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Conjugate Heat Transfer of Forced Convection with
Viscous Dissipation for Visco-Elastic Fluid Past a Flat

Plate Fin
Kai-Long Hsiao1, Cheng-Hsing Hsu2

Summary
A conjugate forced convection with viscous dissipation heat transfer problem

of a second-grade visco-elastic fluid past a flat plate fin has been studied. Govern-
ing equations include heat conduction equation of the fin, and continuity equation,
momentum equation and energy equation of the fluid, were analyzed by a combina-
tion of a series expansion method, the similarity transformation and a second-order
accurate finite-difference method. Solutions of a stagnation flow (β = 1.0) at the
fin tip and a flat plate shape (wedge flow β = 0.0) on the fin surface were obtained
by a generalized Falkner-Skan flow derivation. These solutions were used to iterate
with the heat conduction equation of the fin to obtain distributions of the local con-
vective heat transfer coefficient and the fin temperature. Ranges of dimensionless
parameters, the Prandtl number (Pr), the elastic number (E), the viscous dissipa-
tion parameter (Ec) and the conduction-convection coefficient (Ncc) are from 0.1
to 100, 0.001 to 0.01, 0 to 0.1 and 0.05 to 2.0, respectively. Results indicated that
Results indicated that elastic effect in the flow can increase the local heat transfer
coefficient and enhance the heat transfer of a flat plate fin. Also, same as results
from Newtonian fluid flow and conduction analysis of a flat plate fin, a better heat
transfer is obtained with a larger Ncc, E, Ec and Pr.

keywords: conjugate heat transfer, second-grade fluid, flat plate fin, forced
convection, viscous dissipation.

Introduction
The forced-driven and temperature-dependent nature of the interaction on in-

terfaces causes the flow and the temperature fields to be specific according to the
temperature distribution along surfaces of a fin. Fins are appendages intimately
connected to the primary surface for the augmentation of heat transfer. With some
special cases, combined conduction-convection effects, the most frequent applica-
tion is one in which an extended surface is used specifically to enhance the heat
transfer rate between a solid and an adjoining fluid. Such an extended surface is
termed a fin. There are several fin applications. Consider the arrangement for
cooling engine heads on motorcycles, automobiles, lawnmowers, air-conditioner,
refrigerators, and for electric power transformers. The working fluids include air,
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refrigerants oil. Since the flow and temperature fields have a strong influence on
the convective heat transfer coefficient that, in turn, strongly affects the fin temper-
ature distribution, the tightness of the coupling is apparent. The analysis of a fin
must deal with the energy conservation equation of the fin, the equations of mass,
momentum and energy conservation in the surrounding fluid. Even in the coupling,
apparently variations in the local thermophysical properties and the fluid flow tem-
perature distributions still can be calculated by analyzing the coupled equations of
the flow and the fin. This means that the flow and temperature fields in the fluid and
the temperature distribution along surfaces of a fin must be solved simultaneously
in a heat transfer problem of a fin/fluid system. Conjugate heat transfer analysis of
a fin in a second-grade visco-elastic fluid flow is the major concern of the present
investigation. The problem considered a fin that transfers heat to or from a sur-
rounding second-grade fluid flow by the forced convection. The analysis of the flow
field in a boundary layer adjacent to the fin is very important in the present prob-
lem, and is also an essential part in the area of the fluid dynamics and heat transfer.
Especially, understanding boundary layer flows and heat transfer of non-Newtonian
fluids has become important in recent year [1]. Srivatsava [2], and Rajeswari and
Rathna [3] studied the non-Newtonian fluid flow near a stagnation point. Mishra
and Panda [4] analyzed the behavior of second-grade visco-elastic fluids under the
influence of a side-wall injection in an entrance region of a pipe flow. Rajagopal
et al. [5] studied a Falkner-Skan flow field of a second-grade visco-elastic fluid.
Massoudi and Ramezan [6] studied a wedge flow with suction and injection along
walls of a wedge by the similarity method and finite-difference calculations. Hsu
et al. [7] also studied the flow and heat transfer phenomena of an incompress-
ible second-grade visco-elastic fluid past a wedge with suction or injection. An
excellent review of boundary layers in non-linear fluids was recently written by
Rajagopal [8]. These are related studies to the present investigation about second-
grade visco-elastic fluids. However, conventional studies of conjugate problems
have not included non-Newtonian fluids as the working fluid. The system to be
analyzed in the present study is a flat plate fin in a second-grade visco-elastic fluid
flow. Due to the coupling nature between the fin and the fluid, the present analysis
is different from previous researches concerning forced convection about a flat plate
fin. Those studies have dealt primarily with a plate having prescribed convective
heat transfer coefficient that yield similar or non-similar solutions [9,10]. There
are some related conjugate problems concerning a fin in a Newtonian flow, for in-
stance, a complete model study about the forced convection on a rectangular fin
has been investigated by Sparrow and Chyu [11]; the effect of the Prandtl number
on the heat transfer from a rectangular fin has been studied by Sunden [12]. Also,
Luikov and his co-workers solved the conjugate forced convective problem along a
flat-plate both numerically [13] and analytically [14-16]. Lately, relative researches
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in connection with conjugate heat transfer almost all were working for Newtonian
fluid [17-19]. On the other hand, researchers in connection with visco-elastic fluid
or second grade non-Newtonian fluids [20-21], but there are not the conjugate heat
transfer problems, therefore the plan proceed especially toward this ways.
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Figure 1: A sketch of the physical model for conjugate heat transfer of forced
convection with viscous dissipation for visco-elastic fluid past a flat plate fin

