viscous layer between two rough, par-
allel plates. In particular, the shape of the free surface in course of deformation
is determined and is compared to the shape that might be obtained by means of a
typical sequential limit analysis. It is shown that the difference between the shapes
is negligible. A consequence of this finding is that the difference between the loads
calculated by means of these two methods is also negligible.

keywords: Plane strain compression, upper bound method, new approach,
viscoplasticity

Introduction
The classical upper bound theorem is used for analysis of metal forming pro-

cesses for a long time for example, Avitzur, (1980). The theorem is formulated
for instantaneous flow, i.e. the configuration of the considered body must be pre-
scribed. In order to get an approximate solution for continued deformation, a sub-
sequence of upper bound solutions should be found in which the shape of the body
is updated with the use of the velocity fields determined from the upper bound solu-
tions. The method is called the sequential limit analysis for example, Yang(1993);
Leu(2007); Leu(2008) among others. It is worthwhile to note here that the final so-
lution cannot be considered as an upper bound solution because updated shapes are
calculated by means of kinematically admissible velocity fields rather than with the
use of the actual velocity field which is of course unknown. A remarkable example
of the difference between an upper bound solution for continued deformation and
a slip-line solution (i.e. a solution which exactly satisfies all the field equations
and boundary conditions) is provided in Richmond(1969). It has been shown in
this paper that the upper bound solution predicts a lower bound than the slip-line
solution, except for the initial instant, indeed.
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The upper bound theorem is often used in conjunction with the finite ele-
ment method, for example Lin and Wang(1997); Park, Kim and Bae(1997); Bram-
ley(2001) among others. Analytical approaches have been adopted in Yeh and
Yang(1996), Alexandrov and Richmond(2000), Alexandrov(2000), Alexandrova(2001),
Wu and Yeh(2007) among others to increase the accuracy of kinematically admis-
sible velocity fields in the vicinity of certain surfaces.

The presented paper concerns with an efficient approach to facilitate quicker
analysis of continued deformation for a class of metal forming processes. The
approach is based on the upper bound theorem and can be considered as a simplified
version of the sequential limit analysis. A verification procedure proposed can be
used to compare the solutions found by means of the new method and the sequential
limit analysis. The approach is used to analyze compression of a viscous layer
between two parallel, rough plates.

General approach
The upper bound theorem is a convenient tool for finding approximate veloc-

ity fields in metal forming processes. In general, the velocity field found can be
used to determine the field of stress Azarkhin and Richmond(1991). On the other
hand, this method of finding approximate solutions is subject to severe restrictions
Hill(1963). Therefore, efficient applications of the method can be developed by
taking into account specific features of this or that process of deformation. This pa-
per deals with a special type of plane strain metal forming processes where there are
two planes of symmetry. A schematic diagram showing such a process is presented
in Fig.1 where v0 is the speed of tool. Because there are two axes of symmetry, it is
sufficient to consider the upper right-hand quadrant. The purpose of the approach
proposed is to deal with continued deformation in un-steady processes. A difficulty
here is that the upper bound theorem in the flow theory of plasticity is formulated
for an instantaneous state of the velocity vector and, consequently, for the instan-
taneous shape of the body which must be known in advance. The key point of the
present approach is that a significant portion of the external boundary is determined
by the axes of symmetry and tool geometry after any amount of deformation. The
only portion of the external boundary that should be found from the solution is AB
(Fig.1).

Obviously, the shape of AB is given at the initial instant. The main ad hoc
assumption of the approach proposed is that an approximate shape of AB after
any amount of deformation is found by means of the equation of incompressibility
without having a solution for the velocity. The functional following from the up-
per bound theorem can be minimized for this approximate shape. Of course, the
solution obtained in such a manner cannot be considered as a strict upper bound
solution. However, it is known that even crude approximations of the velocity field
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Figure 1: Schematic diagram showing a deformation process of the class consid-
ered.

can provide good upper bound solutions Hill, (1956). Therefore, it is first hypoth-
esized that the replacement of the shape of AB that might be found by means of a
series of upper bound solutions with the shape found by the aforementioned sim-
plified method does not introduce a significant error. Then, a procedure to compare
the accuracy of the approximation proposed to a standard upper bound approxima-
tion for continued deformation based on the kinematically admissible velocity field
of the same complexity is introduced to verify the approach developed.

