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A numerical study of centre crack under
thermo-mechanical load using EFGM
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Summary
In this work, element free Galerkin method (EFGM) has been used to obtain

the solution of centre crack problem under thermo-mechanical loads as it provides
a versatile technique to model static as well as moving crack problems without
any requirement of re-meshing. Diffraction criterion has been used to model crack
geometry. The effect of crack orientation of centre crack has been studied under
both mechanical and equivalent thermal loading under plane stress conditions. The
values of mode-I and mode-II stress intensity factors have been evaluated by the
interaction integral approach.

keywords: EFGM, LEFM, centre crack, thermal and mechanical loading,
diffraction criteria.

Introduction
Selecting materials and determining the shape and size of different parts of a

structure or machine constitute engineering design. In-spite of all scientific de-
velopments and technological advancements, engineering cannot claim perfection.
Imperfections inherent in materials undermine engineering design, often results in
catastrophic consequences. Cracks exist in almost all engineering components at
macro/micro level. Thermo-mechanical loading may result in either the propaga-
tion of pre-existing cracks or may initiate new cracks in the structures. This may
finally lead to catastrophic failure of the components resulting in loss of property
and lives.

A wide range engineering applications are governed by thermo-mechanical
loading. Examples of such applications are piston of an engine, where tempera-
ture variation takes place along with mechanical loading, connecting rods of an
engine subjected to mechanical as well as thermal loads, damage of solder con-
nections in microelectronic components due to cyclic thermal loading, thermal bar-
rier coatings applied over aero-engine parts, walls of nuclear reactor which are
subjected extremely high pressure and temperatures, non-uniform heating of bi-
material coatings, ceramic linings in furnaces and vessels used in steel industry
where both thermal loading and thermal shock phenomenon takes place, and high
temperature pressure vessels and boilers used in industries, etc. Therefore, it has
been noticed that the failure of engineering components is not only due to mechan-
ical loads but also due to thermal stresses/thermal fatigue (Lansinger et al., 2007).
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Thus, the study of crack under thermo-mechanical (Dai et al., 2005) loading is
of great importance as it helps us to understand some basic phenomenon such as:

• The effect of micro and macro cracks over the strength of material;
• Direction of crack propagation and crack branching;
• Estimating critical crack length and the safe life period of component;

To model the presence of crack, a number of numerical tools such as finite element
method (FEM), boundary element method (BEM) and finite difference method
(FDM) are available. Out of these numerical methods, FEM has been found to
be the most successful and powerful numerical method for the simulation of frac-
ture mechanics problems. However, FEM is either not suitable or often experiences
difficulties in solving a class of problems which require re-meshing and adaptive
simulation. The problems which fall in this category are large deformation with ele-
ment distortion, moving crack simulation, crack growth with arbitrary and complex
path, dynamic impact problems, simulation of continuous casting, and breakage of
material into large number of fragments, etc. Moreover, the accuracy of the solution
depends upon the quality of the mesh in FEM. To handle these difficulties, a new
class of methods, known as mesh-free methods (Belytschko and Lu, 1994) has been
developed over past ten years. These methods do not require any kind of mesh for
the discretization of the problem domain, and only need a set of scattered nodes for
construction of an approximation function (Belytschko and Loehnert, 2007). Apart
from this, the static crack and crack growth problems have not been analyzed under
thermo-mechanical load. Therefore, in the present analysis, element free Galerkin
method (Belytschko and Fleming, 1999) has been opted to analyze linear elastic
fracture mechanics problems under thermo-mechanical loads. The diffraction cri-
terion (Organ et al.,1996) has been used to model centre crack geometry

Review of EFGM
In EFGM, the field variable u is approximated by moving least square approx-

imation (MLS) function uh(x) (Belytschko and Lu, 1994), which is given by

uh(x) =
m

∑
j=1

p j(x)a j(x)≡ pT (x)a(x) (1)

where, p(x) is a vector of basis functions, a(x) are unknown coefficients, and m is
the number of terms in the basis.

The unknown coefficients a(x) are obtained by minimizing a weighted least
square sum of the difference between local approximation, uh(x) and field function
nodal parameters uI . The weighted least square sum L(x) can be written in the
following quadratic form

L(x) =
n

∑
I=1

w(x−xI)[pT (x)a(x)−uI ]2 (2)
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where, uI is the nodal parameter associated with node I at xI. uI are not the nodal
values of uh(x−xI) because uh(x) is used as an approximant and not an interpolant.
w(x− xI) is the weight function having compact support associated with node I,
and n is the number of nodes with domain of influence containing the point x,
w(x−xI) �= 0. By setting ∂L/∂a=0, a following set of linear equation is obtained
as:

A(x)a(x) = B(x)u (3)

By substituting Eq. (3) in Eq. (1), the approximation function is obtained as:

uh(x) =
n

∑
I=1

ΦI(x)uI (4)

Problem Formulation
Consider two-dimensional (2D) problem with small displacements on the do-

main Ω bounded by Γ. The governing equilibrium equation is given as:

∇.σσσ +b = 0 in (5)

with the following essential and natural boundary conditions:

u = ū on Γu (6)

σσσ .n̄ = t̄ on Γt (7)

where, σσσ is the stress tensor which is defined as σσσ = D(ε − εT ), D is the linear
elastic material property matrix, ε is the strain vector, b is the body force vector, u
is the displacement vector, t̄ is the traction force and n̄ is the unit normal, εT is the
thermal strain vector.

