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Summary
In this work, element free Galerkin method (EFGM) has been applied to solve

solid mechanics problems containing material discontinuities. The method is based
on treatment of interface conditions at the variational level. Modifications are made
in the EFGM to incorporate material discontinuities, which include the variational
form of the governing differential equations. Two bi-material problems i.e. beam
and bar has been solved using EFGM, and a clear discontinuity in the stress field
has been observed at the interface of two materials.

Introduction
The element-free Galerkin method (EFGM) offers many advantages over stan-

dard finite element methods for the simulation of both static and dynamic solid
mechanics problems. The EFGM utilizes moving least-squares interpolants which
require only nodes, unencumbered by elements and elemental connectivity, to con-
struct the shape functions. The method has mainly been applied in the area of crack
propagation, where nodes were continuously moved or added to follow the crack
tip. It has been found that the EFGM has higher convergence rates over the finite
element method. Another advantage of the EFGM is the high-order continuity of
the field variables. This allows for easy implementation of constitutive laws that in-
clude gradients of the stress or strain. However, the high-order continuity imposes
a difficulty when considering material discontinuities.

In the present work, EFGM has been applied to bi-material problems. Two
model problems i.e. beam and bar have been taken and analyzed by considering
single domain with interface. The results obtained by EFGM are found quite satis-
factory.

Review Of Element Free Galerkin Method
In EFGM, the field variable u is approximated by moving least square approx-

imation (MLS) function uh(x) (Belytschko et al., 1994) which is given by

uh(x) =
m

∑
j=1

p j(x)a j(x)≡ pT (x)a(x) (1)

where, p(x) is a vector of basis functions, a(x) are unknown coefficients, and m is
the number of terms in the basis. The unknown coefficients a(x)are obtained by
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minimizing a weighted least square sum of the difference between local approx-
imation, uh(x) and field function nodal parametersuI . The weighted least square
sum L(x) can be written in the following quadratic form:

L(x) =
n

∑
I=1

w(x−xI)[pT (x)a(x)−uI ]2 (2)

where, uI is the nodal parameter associated with node I atxI; uI are not the nodal
values of uh(x−xI) because uh(x) is used as an approximant and not an interpolant
w(x− xI) is the weight function having compact support associated with node I,
and n is the number of nodes with domain of influence containing the point x,
w(x−xI) �= 0. By setting ∂L/∂a=0, a following set of linear equation is obtained
as:

A(x)a(x) = B(x)u (3)

By substituting Eq. (3) in Eq. (1), the approximation function is obtained as:

uh(x) =
n

∑
I=1

ΦI(x)uI (4)

Governing Equations Of Bi-Material
The treatment of material discontinuity (Liu, 2003; Belytschko et al., 1996) in

the EFGM is demonstrated by considering a linear electrostatics. For simplicity,
two distinguishable materials separated by a single interface,Γs as shown in Fig. 1.
This interface is defined byn−j , the unit outward normal of Ω− along the material
boundary (Cordes and Moran, 1996) The governing equilibrium equation is given
by

σ ji, j +bi = 0 in Ω (5)

along with associated boundary conditions

σi jn j = t̄i on Γt (6)

ui = ūi on Γu (7)

where, σi j the Cauchy stress tensor and bi is a body force. ti is defined as the
traction on a surface, and ui is the displacement field.

Modifications For Material Discontinuity
Few modifications are introduced in EFGM to solve bi-material problems,

which gives EFGM an ability to solve problems involving material discontinuities.
This method (Cordes and Moran, 1996) involves considering the inhomogeneous
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Figure 1: Three-dimensional inhomogeneous body.

medium as separate homogeneous bodies, and then applying modifications at the
interface. The separation of the body into its homogeneous parts is accomplished
through the weight function, specifically the domain of influence in determining the
neighborsn. For a homogeneous part, the neighbors to a point x are the nodes which
contain x in their domain of influence. The neighbors for inhomogeneous bodies
are determined by defining the interface first by a set of nodes which belong to both
materials. The line drawn by connecting these nodes is considered as an interface
Γs between two materials. The domain of influence for the nodes enclosing part
of the interface in either material is truncated alongΓs. Therefore, points contained
in material-1 can only be influenced by nodes in material 1 plus interface nodes;
and, points contained in material-2 can only be influenced by nodes contained in
material-2 plus interface nodes.

Figs. 2 and 3 illustrate the selection of the neighbors for homogeneous and
inhomogeneous materials respectively. The domains of influence are drawn only
for nodes labeled 1 through 5 in each figure to determine if these labeled nodes are
considered neighbors to the points a, b and c. The domain of influence for each
node is a circle centered at the node. For the homogeneous case (Fig. 2), point a is
contained in the domain of influence of both nodes 4 and 5; therefore, nodes 4 and
5 are considered neighbors of point a. Similarly, point b has neighbors of nodes
3 and 5, and point c has neighbors of nodes 1 and 2. However, when an interface
separating two materials is added as in Fig. 3, the neighbors to each of the points
a, b and c may change.

The domains of influence for node 4 and node 5 are unaffected by the inserted
interface; node 4 does not intersect the interface, and node 5 is an interface node
belonging to both materials. Therefore, point a still contains nodes 4 and 5 as
neighbors. The domains of influence for nodes 1, 2 and 3 are each truncated at the
interface. The neighbors of point b still include nodes 3 and 5 since each pertain
to material 1; however, point c is not included in node 2 domain of influence due
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Figure 2: Domains of influence and
nearest neighbors for homogeneous
bodies

Figure 3: Domains of influence and
nearest neighbors for inhomogeneous
bodies

to the truncation of the domain of influence of node 2 at the interface. Point c has
only one neighbor labeled in Fig. 3, node 1.

