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Summary
Non-Newtonian lid-driven cavity flow is studied in a wide range of Reynolds

numbers. The algorithm of mesh free characteristic based split has been extended
for solving non-Newtonian flow problems in meshfree context. It is assumed that
the non-Newtonian fluid properties obey Carreau-Yasuda rheological model. The
results obtained from mesh free characteristic based split algorithm have been com-
pared to the results of other meshfree methods. Results have been obtained for the
velocity profiles at Reynolds numbers as high as 1000 for a Carreau-Yasuda fluid.

Introduction
The lid-driven cavity flow of a Newtonian fluid was initially studied by Burggraf

[1] in 1966. After that, many scientists became interested to solve this problem
because lid-driven cavity flow contains many fluid flow phenomena such as inter-
actions of complex vortexes [2]. In earlier papers the finite difference method was
used for numerical solution of this problem [3]. The presence of corner singular-
ities in this flow is potentially critical for high-order methods. The flexibility of
mesh free method in using various and higher order shape functions is a good way
to deal with complex problems such as lid-driven cavity flow. Zhang et al. studied
lid-driven cavity flow of Newtonian fluid by mesh free method [4]. They used a
least-squares mesh free method based on the first-order velocity–pressure–vorticity
formulation for two-dimensional incompressible Navier–Stokes problem. Liu et al.
studied lid-driven cavity flow at low Reynolds numbers using FPM and SPH mesh-
free methods. They concluded that the accuracy of SPH in simulating this fluid flow
problem is obviously lower than that of FPM [5]. Shamekhi and Sadeghy studied
lid-driven cavity flow of a Newtonian fluid by meshfree method. They solved this
flow problem at different Reynolds numbers up to 10000 [6].

In this work mesh free method is used for solving two dimensional non-Newtonian
lid-driven cavity flow in a wide range of Reynolds numbers. The algorithm of mesh
free characteristic based split has been employed for this purpose [7]. This algo-
rithm is the extension of general characteristic based split method which was ini-
tially introduced by Zienkiewicz and Codina in finite element framework [8]. It is
assumed that the non-Newtonian fluid properties obey Carreau-Yasuda rheological
model. Results have been obtained for the velocity profiles at Reynolds numbers
as high as 1000.
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Governing Equations
Conservation laws for any fluid, whether Newtonian or non-Newtonian, com-

pressible or incompressible, that is, in their most general form can be written as
[8]:
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where Ui is the mass flow rate, ui is the velocity components, ρ , p, gi, c and τi j

are the density, the pressure, the body forces, the speed of sound and the stress
tensor, respectively. For purely-viscous non-Newtonian fluids, the stress tensor can
be written as [8]:
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where δi j is the Kroenecker delta. In Eq. 3, η is the absolute viscosity of the
fluid which is assumed to be shear-dependent. For a fluid obeying the Carreau-
Yasuda model, the absolute viscosity can be related to the second invariant of the
deformation-rate tensor as [9]:
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where λ , a, m are model parameters with η0 and η∞ being the viscosity at zero
and infinite shear rates, respectively.

In this work, the algorithm of mesh free characteristic based split has been em-
ployed for solving the problem [7]. Moving least squares (MLS) shape functions
has been used for construction of shape functions. The MLS approximation has
two major features that make it popular: (1) the approximated field function is con-
tinuous and smooth in the entire problem domain; and (2) it is capable of producing
an approximation with the desired order of consistency [10].

Results and Discussion
The technique described above has been used to simulate steady lid-driven

cavity flow of a purely-viscous non-Newtonian fluid obeying the Carreau-Yasuda
model. The cavity of interest has been shown schematically in Fig. 1 and is seen
to have a dimension of [1×1]. Figure 2 presents a comparison between u−velocity
profiles along the line x = 0.5 obtained using different meshfree methods including
CBSM (present method), SPH, FPM and the finite volume method at Re ∼ 0 for
Newtonian fluids. The Reynolds number is defined as:

Re = ρUlidH
η0

(5)
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where Ulid is the lid velocity, H is the cavity height, and η0 is the viscosity at zero
shear rate.

Ulid 

 
Figure 1: Two-dimensional lid-driven cavity flow in a square 2D cavity [1×1].

