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Analysis of a crack problem via RKPM and GRKPM and
a note on particle volume
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Summary
Meshless methods using kernel approximation like reproducing kernel particle

method (RKPM) and gradient RKPM (GRKPM) generally use a set of particles
to discretize the subjected domain. One of the major steps in discretization proce-
dure is determination of associated volumes particles. In a non-uniform or irregular
configuration of particles, determination of these volumes comprises some difficul-
ties. This paper presents a straightforward numerical method for determination of
related volumes and conducts a survey on influence of different assumption about
computing the volume for each particle. Stress intensity factor (SIF) as a major
representing parameter in fracture of solids is calculated by employing meshless
methods for an edge-cracked plate under first mode loading condition which is one
of the benchmark problems in fracture mechanics. The obtained results are com-
pared using an analysis in terms of dilation parameter.

keywords: Reproducing kernel particle method; Gradient reproducing kernel
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Introduction
For a long period, finite element method has been considered as the major and

dominant method in the field of computational mechanics. Despite being helpful
in different kinds of problems, this method has its own drawbacks which limit or
complicate its application to certain problems. Its mesh relied attribute makes the
application of this method in such cases as large deformations, complex geometry,
singular fields or discontinuities, expensive or inefficient. During the past couple
of decades, elimination or reduction of these costs and obstacles have become the
main motivation for paying increasingly more attention to meshless methods which
only consider the geometry of the domain of problems and a set of particles for their
discretization.

One such a meshless technique is the so-called "reproducing kernel particle
method" (RKPM) introduced by Liu, Jun, and Zhang (1995). This method has
evolved by adding correction coefficients to the reproducing kernel function in-
volved in an early meshless approach named smooth particle hydrodynamics (SPH)
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[Lucy (1977)]. Due to its ease and clarity, this method has been used widespread as
an effective numerical method. Shodja and Hashemian when dealt with beam-
column problems found it inconvenient to enforce the derivative type essential
boundary conditions via conventional RKPM. To circumvent this deficiency, they
included the gradient of the field variable in the reproducing equation; the new
equation along with the generalization of the corrected collocation method has led
to extensive reformulation of RKPM. They called the new approach the gradient
RKPM (GRKPM), and demonstrated its efficiency through examination of sev-
eral beam-columns and plate problems [Shodja and Hashemian(2007); Hashemian
and Shodja (2008a)] and nonlinear evolutionary partial differential equations with
moving shock-like fronts [Hashemian and Shodja (2008b); Shodja and Hashemian
(2008)].

In the literature, several other meshless methods have been proposed; for exam-
ple, diffuse element method by Nayroles, Touzot, and Villon (1992), element free
Galerkin method (EFGM) by Belytschko, Lu, and Gu (1994), hp-clouds method by
Durate and Oden (1996), partition of unity method by Babuška and Melenk (1997),
local boundary integral equation method by Zhu, Zhang, and Atluri (1998a, b),
meshless local Petrov-Galerkin method (MLPG) by Atluri and Zhu (1998). Var-
ious MLPG methods are discussed comprehensively by Atluri and Shen (2002a,
b).

One of the tasks associated with the application of RKPM and GRKPM is the
determination of the volume associated with each particle. Different definitions of
the volume (area for two dimensional problems) as a characteristic of each particle
are available; these definitions will be discussed in section 2.2, and a computational
methodology will be proposed.

In section 4, the stress intensity factor (SIF) as the main explanatory parameter
of the stress field near a crack tip is calculated for an edge-cracked plate under the
first mode loading condition via RKPM and GRKPM. Also a brief survey has been
conducted on impact of different assumptions about determination of associated
area of particles.