The following weak form of σ ji, j +bi = 0 in Ω is considered in which∫
Ω

δui, jσi jdΩ−
∫

Ω
δuibidΩ−

∫
Γt

δuit̄idΓ−
∫

Γu

δλi(ui − ūi)dΓ−
∫

Γu

δuiλidΓ = 0

(8)
the Lagrange Multipliers, λi, enforce the essential boundary constraint on Γu (Batra
et al., 2004) and the associated Euler Equations are

σ ji, j +bi = 0 in Ω+ and Ω−, (9)

ti − t̄i = 0 on Γt+ and Γt−, (10)

ui − ūi = 0 on Γu+ and Γu−, (11)

λi − ti = 0 on Γu+ and Γu−, (12)

corresponding to the satisfaction of the equilibrium equation σ ji, j + bi = 0 in Ω
in both Ω+ and Ω−; the traction and displacement boundary conditions, σ jin j =
t̄i on Γt , and ui = ūi on Γu, on both Γ+ and Γ−; and, the physical interpretation
of the Lagrange multiplier λi = ti. The discretization of the above Eq. (8) after
imposing boundary conditions leads to the following set of linear equations:

Ku = f (13)

Where, the matrices K and f are defined as

KIJ =
∫

Ω
BT

I DBJdΩ−
∫

Γu

φISNDBJdΓ−
∫

Γu

BT
I DT NT SφJdΓ (14)

fI =
∫

Γt

φI t̄dΓ−
∫

Γu

BT
I DT NT SūdΓ (15)
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D =
E

1−ν2

⎡
⎣1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦ , BI =

⎡
⎣φI,x 0

0 φI,y

φI,y φI,x

⎤
⎦ (16)

N =
[

nx 0 ny

0 ny nx

]
, S =

[
sx 0
0 sy

]
(17)

sx =

{
1, if the prescribed ux on Γu

0, if the prescribed uy on Γu
(18)

sy =

{
0, if the prescribed ux on Γu

1, if the prescribed uy on Γu
(19)

Results And Discussions
Case-I: Cantilever Beam

A beam of dimensions L×D is subjected to a traction at the free end as shown
in Fig. 4. The problem has been solved for the plane stress case with material
properties are taken of E1= 2x1011 unit, ν1=0.3, E2 = 0.2x1011 unit, ν2 = 0.3 and
the beam dimensions are D = 1 unit, L = 4 unit. The applied traction is P = 50000
unit. The beam has been discretized using regular arrangement of nodes as shown
in Fig. 5. In each integration cell 4×4 Gauss quadrature is used to evaluate EFGM
stiffness matrix. The results are obtained using a linear basis with the cubicspline
weight function and a dmax value of 1.2 (Krongauszs and Belytschko, 1998).
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Figure 4: A two dimensional bi-
material beam with traction

Figure 5: Regular nodes distribution for
the domain of the cantilever beam

The deformed shape of beam after application of load is shown in Fig. 6. Fig-
ure 7 & 8 show the distribution of the σxx and εxx over the domain respectively.
From these figures, it has been observed that the stress is discontinuous at the in-
terface of the beam i.e. at D = 0 units while strain is continuous. The distribution
of σxx and εxx are shown in Figs. 9-10 with the beam depth at centre i.e. x = L/2.

Case-II: Axial Bar
A bi-material bar of dimensions LxD is considered next, which is subjected to

tensile load P at the free end as shown in Fig. 11. The problem has been solved for
the plane stress case with material properties and dimensions same as case-I. One
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Figure 6: Displaced position of nodes after application of traction
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Figure 7: Distribution of σxx over the
domain
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Figure 8: Distribution of εxx over the
domain
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Figure 9: Distribution of σxx with depth at the centre of the beam

end of the bar is fixed while a tensile load of P = 50000 units is applied at the other
end of the bar. The bar has been discretized using regular arrangement of nodes as
shown in Fig. 5. In each integration cell 4×4 Gauss quadrature is used to evaluate
stiffness the matrix. The EFGM results are obtained using a linear basis with the
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Figure 10: Distribution of εxx with depth at the centre of the beam

cubicspline weight function with dmax = 1.2.

The deformed shape of bar after the application of load is shown in Fig. 12.
Figures 13-14 show the distribution of the σxx and εxx over the domain respectively.
The distribution of σxx and εxx with the depth of the beam are shown in Figs. 15-
16 at the center of the bar. From these figures, it can be noticed that the stress is
discontinuous at the interface, while strain is continuous.

L
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uΓ sΓ tΓ

P
E2

E1

Figure 11: A two dimensional bi-
material bar with tensile load

Figure 12: Displaced position of the
nodes after application of tensile load

Conclusions
In this work, element free Galerkin method has been used to solve the bi-

material problems. A bi-material cantilever beam with traction at the free end and
a bi-material bar with uniform tensile loading at the free end of the beam are taken
and solved by EFGM. Lagrange multiplier technique has been used to enforce the
essential boundary conditions. Four point Gauss quadrature has been used for the
numerical integration of Galerkin weak form. The stress-strain distributions are
plotted over the domains of beam and bar. From the analysis it was found that the
stress is discontinuous at the interface of the beam and bar, while strain is continu-
ous. Since, EFGM is quite effective in solving the bi-material problems; therefore,
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Figure 13: Distribution of σxx over the
domain
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Figure 14: Distribution of εxx over the
domain
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Figure 15: Variation of σxx with depth
at the center of the bar
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Figure 16: Variation of εxx with depth at
the center of the bar

this work can be extended further to solve complex bi-material cracked compo-
nents.
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