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

u/Ulid

y/
H

CBSM (1600 Nodes)

SPH (1600 Particles) [5]

FPM (1600 Points) [5]

FVM (66049 Nodes) [2]

 

Figure 2: A comparison between u−velocity profiles along the line x = 0.5 obtained
using CBSM, SPH, FPM and the finite volume method at Re ∼ 0 for Newtonian
fluids.

Figs. 3 and 4 show the effect of the parameter λ on the u- and v-velocity
components along the mid-planes x = 0.5 and y = 0.5, respectively. To obtain these
results, the following parameters have been used in the Carreau-Yasuda model:
m = 0.5; a = 2.0; κ = η0/η∞ = 5.0.

Figure 5 and 6 show the effect of the Reynolds number on the velocity profiles
along the line x = 0.5 and y = 0.5, respectively. These figures suggest that by an
increase in the Reynolds number, the flow exhibits more and more the structure of
a boundary layer near the walls.

Conclusion
The CBSM (characteristic based split meshfree) method has been used for



70 Copyright © 2009 ICCES ICCES, vol.11, no.3, pp.67-72

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

u/umax

y/
H

Lambda = 0.01

Lambda = 0.1

Lambda = 1.0

Lambda = 10.0

 

Figure 3: The effect of the parameter λ in the Carreau-Yasuda model on the
u−velocity component along the line x = 0.5 obtained using CBSM method at
Re = 400.
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Figure 4: The effect of the parameter λ in the Carreau-Yasuda model on the
v−velocity component along the line y = 0.5 obtained using CBSM method at
Re = 400.

numerical simulation of the lid-driven cavity flow for both Newtonian and non-
Newtonian fluids. For Newtonian fluids, results obtained from our method show
good agreement with benchmark results published in the literature. They are also
consistent with recent results obtained using other meshfree methods such as FPM
and SPH with the advantage that the new method has better accuracy with the
same number of nodes or particles. Results obtained for the Carreau-Yasuda model
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Figure 5: The effect of the Reynolds number on the u-velocity component along x
= 0.5 computed using CBSM method.
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Figure 6: The effect of the Reynolds number on the v-velocity component along y
= 0.5 computed with CBSM method.

reveals the strong effect of the shear-thinning behavior of the fluid on its flow kine-
matics within the cavity.

References

1. Burggraf OR. (1966), Analytical and numerical studies of the structure of
steady separated flows, Journal of Fluid Mechanics, Vol. 24(1), pp. 113
-151.

2. Sahin M, Owens RG. (2003), A novel fully-implicit finite volume method



72 Copyright © 2009 ICCES ICCES, vol.11, no.3, pp.67-72

applied to the lid-driven cavity problem. Part I. High Reynolds number flow
calculations, International Journal for Numerical Methods in Fluids, Vol.
42, pp. 57-77.

3. Ghia U, Ghia KN, Shin CT. (1982), High-Re solutions for incompressible
flow using the Navier Stokes equations and a multigrid method, Journal of
Computational Physics, Vol. 48(3), pp. 387-411.

4. Zhang, K. X. et al. (2004), Least-squares meshfree method for incompress-
ible Navier–Stokes problems, Int. Journal for Numerical Methods in Fluids,
Vol. 46, pp. 266-88.

5. Liu, M. B. and W. P. Xie and G. R. Liu (2005), Modeling incompressible
flows using a finite particle method, Applied Mathematical Modeling, Vol.
29, pp. 1252–1270.

6. Shamekhi, A. and Sadeghy, K. (2007), Lid-driven Cavity Simulation by
Mesh free Method, Int. J. Comp. Method, Vol. 4, pp. 397-415.

7. Shamekhi, A. and Sadeghy, K. (2007), On the Use of Characteristic Based
Split Mesh Free Method for Solving Flow Problems, International Journal
for Numerical Methods in Fluids, Vol. 56, pp. 1885-1907.

8. Zienkiewicz, O.C. and Taylor, R. L. (2000), The Finite Element Method, 5th

edition, Vol. 3, Butterworth-Heinemann.

9. Bird B.R., R.C. Armstrong, and O. Hassager, (1987), Dynamics of polymeric
liquids, John Wiley & Sons Inc., New York.

10. Liu, G. R. (2002). Mesh Free Methods, 1st edition. CRS Press LLC.


