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Nonlinear third-order shear deformation FE simulation of
the sensor output voltage of piezolaminated plates

Thang Duy Vu, Ruediger Schmidt1

Summary
Two geometrically nonlinear finite plate elements incorporating piezoelectric

layers are presented, based either on first- or third-order shear deformation theory.
Numerical tests are performed for the sensor output voltage of a piezolaminated
plate.
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Introduction
For the numerical simulation of piezointegrated thin structures many sugges-

tions ranging from geometrically linear [Crawley, E.F. & de Luis, J. (1987); Lam-
mering, R. (1991)] to geometrically nonlinear [Chróścielewski, J., Klosowski, P.
& Schmidt, R (1998); Mukherjee, A. & Chaudhuri, A.S. (2002); Lentzen, S. &
Schmidt, R. (2004)] beam and shell elements have been made. In the latter pa-
per we have shown the importance of geometrically nonlinear analysis, especially
when the sensing capabilities of the piezoelectric layers are investigated. In this
paper linear and nonlinear dynamic analysis is performed based on first- and third-
order shear deformation plate theory.

Strain-displacement relations
First-order shear deformation theory

The results presented in this work, which refer to the first-order shear deforma-
tion theory (FOSD) or Reissner-Mindlin hypothesis, are based on the von Kármán-
type nonlinearity. The FOSD hypothesis for the through-thickness variation of the
tangential and normal displacement components reads

vα =
0
vα +Θ3 1

vα , v3 =
0
v3 (1)

where the mid-surface displacements are denoted by 0 and the rotations by 1.

The Green-Lagrange strain components for the nonlinear von Kármán-type
FOSD plate element can be expressed as:

0εαβ =
0
εαβ +Θ3 1

εαβ , 0εα3 =
0
εα3, 0ε33 = 0 (2)

The constant terms, denoted by 0 and the linear terms, denoted by 1 are deter-
mined as

0
εαβ =

1
2

(
0
vα |β +

0
vβ |α +

0
v3,α

0
v3,β

)
,

1
εαβ =

1
2

(
1
vα |β +

1
vβ |α

)
, (3)
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0
εα3 =

1
2

(
0
v3,α +

1
vα

)

where the nonlinear term is underlined.

First-order shear deformation theory
The results referring to the third-order shear deformation theory (TOSD) are

obtained with a finite plate element developed by [Nguyen, Q.D., Lentzen, S. &
Schmidt, R (2004)]. The finite element is based on the von Kármán-type nonlinear-
ity, too. The TOSD hypothesis for the through-thickness variation of the tangential
and normal displacement components reads

vα =
0
vα +Θ3 1

vα +
(
Θ3)2 2

vα +
(
Θ3)3 3

vα , v3 =
0
v3 (4)

where the constant, linear, quadratic and cubic terms are denoted by 0, 1, 2 and
3, respectively. The Green-Lagrange strain components for the von Kármán-type
nonlinearity TOSD plate element can be expressed as:

0εαβ =
0
εαβ +Θ3 1

εαβ +
(
Θ3)3 3

εαβ , 0εα3 =
0
εα3 +

(
Θ3)2 2

εα3, 0ε33 = 0 (5)

where

0
εαβ =

1
2

(
0
vα |β +

0
vβ |α +

0
v3,α

0
v3,β

)
,

1
εαβ =

1
2

(
1
vα |β +

1
vβ |α

)
,

3
εαβ = − 2

3h2

(
1
vα |β +

1
vβ |α +2

0
v3|αβ

) (6)

and
0
εα3 =

1
2

(
1
vα +

0
v3,α

)
,

2
εα3 = − 2

h2

(
1
vα +

0
v3,α

)
(7)

The cubic term of the tangential strains (denoted by 3) is neglected in the nu-
merical applications.

Numerical Method
According to the virtual work principle, for a state of equilibrium the internal

virtual work δWi is equal to the external virtual work δWe. As a continuation
of earlier work done by Palmerio et al. (1990) and Kreja et al. (1995) in the
present work a total Lagrangian approach is chosen. Consequently, the second
Piola-Kirchhoff stress and Green-Lagrange strains are chosen as the mechanical
quantities. The electric field vector referring to the undeformed configuration is
calculated as the negative gradient of the electric potential φ along the undeformed
surface parameters Θi

0Ei = − ∂φ
∂Θi (8)
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The mechanical and electrical quantities are coupled to each other by two con-
stitutive equations, namely the direct and the converse piezoelectric effect

