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On the solution of a coefficient inverse problem for the
non-stationary kinetic equation
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Summary
The solvability conditions of an inverse problem for the non-stationary kinetic

equation is formulated and a new numerical method is developed to obtain the
approximate solution of the problem. A comparison between the approximate so-
lution and the exact solution of the problem is presented.
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Introduction
Inverse problems appear in many important applications of physics, geophysics,

technology and medicine. One of the characteristic features of these problems for
differential equations is their being ill-posed in the sense of Hadamard. The general
theory of ill-posed problems and their applications is developed by A. N. Tikhonov,
V. K. Ivanov, M. M. Lavrent’ev and their students [8-10, 13-15]. Inverse problems
for kinetic equations are important both from theoretical and practical points of
view. Interesting results in this field are presented in Amirov [1-3], Anikonov,
Kovtanyuk and Prokhorov [4], Anikonov and Amirov [5], Anikonov [6], Hamaker,
Smith, Solmon and Wagner [7].

In this paper, the solvability conditions of an inverse problem for the non-
stationary kinetic equation is formulated in the case where the values of the solution
are known on the boundary of a domain. A new numerical method based on the
Galerkin method is developed to obtain the approximate solution of the problem.
A comparison between the computed approximate solution and the exact solution
of the problem is presented.

The notations to be used in this paper are introduced below:

For a bounded domain G, Cm (G) is the Banach space of functions that are m
times continuously differentiable in G; C∞ (G) is the set of functions that belong
to Cm (G) for all m ≥ 0; C∞

0 (G) is the set of finite functions in G that belong to
C∞ (G) ; L2 (G) is the space of measurable functions that are square integrable in

G, Hk (G) is the Sobolov space and
◦

Hk (G) is the closure of C∞
0 (G) with respect to

the norm of Hk (G) . These standard spaces are described in detail, for example, in
Lions and Magenes [11] and Mikhailov [12].
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Statement of the Problem
In this work, the kinetic equation

∂u
∂ t

+
n

∑
i=1

(
vi

∂u
∂xi

+ fi
∂u
∂vi

)
−a(x,v, t)u = 0 (1)

is considered in the domain

Ω = {(x,v, t) : x ∈ D ⊂ R
n, v ∈ G ⊂ R

n, n ≥ 1, t ∈ (0,T)} ,

where the boundaries ∂D, ∂G ∈ C2, a(x,v, t) is an unknown function and satisfies
the equation 〈

a, L̂η
〉

= 0, L̂ =
n

∑
i=1

∂ 2

∂xi∂vi
(2)

for any η ∈ H1,2 (Ω) whose trace on ∂Ω is zero. 〈., .〉 is a scalar product in L2 (Ω).
H1,2 (Ω) is the set of all real-valued functions u(x,v, t) ∈ L2 (Ω) that have general-
ized derivatives uxi, uvi , uxiv j , uviv j (i, j = 1,2, ...,n), which belong to L2 (Ω) .

Equation (1) is extensively used in plasma physics and astrophysics. In appli-
cations, u(x,v, t) represents the number (or the mass) of particles in the unit volume
element of the phase space in the neighbourhood of a point (x,v) at the moment t,
a(x,v, t) is the absorption term and f = ( f1, ..., fn) is the force acting on a particle.

Problem 1 Determine the functions u (x,v, t) and a(x,v, t) defined in Ω from equa-
tion (1), provided that u(x,v, t) > 0, the function a (x,v, t) satisfies (2) and the trace
of u(x,v, t) is known on the boundary, i.e.,

u|∂Ω = u0.

Remark 1 It is easy to see that Problem 1 is non-linear because equation (1)
contains a production of unknown functions u (x,v, t) and a(x,v, t).

Remark 2 In practise, the function a (x,v, t) depends only on the argument x and
t, i.e, the problem is overdetermined. In [3], a genereal scheme is presented to
overcome this difficulty: It’s assumed that the unknown coefficient in the problem
depends not only on the variables x and t but also on the direction v in a specific
way, that is, L̂a = 0.

Remark 3 By introducing a new unknown function lnu = y, Problem 1 can be
reduced to the following problem:
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Problem 2 Find a pair of functions (y,a) defined in Ω satisfying the equation

Ly ≡ ∂y
∂ t

+
n

∑
i=1

(
vi

∂y
∂xi

+ fi
∂y
∂vi

)
= a(x,v, t) (3)

provided that a (x,v, t) satisfies (2) and y is known on ∂Ω: y|∂Ω = eu0 = y0.

