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Solvability of a Plane Integral Geometry Problem and a
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Summary
In this work we deal with solvability and aproximation to the solution of the

two dimensional integral geometry problem for a family of regular curves of given
curvature. Solvability of the problem is proved by using the Galerkin method and
an algorithm is developed to compute the approximate solution of the problem.
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Introduction
Solvability of a two dimensional integral geometry problem (IGP) is considered

by reducing it to the equivalent inverse problem for the general transport equation
and an efficient aproximation method proposed for the solution of IGP. To demon-
strate the computational feasibility of the given approximation method, some com-
putational experiments are performed and the results are presented at the end of the
paper. Investigating the solvability of problems of integral geometry by reducing
them to equivalent inverse problems for differential equation was first carried out
in Lavrent’ev and Anikonov [5]. Similar reduction is demonstrated for IGP formu-
lated below. It is assumed that in a domain D, a family of regular curves is given
by curvature such that curvature of the curve passing from each point x ∈ D, in any
direction v = (cosϕ, sinϕ) is K(x,ϕ) = f2(x)cosϕ − f1(x) sinϕ and there exists a
curve passing from every x ∈ D in the arbitrary direction v, with endpoints on the
boundary of D. Suppose lengths of these curves in D are upper-bounded by the
same constant. Let us denote the family of these curves by {Γ}.

IGP. Find a function λ (x) in a domain D from the integrals of λ along the
curves of a given family of curves {Γ}.

Suppose that λ(x) ∈C(R2) vanishes outside D. Introduce an auxiliary function

u(x,ϕ) =
∫

γ(x,ϕ)
λds, (1)

where γ(x,ϕ) is the curve passes through x in the direction ν and has the curvature
K(x,ϕ). Differentiating (1) in the direction v at x,

Lu ≡ ux1 cosϕ +ux2 sinϕ +K(x,ϕ)uϕ = λ(x), (2)
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is obtained (see Amirov [2], p.11). By the hypothesis of IGP, u(x,ϕ) is 2π-periodic
in ϕ and is known for x ∈ Γ1 = ∂D× (0,2π), i.e.

u|Γ1
= u0(x,ϕ), u(x,ϕ) = u(x,ϕ +2π). (3)

Problem 1. Find a pair of functions (u,λ) from the equation (2) provided that the
function K(x,ϕ) is known and the solution u(x,ϕ) satisfies conditions (3).

Given the function K(x,ϕ), a set of curves {Γ} such that K(x,ϕ) is the curva-
ture at x∈D of the curve that passes through x∈D in the direction (cosϕ, sinϕ) can
be constructed. Integrating both sides of the equality (2) along the curve γ(x,ϕ) and
observing (3), IGP is obtained. Thus, it is proved that in the corresponding spaces
(see Theorem 1 below), IGP is equivalent to Problem 1, where K(x,ϕ) is a given
sufficiently smooth function (see [2]).

One of the applications of integral geometry problem is computerized tomogra-
phy. Namely, problems of integral geometry provide the mathematical background
of the computerized tomography. The goal of the tomography is to recover the
interior structure of a nontransparent object using external measurements. The ob-
ject under investigation is exposed to radiation at different angles, and the radia-
tion parameters are measured at the points of observations. The basic problem in
computerized tomography is the reconstruction of a function from its line or plane
integrals and there are many applications related with computerized tomography;
geophysics, X-ray tomography, diagnostic radiology, astronomy, seismology, radar
and many other fields (see [3], [4], [7]).

Definitions and Solvability of the Problem
Based on the works by Amirov [1, 2], let us introduce some definitions and

notations, which will be used throughout the paper. Let C3
π(Ω) denote the set of

real-valued functions u(x,ϕ) that are 2π-periodic in ϕ and three times continu-
ously differentiable on Ω with respect to all arguments, where Ω = {(x,ϕ) : x ∈
D⊂R

2, ϕ ∈ (0,2π), ∂D∈C3}. Let introduce the scalar product (u, z)1,c = (u, z)1+∫
Ω

(
ux1ϕ zx1ϕ +ux2ϕ zx2ϕ

)
dΩ in C3

π(Ω), where (u, z)1 =
∫

Ω
(
uz+ux1zx1 +ux2zx2 +uϕ zϕ

)
dΩ

and dΩ = dxdϕ.