Compression of a viscous layer between two parallel plates
Geometry of the process at the initial instant and a Cartesian coordinate system

x1y1 are illustrated in Fig.2a.
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Figure 2: Compression of a layer between two parallel plates – notation.

Because of symmetry, it is sufficient to find the solution in the domain x1 ≥ 0
and y1 ≥ 0. The initial thickness of the layer is 2H0 and its initial width is 2L0. The
thickness of the layer after any amount of deformation, 2H, is given and is related
to the speed of the plates, v0, by the equation

dH
dt

= −vo (1)
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where t is the time.

The constitutive equations of material consist of the yield condition in the form

σeq = Kζ n
eq (2)

and its associated flow rule. The equivalent stress, σeq, and the equivalent strain
rate, ξeq, involved in (2) are defined as

σeq =

√
3
2

τi jτi j, ξeq =

√
2
3

ξi jξi j (3)

Here and in (2), τ i j are the deviatoric components of the stress tensor, ξi j are
the components of the strain rate tensor, K is a rheological constant, and n is the
strain rate sensitivity exponent. The upper bound theorem for the material model
under consideration results in the following inequality Hill, (1956)
∫∫∫

v
W ∗dV −

∫∫
Σt

Tiv
∗
i dΣ−

∫∫
Σt+v

Tiv
∗
i dΣ ≥

∫∫∫
v
WdV −

∫∫
Σt

TividΣ−
∫∫

Σt+v

TividΣ (4)

where V is the volume of the body, ∑t and ∑t+v are the parts of its surface, Ti are the
tractions, vi is the real velocity field and v∗i is a kinematically admissible velocity
field. Also, the tractions are prescribed on the part of the surface ∑t and the mixed
boundary conditions are given on the part of the surface ∑t+v. The function W
involved in (4) is defined by the following equation dW/dξeq = σeq. Substituting
(2) into this equation and integrating gives

W =
Kξ n+1

eq

n+1
(5)

Because of symmetry, the velocity boundary conditions are

vy = 0 (6)

at y1 = 0 and
vx = 0 (7)

at x1 =0. Here and in what follows vx and vy are the velocity components in x1 and
y1 directions, respectively. The vertical component of the velocity vector is also
prescribed at the plate surface

vy = −vo (8)

at y1 = H. The surface AB is traction free and the shear stress in the Cartesian
coordinate system vanishes at y1 = 0 and x1 = 0. The last boundary condition is a
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friction law at y1 = H. In the present paper, the maximum friction law is assumed.
According to this law the regime of sliding may occur if and only if the friction
stress is equal to the maximum possible shear stress supported by the material
at a given magnitude of the equivalent strain rate. However, it has been demon-
strated in Alexandrov, Danilov and Chikanova(2000) and Alexandrov and Alexan-
drova(2000) that the regime of sliding never occurs in viscous and viscoplastic
materials under the maximum friction law. Therefore, the maximum friction law
can be formulated in the form

vx = 0 (9)

at y1 = H.

Under the aforementioned boundary conditions the functional (4) simplifies,
with the use of (5), to Alexandrov(2000)

P ≤ K
vo

∫∫∫
v
ξ ∗n+1

eq dV (10)

This form of the functional has been adopted in Alexandrov(2000) and Tzou
and Alexandrov(2006) to analyse the initial flow in compression of axisymmetric
specimens. In contrast to the general case of the upper bound theorem for vis-
cous materials, (10) gives an upper bound on the force P required to deform the
specimen.