To formulate the solvability theorems for Problem 2, we need the following
notation of Γ(A):

We select a subset {w1,w2, ...} of C̃3
0 =

{
ϕ : ϕ ∈ C3 (Ω) , ϕ = 0 on ∂Ω

}
which

is orthonormal and everywhere dense in L2 (Ω). Let Pn be the orthogonal projector
of L2 (Ω) onto Mn, where Mn is the linear span of {w1,w2, ...,wn} . Γ(A) denotes
the set of functions y with the following properties

i) y ∈ L2 (Ω) , Ay ∈ L2 (Ω) in the generalized sense, where Ay = L̂Ly;

ii) There exists a sequence {yk}⊂ C̃3
0 such that yk → y in L2 (Ω) and 〈Ayk,yk〉→

〈Ay,y〉 as k → ∞.

The condition that Ay ∈ L2 (Ω) in the generalized sense means that there exists
a function f ∈ L2 (Ω) such that 〈y,A∗ϕ〉 = −〈 f ,ϕ〉 and Ay = f for all ϕ ∈ C∞

0 (Ω),
where A∗ is the differential operator conjugate to A in the sense of Lagrange.

Solvability of the Problem
Now we are in position to formulate the results which can be proved by a

similar technique as that of Theorem 2.2.1 and Theorem 2.2.2 in [3] page 61.

Theorem 1 Let f ∈ C1 (Ω) and assume that the following inequality holds for all
ξ ∈ R

n :
n

∑
i, j=1

∂ fi

∂x j
ξ iξ j ≥ α1 |ξ |2 , (4)

where α1 is a positive number. Then Problem 2 has at most one solution (y,a) such
that y ∈ Γ(A) and a ∈ L2 (Ω) .

Problem 3 Given the equation

Ly = a+F

where the function a satisfies (2) and F is a known function in H2 (Ω) , find the pair
of functions (y,a) under the condition that

y|∂Ω = 0.

Problem 2 can be reduced to Problem 3, a similar reduction is presented in [3]
page 65 for an another kinetic equation.
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Theorem 2 Under the assumptions of Theorem 1, suppose that F ∈ H2 (Ω) . Then
there exists a solution (y,a) of Problem 3 such that y ∈ Γ(A), y ∈ H1 (Ω) , a ∈
L2 (Ω) .

Theorem 3 Under the hypotheses of Theorem 1, assume that u0 ∈ H2 (∂Ω) and
u0 ≥ α0, where α0 is a positive number. Then there exists a solution (u,a) of
Problem 1 such that u ∈ H1 (Ω), a ∈ L2 (Ω).

Algorithm of Solving the Inverse Problem
An approximate solution to Problem 3 will be sought in the following form

yN =
N

∑
i=1

αNiwi.

For the solution algorithm, the domains D = {x ∈ R
n : |x| < 1}, G = {v ∈ R

n : |v| < 1}
are chosen. We consider the complete systems

{
xi1

1 ...xin
n

}∞

i1,...,in=0
,
{

v j1
1 ...v jn

n

}∞

j1,..., jn=0
,{

1, t, t2, ...
}

in L2 (D), L2 (G) and L2 (0,T) respectively. The approximate solution
can be written in the following form:

yN =
N

∑
i1,...,in , j1,..., jn ,k=1

αNi1,...,in, j1,..., jn,k
wi1,...,in, j1,..., jn,k η (x)μ (v)ζ (t) (16)

where
wi1,...,in, j1,..., jn,k =

{
xi1

1 ...xin
n v j1

1 ...v jn
n tk

}∞

i1,...,in , j1,..., jn ,k=0

η (x)=

{
1−|x|2 , |x| < 1

0, |x| ≥ 1
, μ (v) =

{
1−|v|2 , |v| < 1

0, |v| ≥ 1
, ζ (t)=

{
1− t2, |t|< 1

0, |t| ≥ 1
.

In expression (16), unknown coefficients αNi1,...,in , j1,..., jn,k
, i1, ..., in, j1, ..., jn, k = 1, · · · ,N

are determined from the following system of linear algebraic equations (SLAE):

N

∑
i1 ,...,in, j1,..., jn,k=1

(
A

(
αNi1 ,...,in, j1,..., jn,k wi1,...,in , j1,..., jn ,k

)
ημζ ,wi′1,...,i′n, j′1,..., j′n ,k′

)
L2(Ω)

(17)

=
(
F ,w

i′1,...,i′n, j′1,..., j′n,k′

)
L2(Ω)

, i′1, ..., i
′
n, j′1, ..., j′n, k′ = 1, · · · ,N.

Algorithm 1 (Le f tSLAE) Left side of each equation in (17) is constructed.