Set ‖u‖1 = [(u,u)1]1/2 and ‖u‖1,c = [(u,u)1,c]1/2. Let Hπ
1,c(Ω), Hπ

m(Ω), and
Hπ

1,2(Ω) be the completions of C3
π(Ω) with respect to the norms ‖ ·‖1,c, ‖ ·‖Hm (m =

1,2) and ‖ · ‖1,2 respectively, where ‖u‖1,2 = [(u,u)1,2]1/2 and (u,u)1,2 = (u,u)1,c +∫
Ω u2

ϕϕ dΩ.

Let C3
π0 = {ψ : ψ |∂D = 0, ψ ∈ C3

π} and select a set {ω1,ω2,ω3, ...} ⊂ C3
π0

which is complete and othonormal in L2(Ω). It may be assumed that the linear
span of this set is everywhere dense in H̊π

1,2(Ω), where H̊π
1,2(Ω) is the completion of

C3
π0 with respect to the norm ‖ · ‖1,2. We denote the orthogonal projector of L2 (Ω)
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onto Mn by Pn, where Mn is the linear span of {w1,w2, ...wn}. Furthermore, let
Au ≡ L̃Lu, where

L̃u =
∂ 2

∂ l∂ϕ
u =

∂
∂ l

uϕ ,

∂
∂ l

= (cosϕ)
(

∂
∂x2

− f1
∂

∂ϕ

)
− (sinϕ)

(
∂

∂x1
− f2

∂
∂ϕ

)
.

Γ′′(A) is the set of all functions u(x,ϕ) ∈ L2(Ω) such that for any u ∈ Γ′′(A) there
exists y ∈ L2(Ω) such that (u,A∗η)L2(Ω) = (y,η)L2(Ω), holds for every η ∈C3

π0(Ω)
where, A∗ is the differential expression conjugate to A in the sense of Lagrange;

y
de f
= Au and (u,v)L2(Ω) is a scalar product of functions u and v in L2(Ω).

Take a subset Γ(A) ⊂ Γ′′(A) such that for any u ∈ Γ(A) there exists a se-
quence {uk} ⊂ C3

π0(Ω) such that uk → u weakly in L2(Ω) and (Auk,uk)L2(Ω) →
(Au,u)L2(Ω) as k → ∞. Γ′(A) is the closure of C3

π0(Ω) with respect the norm
‖u‖Γ(A) = ‖u‖L2(Ω) +‖Au‖L2(Ω). It is clear that Γ′(A)⊂ Γ(A)⊂ Γ′′(A) and Γ′′(A)∩
H̊π

1,c ⊂ Γ(A)⊂ L2(Ω).

Since the unknown function λ depends only on x, Problem 1 is overdetermined
and this problem can be replaced by the following determined problem;

Problem 2. Find a pair of functions (u,λ) defined in Ω that satisfies

Lu = λ (x,ϕ), (4)

u|Γ1 = u0, u(x,ϕ) = u(x,ϕ +2π) (5)

L̃λ = 0 (6)

Here the equation (6) is satisfied in generalized functions sense. If u0 ∈C3(Γ1)
and ∂D∈C3 then, Problem 2 can be reduced to the following problem (see Amirov
[2], p.20);

Problem 3. Find a pair of functions (u,λ) defined in Ω that satisfies

Lu = λ +F, (7)

u|Γ1
= 0, u(x,ϕ) = u(x,ϕ +2π), (8)

L̃λ = 0. (9)

Theorem 1. If f1(x), f2(x) ∈ C2(D̄),∀x ∈ D̄ f1x1 + f2x2 > 0 and F ∈ Hπ
2 (Ω) then

Problem 3 has a unique solution (u,λ), that satisfies the conditions u ∈ Γ(A)∩
Hπ

1 (Ω), λ ∈ L2(Ω), and the inequality ‖u‖Hπ
1 (Ω)+‖λ‖L2(Ω) ≤C(‖F‖L2(Ω)+

∥∥Fϕ
∥∥

L2(Ω))
holds, where C > 0 depends on D and D̄ is the closure of D.