For the case of plane stress in an isotropic material with coefficient of thermal
expansion β subjected to a temperature change ΔT , the thermal strain matrix is
given by

εT =

⎧⎨
⎩

β ΔT
β ΔT

0

⎫⎬
⎭ (8)

Enforcing essential boundary conditions (Krongauz and Belytschko, 1996) using
Lagrange multiplier approach (Nguyen et al., 2008) and applying variational prin-
ciple, the following discrete equations are obtained using Eq. (4):

[
K G

GT 0

]{
u
λ

}
=

{
f
q

}
(9)
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Where,

KIJ =
∫
Ω

BT
I DBIdΩ,

fI = ( fI)mech +( fI)thermal,

( fI)mech =
∫
Γt

t̄ΦIdΓt ,

( fI)thermal =
∫
Ω

BT
I DεT ΦIdΩ,

GIK = −
∫
Γu

ΦINKdΓu, qK = −
∫
Γu

NKūdΓu,

BI =

⎡
⎣ΦI,x 0

0 ΦI,y

ΦI,y ΦI,x

⎤
⎦ , NK =

[
NK 0
0 NK

]
, D =

E
1−ν2

⎡
⎣1 ν 0

ν 1 0
0 0 (1−ν)/2

⎤
⎦

where, E is modulus of elasticity and ν is the Poisson’s ratio.

Results and Discussions
The dimensions of the cracked body used in the present study are taken as H

= 200 mm, W = 100 mm and 2a = 40 mm as shown in Fig. 1. The material
selected is ASTM 36 steel (Beer et al., 2002) with modulus of elasticity (E) =
200 GPa, Poisson’s ratio (ν) = 0.3, far field stress (σo) = 100 MPa, coefficient of
thermal expansion (β ) =11.7x10−6/oC, Temperature change ΔT= - 43.7 oC. The
applied temperature change is such that it produces an equivalent mechanical stress
Eβ ΔT= 200x103 x11.7x10−6x 43.7 = 99.9 MPa∼=100 MPa.

Centre crack problems have been solved to study the effect of crack inclination
on stress intensity factors. The centre of crack has been taken at a distance of H/2
i.e. 100 mm from the bottom and W/2 from the edge. To validate the EFGM
results, centre crack problem has been solved under mode-I mechanical for α=0◦.

In case of mechanical loading, external far field stress has been applied at two
opposite edges of the crack geometry as shown in Fig. 1a, whereas in the case of
thermal loading, stresses have been developed as a result of temperature change as
shown in Fig. 1b. Centre crack along with its geometry and boundary conditions
is shown in Fig. 1. In case of mechanical loading, the bottom edge has been
constrained along y-direction, and an external far field stress is applied at the top
edge as shown in Fig. 1a, whereas in case of thermal loading, both top and bottom
edges are constrained along y-direction as shown in Fig. 1b and thermal stresses
are developed due to change in temperature.
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Figure 1: Problem geometries and their dimensions along with boundary conditions

The problem domain has been discretized using 800 nodes along with addi-
tional nodes at the crack surface and at the crack tip as shown in Fig. 2. A regular
nodal distribution has been considered in all simulations. Six point Gauss quadra-
ture (Nguyen et al., 2008) has been used for the numerical integration (Dolbow and
Belytschko, 1999) of the Galerkin weak form. A plane stress condition has been
assumed. The values of mode-I and mode-II stress intensity factors i.e. KIand KII

have been calculated using domain based interaction integral (Dag, 2006; Dolbow
and Belytschko, 1998) approach.

Mechanical Loading
In case of mechanical loading, the results have been obtained for various crack

configurations. The length of crack is taken as 2a=40 mm. Fig. 2a shows a single
edge crack configuration subjected to mechanical loading. Both mode-I and mode-
II stress intensity factors have been calculated at the crack tip for several values
of crack orientation (α) as presented in Fig. 2b. The maximum value of mode-I
stress intensity factor i.e. KI is obtained as 28.5 MPa

√
m at α=0˚ (The exact ana-

lytical solution (Anderson, 2005) of mode-I stress intensity factor for α=0◦ is 28.7
MPa

√
m), while the maximum value of mode-II stress intensity factor i.e. KII is

obtained at α=40◦. From the results presented in Fig. 2b, it has been noticed that
with the increase in α , the value of KIdecreases continuously while KIIafter attain-
ing its maximum value at α=40˚, starts decreasing as shown in Fig. 2b. At α=43˚,
the value of KI becomes equal to KII as can be clearly seen from the intersection
of both plots in Fig. 2b. In order to have a clear visualization of crack tip stress
field, the contours of stress component σyy have been plotted over the specimen
geometry. For inclined cracks, two different cases with the inclination of 0o and
60o have been considered as shown in Fig. 3a & Fig. 3b respectively. Even with
variation of crack inclination the stress field remains symmetrical about the crack
line as can be clearly seen from the contour plots.
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Figure 2: Effect of crack inclination (α) on KI and KII of centre crack