INPUT: N, i′1, ..., i′n, j′1,..., j′n, k′, wi′1 ,...,i′n, j′1,..., j′n,k′

OUTPUT: Left hand side of each equation in (17) : LeftSum

Set LeftSum=0;
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For i1 = 1,...,N do ... For in = 1,...,N do

For j1 = 1,...,N do ... For jn = 1,...,N do For k = 1,...,N do

Le f tSum = Le f tSum+
(

A
(

αNi1,...,in, j1 ,..., jn,k wi1 ,...,in, j1 ,..., jn,k

)
ημζ ,wi′1,...,i′n , j′1,..., j′n ,k′

)
L2(Ω)

end k end jn ...end j1 end in ...end i1
STOP ( The procedure is complete.)

Algorithm 2 This algorithm computes the approximate solution using Algorithm
1.

INPUT: N, F (x,v, t), f (x,v, t)
OUTPUT: Approximate solution uN and the coefficient a

SLAE = {}, yN = 0,

For i′1 = 1,...,N do ... For i′n = 1,...,N do

For j′1 = 1,...,N do For j′n = 1,...,N do For k′ = 1,...,N do

SLAE = SLAE ∪
{

Le f tSLAE
(

i′1,...,i′n, j′1,..., j′n,k′,N,η ,μ ,ζ ,wi′1,..,i′n, j′1,..., j′n,k′
)}

=
(
F ,w

i′1,..,i′n, j′1 ,..., j′n,k′

)
L2(Ω)

end k′ end j′n ...end j′1 end i′n ...end i′1
Solve

(
SLAE,

{
αN

i1,...,in, j1,..., jn,k

})
Principle Part

For i1 = 1,...,N do ... For in = 1,...,N do

For j1 = 1,...,N do ... For jn = 1,...,N do For k = 1,...,N do

yN = yN +
(

αNi1 ,...,in, j1,..., jn,k
wi1 ,...,in, j1,..., jn,k

)
η (x)μ (v)ζ (t)

end k end jn ...end j1 end in ...end i1
uN (x,v, t) = eyN , a(x,v, t) = L(yN)−F (x,v, t)
End of the Algorithm 2.

The algorithms have been implemented in the computer algebra system Maple
and tested for several inverse problems. Two examples are presented below where
UN shows the computed solution at N and N is the order of sum in (16).

Example 1 Let Ω = {(x,v, t)| x ∈ (−1,1) , v ∈ (−1,1) , t ∈ (−1,1)}, F (x,v, t) =
−2txv+2txv3 +2tx3v−2tx3v3−3v2x2 +3v2x2t2 +3x2v4−3x2v4t2 and f1 (x,v, t)=
0 are given. Then, at N = 2 Algorithm 1 gives the result: U2 = e(1−x2)(1−v2)(1−t2)xv,
λ 2 = −2vx(1−x2)(1−v2)t +v(1−v2)(1− t2)(v(1−x2)−2vx2)+2txv−2txv3 −
2tx3v+2tx3v3 +3v2x2 −3v2x2t2−3x2v4 +3x2v4t2 which is also the exact solution
of the problem.
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Example 2 In the domain Ω = {(x,v, t)| x ∈ (−1,1) , v ∈ (1,2) , t ∈ (−1,1)}, ac-
cording to the given functions F (x,v) = x2(−4t +2t(v−2)2)/v+(2tx4)/v+x(v−
2)2(−2 + 2t2 −3tx + 3v−3vt2 + txv− v2 + v2t2)+ x3v(6−6t2)+ vx(−6 + 6t2)−
2tx2v+tx4v−2x3v2 +2x3t2v2 +2v2x−2v2xt2 and f1 (x,v, t) = 0 approximate solu-

tion of the problem at N = 1 is U1 = e−
1
2 (1−x2)(2−3v+v2)(1−t2)where the exact solu-

tion is u(x,v) = e
1
2v(x2+(2−v)2−1)(1−x2)(2−3v+v2)(1−t2). In Figure 1a and Figure 1b,

a comparison between approximate solution (dotted, yellow graph) and exact so-
lution u(x,v) (solid, blue graph) of the problem is presented at N = 1 and N = 4,
respectively. We didnt’t write the computed solution at N = 4 explicitly because of
the page limitation. λ 2 and λ 4 can be obtained from equation Ly = a+F easily.

Figure 1a. Figure 1b.

In example 1, computed solution at N = 2 coincides with the exact solution of
the problem and in example 2, as it can be seen from Figure 1b, approximate solu-
tion at N = 4 is very closed to the exact solution. Consequently, the computational
experiments show that the proposed algorithm gives efficient and reliable results.
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