A conventional procedure of using (10) for continued deformation is to find
parameters of a kinematically admissible velocity field chosen at the initial instant
by minimizing (10) and, then, to calculate the shape of AB (Fig.2a) in a small time
step prescribed. This subsequence of calculations can be repeated as many times
as necessary to arrive at the final shape. This procedure is rather time consuming.
According to the approach formulated in the previous section, the shape of AB after
any amount of deformation is assumed to be known. In particular, it is natural in
the problem under consideration to assume that AB is a straight line defined by the
equation x1 = L (Fig.2b). Then, it follows from the incompressibility equation that

HoLo = HL (11)

Moreover, the functional (10) can be rewritten in the form

P1 ≤ K
vo

H∫
o

L∫
o

ξ ∗n+1
eq dx1dy1 (12)

Where P1 is the force per unit length.
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It is convenient to introduce the following dimensionless quantities

h =
H
Ho

, y =
y1

Ho
, x =

x1

Lo
, ho =

Ho

Ho
, ζ ∗

eq =
Ho

vo
ξ ∗

eq, (13)

p =
P1

LoHo

(
K
vo

)−1 (
vo

Ho

)−(n+1)

Substituting (13) into (12) gives, with the use of (11),

P ≤
h∫

o

h−1∫
o

ζ ∗n+1
eq dxdy (14)

Even though the material model is rate-dependent, it follows from (14) that
the dimensionless force p is independent of the speed of loading. It significantly
reduces the volume of calculations in the case of a parametric study of the process.

One of the simplest kinematically admissible velocity fields satisfying the in-
compressibility equation and the boundary conditions (6) to (9) is

v∗y
vo

= −
[

α sin
(π

2
y
h

)
+(α −1) sin

(
3π
2

y
h

)]
, (15)

v∗x
vo

=
π

2hho

[
α cos

(π
2

y
h

)
+3(α −1) cos

(
3π
2

y
h

)]
x

where α is a free parameter. Using (15) the components of the strain rate tensor
can be calculated in the form

ξ ∗
xx = −ξ ∗

yy =
πvo

2hHo

[
α cos

(π
2

y
h

)
+3(α −1)cos

(
3π
2

y
h

)]
, (16)

ξ ∗
xy = − π2vo

8h2hoHo

[
α sin

(π
2

y
h

)
+9 (α −1)sin

(
3π
2

y
h

)]
x

The equivalent strain rate can be found by means of (3) and (16). Then, the
integrand of (14) is determined with the use of (13). Obviously, the right hand side
of (14) at a given value of h is a function of α . In order to obtain the best solution
based on the kinematically admissible velocity field chosen, it is necessary to find a
minimum of this function with respect to α . Thus the function α(h) can be found.
This function can be substituted into (15) to get the equations for determining the
shape of AB resulting from the kinematically admissible velocity field.
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Numerical results
Numerical minimization of the right hand side of (14) has shown that α is

almost independent of h. For example, α varies in the range 0.959 < α < 0.963
when h decreases from 1 to 1/2 for n = 0.3 and ho= 0.2. Moreover, it has been
found that an effect of n and h0 on the value of α is also very small. Therefore, it
is possible to take α as a constant in calculations of the shape of AB. In particular,
the relative difference defined as |α −αo|/α is less than 0.0075 in the ranges 0.1
≤ n ≤ 0.5 and 0.1 ≤ ho ≤ 0.2 for α = αo = 0.961. Therefore, α = αo is assumed
in calculations of the shape of AB. By definition, dy1/dt = vy and dx1/dt = vx. In
the case of the kinematically admissible velocity field these equations become:

dy1/dt = v∗y, dx1/dt = v∗x (17)

Substituting (15) into the first equation of this system and taking into account
(1), it is possible to arrive with the use of (13) at

dy
dh

=
[

αo sin
(π

2
y
h

)
+(αo −1) sin

(
3π
2

y
h

)]
(18)

The solution to this equation satisfying the initial condition y = Y at h= 1 can
be written in the form