Formulations for 2D domains
The approximating functions

Consider a two-dimensional domain Ω. In the conventional RKPM a given
function u(x) can be expressed by the reproducing formula

uR(x) =
∫

Ω
1

a(y)C
[0](x;x−y)ϕ( ‖x−y‖

a(y) )u(y)dΩ, (1)

where uR(x) is the reproduced function, ϕ is the kernel function, ‖.‖ is the Euclid-
ian norm, a is the dilation parameter, and C[0] is the correction function associated
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with u [Liu, Jun, and Zhang (1995)]. In GRKPM, uR(x) in terms of the function
and its first derivatives is defined as

uR(x) =
2

∑
k=0

∫
Ω

1
a(y)C

[k](x;x−y)ϕ( ‖x−y‖
a(y) )u,k(y)dΩ, (2)

in which u,0 = u, u,k(y) = ∂u(y)/∂yk; k = 1,2, and C[k] is the correction function
associated with u,k [Shodja and Hashemian (2008)].

For numerical computations, the integrals in Eqs. (1) and (2) should be dis-
cretized. Employing the trapezoidal rule, Eqs. (1) and (2) take the following form,
respectively

uR(x) =
NP

∑
J=1

ψ [0]
J (x)d[0]

J , (3)

uR(x) =
NP

∑
J=1

2

∑
k=0

ψ [k]
J (x)d[k]

J , (4)

where NP is the number of particles,

d[0]
J = u(y)|y=yJ

,

d[k]
J = ∂u(y)/∂yk |y=yJ ; k = 1,2,

(5)

and ψ [k]
J (x) is the kth shape function associated with the Jth particle

ψ [k]
J (x) = C[k](x;x−y)ϕa(x−yJ)ΔSJ; k = 0,1,2, (6)

in which ΔSJ is the area pertinent to the Jth particle. From Eq. (4), it is observed
that there are 3 types of shape function ψ [k]

J (x), k = 0,1,2 in 2D GRKPM. Whereas,

in RKPM only one type of shape function ψ [0]
J (x) is encountered, Eq. (3).

In a random distribution of particles, the computation of ΔSJ is problematic.
Hence for simplicity ΔSJ = 1 has been mainly incorporated in the literature; for
example, see [Jin, Li, and Aluru (2001)] and [Chen, Han, You, and Meng (2003)].
It is noteworthy to mention that for the case when ΔSJ = 1 is used the reproducing
kernel approximation with a non-shifted basis would be identical with the EFGM
[Aluru and Li (2001)]. In the following section, a straightforward algorithm for
calculation of ΔSJ is proposed.

Computation of the area associated with each particle
Consider a random distribution of particles as shown in Fig. 1. It is desired

to compute the area belonging to the Ith particle, ΔSI. In the conventional method,
which utilizes the concept of Voronoi diagram, the particles are sorted in ascending
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order according to their distances (Euclidean norm) from particle I, that is 1, 2, 3,
. . . . At first, particle 1 (the nearest particle) is chosen and the perpendicular bisector
to the line I1 is drawn. This procedure is repeated for the other particles in ascend-
ing order (2, 3, . . . ) until the perpendicular bisector lines create a closed polygon
around particle I, Fig. 1. The area of this polygon is ΔSI, [Sukumar, Moran, and
Belytschko (1998)]. To perform this trend for each particle, an efficient algorithm
which is suitable for a computer program is necessary. One such algorithm is given
in the following.

Figure 1: The conventional method for determining the associated area with parti-
cle I.

The region of the problem is discretized with a very fine grid as displayed in
Fig. 2. It is assumed that every cell in the grid represents a point in the region.
As a direct result of the conventional approach, every point within the area associ-
ated with particle I are closer to this particle than any other particles in the region.
Hence, each cell should be assigned to the area of the nearest particle, see Fig. 2.
An algorithm for the proposed methodology can be summarized as below:

Loop over the constructed cells

Loop over the particles
Calculate the distances between the particles and the considered cell

Determine the nearest particle to the considered cell
End particle loop

Assign the subjected cell to the area of its nearest particle

End cell loop



Analysis of a crack problem via RKPM and GRKPM 103

Figure 2: The proposed grid-based approach with determining the associated area
for particle I.