118 Copyright © 2009 ICCES ICCES, vol.12, no.4, pp.115-123

Proof. To prove the uniqueness part of the theorem, we show that the correspond-
ing homogeneous linear problem has only trivial solution satisfying the conditions
of the theorem. If we apply L̃ to the equation (7) and take into account (9), we
get Au = 0. Since u ∈ Γ(A), there exists a sequence {uk} ⊂ C3

π0 such that uk → u
weakly in L2(Ω) and (Auk,uk)L2(Ω) → 0 as k → ∞. It is easy to show that

−Aukuk =
∂

∂ϕ
(Luk)

∂uk

∂ l
− ∂

∂ l

(
∂

∂ϕ
(Luk)uk

)
, (10)

and

−2(Auk,uk)L2(Ω) =
∫
Ω

[(ukx1 +ukϕ f2)2 +(ukx2 +ukϕ f1)2 +u2
kϕ( f1x1 + f2x2)]dΩ,

(11)
since the divergent terms are all zero. It is clear that, if f1x1 + f2x2 > 0, then the
quadratic form J(∇uk) in (ukx1 + ukϕ f2), (ukx2 + ukϕ f1), ukϕ is positive definite,
where

J(∇uk) = (ukx1 +ukϕ f2)2 +(ukx2 +ukϕ f1)2 +u2
kϕ( f1x1 + f2x2).

Since the domain D is bounded and uk = 0 on Γ1, we have ‖uk‖2 ≤C
∫
Ω

J(∇uk)dΩ,

where C > 0 depends on D. From (11) and the definition of Γ(A) we get

‖u‖2 = lim
k→∞

‖uk‖2 ≤C lim
k→∞

∫
Ω

J(∇uk)dΩ = −2C lim
k→∞

(Auk,uk)L2(Ω) = 0. (12)

Inequality (12) implies ‖u‖ = 0, i.e., u = 0 and equation (7) implies λ = 0. This
completes the proof of uniqueness part.

Secondly we will prove existence of the solution of the problem in the same set
: Γ(A). From (7)-(9), we obtain the following problem: Find u defined in Ω that
satisfies

Au = L̃F = F , (13)

u|Γ1 = 0, u(x,ϕ) = u(x,ϕ +2π). (14)

An approximate solution of order N of the problem (13)-(14)

uN =
N

∑
i=1

αNiwi(x,ϕ); αN = (αN1 ,αN2 , ...,αNN ),

is defined as a solution to the following problem: Find the vector αN from the
system of linear algebraic equations∫

Ω

L̃(LuN −F)wjdΩ = 0, j = 1,2, ...,N, dΩ = dxdϕ. (15)
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We shall prove that there exists a unique solution αN of the system (15) for any
F ∈ Hπ

2 (Ω) under the hypotheses of the theorem. To this end, it suffices to prove
that the homogeneous version of system (15) has only trivial solution. Assume
the contrary. Let the homogeneous version of system (15) have a nonzero solution
ᾱN = (ᾱN1 , ᾱN2 , ..., ᾱNN ). In the system (15) with F = 0, substituting ᾱN for αN ,
multiplying the ith equation by −2ᾱNi and summing with respect to i from 1 to N,
we obtain

−2
∫
Ω

L̃LūN ūNdΩ = 0 (16)

where ūN =
N
∑

i=1
ᾱNiwi. By (11) and (16),

∫
Ω

[(ūNx1 + ūNϕ f2)2 +(ūNx2 + ūNϕ f1)2 + ū2
Nϕ ( f1x1 + f2x2)]dΩ = 0.

Therefore, since J(∇uk) is positive definite and ūN = 0 on Γ1, we have ūN = 0 in
D, and since {wi} is linearly independent we get ᾱNi = 0. This contradicts the
condition ᾱNi �= 0. Thus, system (15) has a unique solution αN for any F ∈ Hπ

2 (Ω).
Now we estimate the solution uN of system (15) in terms of F . For this purpose,
we multiply the ith equation of (15) by −2αNi and sum the obtained relations with
respect to i from 1 to N, we have

−2
∫
Ω

uNL̃(LuN)dΩ = −2
∫
Ω

uNL̃FdΩ. (17)

Since uN |Γ1 = 0, the right hand side of (17) is as follows:

−2

∣∣∣∣∣∣
∫
Ω

uNL̃FdΩ

∣∣∣∣∣∣ ≤
2

δ 0

∫
Ω

∣∣Fϕ
∣∣2

dΩ+
δ 0

2

∫
Ω

|∇x,luN |2 dΩ.

Then, using (10), (11), (17) and Schwartz inequality for sufficiently large δ̄ 0 > 0,
we get ∫

Ω

J(∇uN)dΩ ≤ 2

δ̄ 0

∫
Ω

F2
ϕ dΩ+

δ̄ 0

2

∫
Ω

|∇xuN |2 dΩ

or ∫
Ω

|LuN |2 dΩ ≤ C,

∫
Ω

|∇xuN |2 dΩ ≤ C ⇒
∫
Ω

u2
NdΩ ≤C.