Y = hu, lnh =
u∫

Y

dχ

αosin
(π

2 χ
)
+(αo −1) sin

(
3π
2 χ

)−χ
(19)

Thus Y is a Lagrangian coordinate. In particular, it follows from (19) that u =Y
at h = 1. Substituting (15) into the second equation of the system (17) and taking
into account (1), it is possible to arrive with the use of (13) at

dx
dh

= − π
2h

[
αocos

(π
2

y
h

)
+3 (αo−1) cos

(
3π
2

y
h

)]
x (20)

It is convenient to rewrite this equation in terms of u. In particular, y/h and
dh/h can be excluded by means of (19) to give

dx
x

= −π
2

[
αocos

(π
2 u

)
+3 (αo−1) cos

(
3π
2 u

)]
[
αosin

(π
2 u

)
+3 (αo −1) sin

(
3π
2 u

)−u
] du (21)

Since u= Y at h= 1 and x = 1 on line AB at the initial instant, the initial condition
to equation (21) is x = 1 at u= Y . Then, the solution to equation (21) can be written
in the form:

lnx = −π
2

u∫
Y

[
αocos

(π
2 χ

)
+3 (αo −1) cos

(
3π
2 χ

)]
[
αosin

(π
2 χ

)
+3 (αo −1) sin

(
3π
2 χ

)−χ
] dχ (22)
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The second of equations (19) determines the value of u corresponding to any
stage of the process (any prescribed value of h in the range 0 < h ≤ 1). This value
depends on Y . Then, the first of equations (19) and equation (22) give the shape of
AB at this stage of the process in parametric form with Y being a parameter whose
range is 0 < Y ≤ 1. The point at the intersection of surface AB and the axis of
symmetry Y = 0 (or y = 0) should be treated separately. In particular, equation (20)
reduces to

dx
dh

= − π
2h

(4αo −3)x (23)

Using the initial condition x = 1 at h = 1 the solution to equation (23) can be
written in the form

lnx = −π
2

(4αo −3) lnh (24)

This solution determines the position of the point of AB at the axis of symmetry.
The variation of the shape of the free surface with h is illustrated in Fig. 3 for n =
1 and ho = 0.2.
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Figure 3: The variation of the shape of the free surface with the current thickness
of the layer.

Thus it is necessary to distinguish several definitions for AB illustrated in Fig.4.

At the initial instant, AB is a straight line whose position is determined by the
equation x= 1 (dashed lines in Fig. 3 and Fig. 4). When the simplified approach
proposed in the present paper is adopted, AB is a straight line after any amount of
deformation and its position is determined by the equations (11) and (13) in the
form x = 1/h(solid straight line in Fig. 4). Curve 1 in Fig. 4 corresponds to the
shape of AB calculated by means of minimization in (14) and subsequent solving
equations (15). The evolution of this shape for the problem under consideration
is shown in Fig. 3. Finally, curve 2 in Fig. 4 corresponds to the shape of AB
that might be obtained by using sequential limit analysis. This method has been
described, for example, in Yang(1993). The procedure adopted to get curve 1 is
much simpler than the one that should be used to find curve 2. However, the latter
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Figure 4: Illustration of various definitions for line AB (Fig.2) after an arbitrary
amount of deformation.

is in general more accurate. Therefore, the question is how close curve 1 is to curve
2. To answer this question a verification procedure described in the next section is
proposed.

Verification of the approach
The velocity field (15) is kinematically admissible independently of the shape

of AB (Fig. 1 and Fig. 4). Therefore, this field and the shapes found (Fig. 3)
can be substituted into (10) and, after minimization, new values of α and p can be
determined. In particular, equation (14) should be replaced with

p ≤
h∫

o

xAB(y)∫
o

ζ ∗n+1
eq dxdy (25)

Here the equation x = xAB (y) determines the shape of AB at any stage of de-
formation (given value of h) and is assumed to be known from the calculations
completed in the previous section. In general, minimization in (25) can lead to
values of α different from those obtained in the previous section. The difference
between values of α found from (14) and (25) is a measure of the accuracy of de-
termining the shape of AB with the use of the approach proposed as compared to
sequential limit analysis. Numerical minimization in (25) has been carried out at ho

= 0.2. The value of h has varied from 1 to 1/2. The range of α- values for several
values of n and the arithmetic mean of these α- values are shown in Table 1.