Crack problem
Consider an edge-cracked plate under uniform tension as shown in Fig. 3. The

width and the length of the plate are w = 1 units and L = 2 units, respectively.
Assume crack length a = 0.4 units, far-field tension σ22 = 1 units and small defor-
mations. A plane stress condition is supposed with E = 207,000 units and ν = 0.3.
The mid point of the left edge coincides with the origin of the Cartesian coordinate
system. This is a benchmark example which has been considered by many authors;
for example, see [Belytschko, Lu, and Gu (1994)] and [Rao and Rahman (2000)].
In the absence of body forces, the equations of equilibrium for this plate are

σi j = 0, i, j = 1,2, (7)

in which σi j is the component of the stress field. Due to symmetry, only half of the
plate is modeled. Hence, the boundary conditions consist of

on x2 = 1 for x1 >= 0.4 : σ12 = 0 and σ22 = 1, (8)

on x2 = 0 : u2 = 0, (9)

where u2 is the displacement in x2- direction. Moreover for the static stability a
constraint in x1 direction, like

u1 (1,0) = 0, (10)

should be enforced, where u1 is the horizontal component of the displacement.
Note that Eq. (8) is a natural boundary condition and Eqs. (9) and (10) represent
the essential boundary conditions.
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Figure 3: Edge-Cracked Plate under mode-I loading.

The weak form of the Eq. (7) with the mentioned boundary conditions takes
on the form ∫ 1

0

∫ 1

0
σi jδui, jdx1dx2 =

∫ 1

0
δu2dx1|x2=1, (11)

where δ denotes the variation operator. The stress components are related to the
displacement gradients by

⎡
⎣σ11

σ22

σ12

⎤
⎦ = D

⎡
⎣ u1,1

u2,2

u1,2 +u2,1

⎤
⎦ , D =

E
1−ν2

⎡
⎣1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦ . (12)

The matrix form of Eq. (11) is obtained by spatial discretization of the func-
tions u and δu. To this end, 121 particles are distributed uniformly in the region.
For refinement, 15 additional particles are positioned around the crack-tip in a fash-
ion shown in Fig. 4. Eqs. (3) and (4) are employed for discretizations in RKPM
and GRKPM, respectively. The essential boundary conditions, Eqs. (9) and (10),
are applied by utilizing the corrected collocation method [Wagner and Liu (2000)]
for RKPM and the modified corrected collocation method [Hashemian and Shodja
(2008a)] for GRKPM. The numerical integrations in Eq. (11) are performed by
applying the standard Gaussian quadrature rule. To this end, a background mesh is
constructed by drawing imaginary grid lines through the 121 uniformly distributed
particles. For each hypothetic cell a 6× 6 quadrature is considered. The SIF is
computed by calculating the J integral along the path displayed in Fig. 4 [Portela,
Aliabadi, and Rooke (1992)].
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Figure 4: Meshless model for the edge-cracked plate; see Fig. 3.

Numerical results
In the numerical calculations, different dilation parameters are considered. The

SIF has been computed using RKPM and GRKPM and plotted versus the dilation
parameter. The effect of the particle area is investigated through comparison of
the results obtained using ΔSI = 1 and the variable ΔSI evaluated by the proposed
methodology.

The accuracy of the results is verified by the reference solution KI = 2.358
[Tada, Paris, and Irwin (1973)]. It is observed that the results of GRKPM are more
accurate than RKPM’s outcomes. Moreover, GRKPM’s solutions for 0.165 ≤ a ≤
0.18 give rise to the reference solution in excellent estimation. It is remarkable that
the assumption of ΔSI = 1 degrades the accuracy of both RKPM and GRKPM; this
adverse effect is more severe for GRKPM than for RKPM.

Conclusions
The mode-I SIF of an edge-cracked plate was analyzed by GRKPM for the

first time and the result was compared with that obtained via conventional RKPM.
Consideration of the proposed approach for computing the particle area (ΔSI) as
a characteristic of each particle, instead of using ΔSI = 1, led to some interesting
observations. An important implication was that, both RKPM and GRKPM yielded
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Figure 5: The stress intensity factor resulted from different approximations.

more accurate results. The other attractive outcome was that, the sensitivity of both
RKPM and GRKPM to dilation parameter was reduced significantly.
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