This implies that the sets of functions {uN} and {LuN} are bounded in L2(Ω) and
‖uN‖H̊π

1 (Ω) ≤C
∥∥Fϕ

∥∥
L2(Ω). Since L2(Ω) is a Hilbert space, the sets{uN} and {LuN}
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are weakly compact in L2(Ω). Therefore, there exist subsequences (we again de-
note them by {uN} and {LuN}) such that uN → u, LuN → λ (N → ∞) weakly con-
verge and this implies the inequality ‖u‖H̊π

1 (Ω) ≤ C
∥∥Fϕ

∥∥
L2(Ω). If we take into con-

sideration the fact that the operator L is weakly closed, we see that λ = Lu. Since
uN |Γ1 = 0, and uN → u we have u|Γ1 = 0. Multiplying the equations (15) by β ∈R

1,
and taking into account the condition uN |Γ1 = 0, and calculating the action of L̃w j

on β , for N ≥ j, we obtain
∫
Ω
(LuN −F)L̃ (β wj)dΩ = 0. Since the linear span of

{wj} is dense on the space H̊π
1,2(Ω), we get

∫
Ω

(Lu−F)L̃ηdΩ = 0, (18)

for every η ∈ H̊π
1,2(Ω). If we put λ = Lu−F, we obtain ‖λ‖L2(Ω) ≤C‖u‖Hπ

1 (Ω) +
‖F‖L2(Ω). From (18), we get L̃λ = 0 in the sense of generalized functions.

To complete the proof of the theorem, we have to show (AuN ,uN)L2(Ω) →
(Au,u)L2(Ω) as N → ∞. From the equation (17), we obtain PNAuN = PNF . Since
the system {w1,w2, ...,wN} is orthogonal in L2(Ω), PNF converges strongly to F
in the sense of L2 as N → ∞, in other words we get PNAuN → F = Au as N → ∞.
Then, since we have uN → u weakly and PNAuN → Au in L2 as N → ∞, we ob-
tain (PNAuN ,uN)L2(Ω) → (Au,u)L2(Ω) as N → ∞. By the definitions of PN and uN

(since PN is self adjoint in L2(Ω)) we obtain

(PNAuN ,uN)L2(Ω) = (AuN ,P∗
NuN)L2(Ω) = (AuN,PNuN)L2(Ω) = (AuN ,uN)L2(Ω) .

Hence (AuN,uN)L2(Ω) → (Au,u)L2(Ω) as N → ∞ which completes the proof of the
theorem.

Solution Algorithm and Some Numerical Results
To be able to define the solution algorithm, the domain Ω = D×(0,2π) (where

D = (−1,1)× (−1,1)) is selected. Approximate solution uN is written in the fol-
lowing form:

uN =
N

∑
i, j,k=0

(
α i, j,kvi, j,k +β i, j,kwi, j,k

)
η (x) (19)

where η (x) =
{ (

1−x2
1

)(
1−x2

2

)
, x ∈ D

0, x /∈ D
.{

vi, j,k
}N

i, j,k=0 and
{

wi, j,k
}N

i, j,k=0 are complete systems in L2 (Ω) where vi, j,k =

xi
1x j

2 sin(kϕ) and wi, j,k = xi
1x j

2 cos(kϕ). In expression (19), unknown coefficients
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α i, j,k , and β i, j,k, i, j,k = 0, ...,N are determined from the following system of linear
algebraic equations:

N

∑
i, j,k=0

(
A

(
α i, j,kvi, j,k +β i, j,kwi, j,k

)
η ,vi′, j′,k′η

)
L2(Ω) =

(
F,vi′, j′ ,k′η

)
L2(Ω) ,(20.a)

N

∑
i, j,k=0

(
A

(
α i, j,kvi, j,k +β i, j,kwi, j,k

)
η ,wi′, j′,k′η

)
L2(Ω) =

(
F,wi′, j′ ,k′η

)
L2(Ω)(20.b)

where i′, j′,k′ = 0, ...,N.

Algorithm 1. INPUT : N, F (x1,x2,ϕ), f1 (x1,x2), f2 (x1,x2) .
OUTPUT : uN and λ N approximations to u and λ .