Fig. 3a Fig. 3b 

Figure 3: Contour plots of stress (σyy) for different inclination subjected to me-
chanical loading

Thermal Loading
In case of thermal loading, the results have been obtained with same crack

configurations as for mechanical loading. The length of crack is taken as 2a=40
mm. Fig. 4a shows a centre crack configuration subjected to thermal loading. Both
mode-I and mode-II stress intensity factors have been calculated at the crack tip for
several values of α as presented in Fig. 4b. The maximum value of KI is obtained
as 25.15 MPa

√
m at α=0˚, while the maximum value of KII is obtained at α=40˚.

From the results presented in Fig. 4b, it has been noticed that with the increase in α ,
the value of KIdecreases continuously while KII after attaining its maximum value
of 14.01 MPa

√
m at α=40˚ starts decreasing. The contours of stress component σyy

developed due to thermal loading are plotted in Fig. 5 over the specimen geometry.
For inclined cracks, two different values of α i.e. 0o and 60o have been considered
as shown in Fig. 5a & Fig. 5b respectively. The stress field varies accordingly
with crack inclination but remains symmetrical about the length of crack similar to



A numerical study of centre crack 19

that in case of mechanical loading. For α=0˚, the value of KI is maximum because
stresses in y direction dominate at the crack tip. At around α=40◦ the values of
KI and KII becomes equal which can be clearly seen from intersection of plots in
Fig. 5b. The variation of mode-I and mode-II stress intensity factor with crack
inclination follows the same trend as that of mechanical loading.
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Figure 4: Effect of crack inclination (α) on KI and KII of centre crack

                                              
Fig. 5a Fig. 5b 

Figure 5: Contour plots of stress (σyy) for different inclination subjected to thermal
loading

Conclusions
In the present work, centre crack problem has been solved under thermal as

well as mechanical loading condition using EFGM. On the basis of above simu-
lations, it can be predicted that crack inclination has a significant effect over the
values of both mode-I and mode-II stress intensity factors. The variation of mode-
I and mode-II stress intensity factor with crack inclination under thermal loading
follows the same trend as that of mechanical loading. The maximum value of KI in
case of equivalent thermal loading is about 88% of KI for pure mechanical loading.
Therefore, it can be concluded that the apart from mechanical load, the thermal
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load also plays a major role in the failure of cracked structures.

References

1. Anderson, T. L., (2005) "Fracture Mechanics Fundamentals and Applica-
tions", Taylor and Francis, pp. 52, Boca Raton.

2. Beer, F. P., Johnston, E. R. and Dewolf, J. T., (2002) “Mechanics of Materi-
als”, 3rd Edition, McGraw-Hill, Singapore.

3. Belytschko, T. and Fleming, M., (1999) "Smoothing, enrichment and contact
in the element-free Galerkin method," Computers and Structures, 71, pp.
173-195.

4. Belytschko, T. and Loehnert, S., (2007) "Crack shielding and amplification
due to multiple micro-cracks interacting with a macrocrack," International
Journal of Fracture, 145, pp. 1-8.

5. Belytschko, T. and Lu, Y., (1994) “Element-free Galerkin methods, Interna-
tional Journal for Numerical Methods in Engineering”, 37, pp. 229-256.

6. Dag, S., (2006) "Thermal fracture analysis of orthotropic functionally graded
materials using an equivalent domain integral approach", Engineering Frac-
ture Mechanics, 73, pp. 2802-2828.

7. Dai, K.Y., Liu, G.R., Han, X. and Lim, K.M., (2005) "Thermo-mechanical
analysis of functionally graded material (FGM) plates using element-free
Galerkin method", Computers and Structures, 83, pp. 1487-1502.

8. Dolbow, J. and Belytschko T., (1998) "An introduction to programming the
meshless element free Galerkin method," Archives of Computational Meth-
ods in Engineering, 5, pp. 207-241.

9. Dolbow, J. and Belytschko, T., (1999) "Numerical integration of Galerkin
weak form in meshfree methods", Computational Mechanics, 23, pp. 219-
230.

10. Krongauz, Y. and Belytschko, T., (1996) "Enforcement of essential bound-
ary conditions in meshless approximations using finite elements", Computer
Methods in Applied Mechanics and Engineering, 131, pp. 133-145.

11. Lansinger, J., Hansson, T., and Clevfors, O., (2007) "Fatigue crack growth
under combined thermal cycling and mechanical loading" International Jour-
nal of Fatigue, 29, pp. 1383-1390.

12. Nguyen, P., Rabczuk, T., Bordas, S. and Duflot, M., (2008) "Meshless meth-
ods: A review and computer implementation aspects", Mathematics and
Computers in Simulation, 79, pp. 763-813.



A numerical study of centre crack 21

13. Organ, D.J., Fleming, M. and Belytschko, T., (1996) "Continuous meshless
approximation for non-convex bodies by diffraction and transparency", Com-
putational Mechanics, 18, pp. 225-235.