It is seen from this table that the value of α is almost independent of h and n.
Moreover, the difference between any α- value in the table and αo is very small.
Therefore, the effect of the simplified assumptions accepted in the approach pro-
posed on the shape of AB is negligible. In other words, a standard approach to
deal with continued deformation by means of the upper bound method for exam-
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ple, Yang(1993); Leu(2007); Leu(2008) among others would give the practically
same variation of the shape of AB. Of course, to get such a result, the kinematically
admissible velocity field should be taken the same in each of the approaches.
Table 1: Variation of α during the process for different values of n and at ho = 0.2.

Range of α Arithmetic mean
n= 0.1 0.949 < α < 0.953 0.95
n= 0.2 0.948 < α < 0.957 0.951
n= 0.3 0.948 < α < 0.96 0.952
n= 0.4 0.948 < α < 0.962 0.953
n= 0.5 0.948 < α < 0.965 0.954

Nevertheless, the value of p significantly depends on the shape of AB. In par-
ticular, the variation of p– values with h is depicted in Fig. 5 for several values of
n and ho = 0.2.
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Figure 5: Variation of the dimensionless pressure with the current thickness of the
layer at different values of n (curves 1 correspond to n = 0.1, curves 2 to n = 0.2,
curves 3 to n = 0.3, curves 4 to n = 0.4, curves 5 to n = 0.5).

The solid curves correspond to p– values found by means of (25) and the
dashed curves to p– values found by means of (14). It is seen from this figure that
equation (25) leads to much lower values of p than equation (14) as h decreases.
However, it is not important for the approach proposed. For, once the value of α
and the function x = xAB(y) at a given value of h have been found by means of the
simplified approach, the value of p is determined from the right hand side of (25)
by simple integration without any minimization.

Conclusions
A new simplified approach based on the upper bound theorem has been pro-

posed for quick analysis and design of continued deformation of a class of metal
forming processes. The approach is restricted to configurations with one unknown
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free surface. The shape of this surface after any amount of deformation is first as-
sumed by means of the incompressibility equation. Based on this variation of the
surface shape, free parameters of the kinematically admissible velocity field chosen
are found by means of the upper bound theorem. Using the kinematically admis-
sible velocity field the corresponding shape of the unknown surface in continued
deformation can be found by solving two ordinary differential equations (for plane
strain or axisymmetric processes). Finally, the load required to deform the speci-
men can be calculated from the upper bound theorem where integration should be
performed over the configuration found on the previous step. Even though, no firm
recommendation can be made on the applicability of the approach to each specific
problem, the verification procedure has been proposed. Using this procedure it is
possible to reveal an effect of the ad hoc assumptions on the final result. In the
case when the approach is applicable, its accuracy should be the practically same
as the accuracy of standard upper bound solutions for continued deformation based
on the same class of kinematically admissible velocity fields. In particular, finite
element versions of the upper bound theorem for instantaneous flow, for example
Lin and Wang(1997); Park, Kim and Bae(1997); Bramley(2001) among others, can
be combined with the approach proposed.

Even though the method has been used in conjunction with a history-independent
model, it is reason able to hypothesize that history-dependent models can be in-
cluded in the formulation in the same manner as the change in configuration has
been taken into account. Of course, this assumption should be verified separately.
It is also expected that the method can be extended to a wider class of processes,
such as upsetting of hollow cylinders. In this case the minimization of a functional
for instantaneous flow, such as (14), should be coupled with solving the differential
equations for the change of the shape of free surfaces, such as (15). However, the
resulting system is still much simpler than in the case of sequential limit analysis.
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