{0D} = [e]{0ε}+[δ ]{0E} , {0S} = [c]{0ε}− [e]T {0E} (9)

where {0S} denotes the stress vector, {0ε} the strain vector, {0D} the electric
displacement vector and {0E} the electric field vector

{0S} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ11

σ22

τ12

τ23

τ13

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, {0ε}=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε11

ε22

2ε12

2ε23

2ε13

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, {0D} =

⎧⎨
⎩

D1

D2

D3

⎫⎬
⎭ , {0E} =

⎧⎨
⎩

E1

E2

E3

⎫⎬
⎭ . (10)

Further [e] = [d][c] and [e]T = [c][d]T , where [c] denotes the elasticity matrix
for anisotropic materials, [d] the piezoelectric constant matrix and [δ ] the dielectric
constant matrix

[c] =

⎡
⎢⎢⎢⎢⎣

c11 c12 c13 0 0
c12 c22 c23 0 0
c13 c23 c33 0 0
0 0 0 c44 c45

0 0 0 c45 c55

⎤
⎥⎥⎥⎥⎦ , [d]T =

⎡
⎢⎢⎢⎢⎣

0 0 d31

0 0 d31

0 0 0
0 d15 0

d15 0 0

⎤
⎥⎥⎥⎥⎦ , (11)

[δ ] =

⎡
⎣δ11 0 0

0 δ22 0
0 0 δ33

⎤
⎦

If it is further assumed that the electric field is homogeneously distributed over
the electrode pair, only one additional degree of freedom has to be introduced per
electrode pair, namely the electric potential. After introducing the principle of
virtual work, the differential equations of motion to be solved are

[M]{q̈}+{Fi} = {Fe} , {Qi} = {Qe} (12)

where [M] denotes the mass matrix and {q} are the generalized nodal displace-
ments. The in-balance nodal force and electrode charge vectors are denoted by {Fi}
and {Qi}, respectively. The externally applied force and charge vectors are denoted
by the right subscript e. The electric potentials are calculated from the equilibrium
between the mechanically and the electrically induced in-balance charges.
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Numerical Examples
The numerical example deals with a fully clamped plate with a PZT sensor as

depicted in figure 1, see [Yi, S., Ling, S. F. and Ying, M. (2000)]. The material
parameters are E=197GPa, ν = 0.33 and ρ = 7900 kg/m3. The load consists of
a uniform step pressure of 2·104 Pa. The transient analysis is performed with a
quarter of the plate with a mesh of [5x5] and a time step of Δt = 2·10−7 s to satisfy
space and time resolution requirements.

20 x 20 x 1 mm

100 x 100 x 1 mm

 

Figure 1: Clamped piezolaminated plate

Figs. 2 and 3 display the results for the mid-point displacement and the sensor
output voltage. It can be seen that the TOSD results agree very well with the FOSD
theory.

It can be expected that for thicker structures the deflection of TOSD plates
differs more from FOSD plates, than for thinner structures. Therefore, the above
example has been altered using the same structure but now with a thickness of 5
mm. Due to the higher thickness of the plate, a higher pressure has to be applied to
obtain transverse deflections in the same order of magnitude of those obtained for
the thinner plate. In this case, a pressure of 2·105 Pa was applied. The results are
displayed in Figure 4 and 5.

Conclusions
In this work two geometrically nonlinear, von Kármán type plate elements are

discussed, based on the first- and third-order transverse shear deformation theory,
respectively. By means of several numerical examples it has been shown that in
geometrically linear as well as geometrically nonlinear deformations the results ob-
tained by both finite elements start diverging when the structure becomes thicker.
The importance of geometrically nonlinear effects, especially for sensor applica-
tions, has been demonstrated.
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Figure 2: Mid-point displacement of the clamped plate
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Figure 3: Sensor voltage of the clamped plate
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of Gdansk University of Technology), 522, 229-249.

5. Lammering, R. (1991): The application of finite shell elements for com-
posites containing piezoelectric polymers in vibration control. Computers &
Structures, 41, 1101-1109.



40 Copyright © 2009 ICCES ICCES, vol.13, no.2, pp.35-41

0 0.5 1 1.5 2

x 10
�3

�0.5

0

0.5

1

1.5

2

2.5

3

3.5

x 10
�4

time [ms]

m
id

�
po

in
t d

is
pl

ac
em

en
t [

m
]

FOSD
TOSD

 

Figure 4: Mid-point displacement of the clamped thick plate
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Figure 5: Sensor voltage of the clamped thick plate
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