Procedure SysA(i′, j′,k′) (Construct the left side of (20.a))

Le f t := 0, for i = 0, ...,N do, for j = 0, ...,N do, for k = 0, ...,N do

begin Le f t := Le f t +
(
A

(
α i, j,kvi, j,k +β i, j,kwi, j,k

)
η , vi′ , j′,k′η

)
L2(Ω) end;

Procedure SysB(i′, j′,k′) (Construct the left side of (20.b))

Le f t := 0, for i = 0, ...,N do, for j = 0, ...,N do, for k = 0, ...,N do

begin Le f t := Le f t +
(
A

(
α i, j,kvi, j,k +β i, j,kwi, j,k

)
η , wi′ , j′,k′η

)
L2(Ω) end;

Procedure SYS (Construct the systems (20.a)− (20.b))

Set := {}, F := L̃F

for i = 0, ...,N do, for j = 0, ...,N do, for k = 0, ...,N do

begin

Set := Set ∪
{

SysA(i′, j′,k′) =
(
F , vi′, j′ ,k′η

)
L2(Ω) ,

SysB(i′, j′,k′) =
(
F , wi′, j′,k′η

)
L2(Ω)

}
end;

Solve
(
SY S,

{
α i, j,k

}
,
{

β i, j,k

})
(Solve the systems (20.a)− (20.b))

for i = 0, ...,N do, for j = 0, ...,N do, for k = 0, ...,N do

begin uN = uN +
(
α i, j,kvi, j,k +β i, j,kwi, j,k

)
η end;

λ N = L(uN)−F

end. (End of the algorithm)

Two examples, whose approximate solutions obtained by Algorithm 1, are pre-
sented below, where UN and λ N are the approximations at N and N is the order of
sum in (19).

Example 1. Let Ω = (−1,1)×(−1,1)×(0,2π), F (x1,x2,ϕ) =
(
x3

1x2 −x1x3
2

)
sin2ϕ 1

2 +(
x4

1 +x4
2 −

(
x2

1x2
2 +5

)(
x2

1 +x2
2

)
+8x2

1x2
2 +2

)
cos2ϕ, f1 (x1,x2)= x1 and f2 (x1,x2)=



122 Copyright © 2009 ICCES ICCES, vol.12, no.4, pp.115-123

x2 are given. Then, the approximationat N = 1,U1 =
((

1−x2
1

)(
1−x2

2

)
(x1 cosϕ −x2 sinϕ)

)
,

λ 1 = 1
2

(
x4

2 −x4
1 +

(
x2

1 −x2
2

)
(x2

1x2
2 −1)

)
which is also the exact solution of the prob-

lem.

Example 2. In the domain Ω = (−1,1)× (−1,1)× (0,2π), according to the given
functions, F (x1,x2,ϕ)= 1

2

(
ex1

(
x2

2 −3
)(

x1x2 −x3
1x2

)
+ex2

(
x2

1 −3
)(

x3
2x1 −x1x2

))
sin(2ϕ)

+1
2

(
ex1

(
x4

1 −x3
1 −4x2

1 +x1 +1
)(

1−x2
2

)
+ex2

(
x4

2 −x3
2 −4x2

2 +x2 +1
)(

1−x2
1

))
cos(2ϕ),

f1 (x1,x2) = x1 and f2 (x1,x2) = x2, comparison of U1 and U3 with exact u is repre-
sented in Figure 1 (a)-(b) respectively ( λ 1 and λ 3 can be obtained easily from (7) ),
where the exact solution is; u (x1,x2,ϕ)=

(
1−x2

1

)(
1−x2

2

)
(x1ex1 cosϕ −x2ex2 sinϕ) ,

λ (x1,x2,ϕ) = 1
2

((
1−x2

2

)
(1+x1 −2x2

1 −x3
1 −x4

1)ex1 −(
1−x2

1

)
(1+x2 −2x2

2 −x3
2 −x4

2)
)

ex2 .

Figure 1: Comparison of approximate (dotted, yellow graph) and exact solution
(solid, blue graph) for Example 2 at ϕ = π (a) N = 1, (b) N = 3.

The computations are performed using MAPLE program on a PC with Intel
Core 2 T7200 2.00 GHz CPU, 1 Gb memory, running under Windows Vista. In
Example 1, approximation at N = 1 coincides with the exact solution and in Ex-
ample 2, as it can be seen from Figure 1b, approximation at N = 3 is very closed
to the exact solution. Consequently, the obtained results show very high accuracy
and the proposed method which is given by Algorithm 1, is an efficient method in
solving the IGP.
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