The objective of the present analysis is to study the heat transfer of a flat plate
fin cooled or heated by a high or low Prandtl-number, second-grade visco-elastic
fluid with various conduction-convection parameters. An extension of previous
works is then performed to investigate the conjugate heat transfer of a second-grade
visco-elastic fluid past a flat plate fin. A schematic diagram of the flat plate fin is
shown in Figure 1 to illustrate the physical situation and symbols of parameters
needed for the analysis. Two types of flow fields, a stagnation flow and a pin shape
flow respectively, are included. The Rivlin-Ericksen model for grade-two fluids is
used in the momentum equations. Effects of dimensionless parameters, the Prandtl
number (Pr), the elastic number (E) and the conduction-convection coefficient
(Ncc) are main interests of the study. Flow and temperature fields of the stagna-
tion flow and the wedge flow are analyzed by utilizing the boundary layer concept
to obtain a set of coupled momentum equations and energy equations. A similarity
transformation with wedge-type parameters and a series expansion method are then
used to convert the nonlinear, coupled partial differential equations to a set of non-



6 Copyright © 2009 ICCES ICCES, vol.9, no.1, pp.3-21

linear, decoupled ordinary differential equations. In the present conjugate problem,
these decoupled equations and the conduction equation of the fin is then solved iter-
atively to obtain the temperature distribution and the local convective heat transfer
coefficient along the fin by a second-order finite difference method. While the dif-
ference form of the fin conduction equation has previously been solved by either
a relaxation procedure [23,24] or a direct matrix-inverse method [25,26] and the
Runge-Kutta integration method [27,28], a simple and stable direct Gauss elimi-
nation method [29] is used in the present study. The authors Hsu et al. [35] had
been studied the similar topic, but not considered the viscous dissipation. Present
study is an extension to it, the energy equation increase the viscous dissipation item,
through a similarity transformation and perturbation method to solve the conjugate
heat transfer problem. To the author’s knowledge, the influence of viscous dissi-
pation on conjugate heat transfer of forced convection for visco-elastic fluid past a
flat plate fin has not yet discussed in the literature. The detail formulas, data and
figures have obtained different results as shown in this study.

Theory and Analysis
The Rivlin-Ericksen model [30] for a homogeneous, non-Newtonian, second-

grade visco-elastic fluid is used in the present wedge flow. The model equation is
expressed as follows:

T = −PI+ μA1 +α1A2 +α2A2
1 (1)

Where P is pressure, μ is dynamic viscosity, α1 and α2 are first and second normal
stress coefficients which are related to the material modulus. The kinematic tensors
A1 and A2 are defined as

A1 = gradV+(gradV)T (2)

A2 =
d
dt

A1 +A1 · (gradV)+(gradV)T ·A1 (3)

Where V is velocities and d/dt is the material time derivative. As done by Ra-
jagopal [25], the present researchers substituted equation (1) into momentum equa-
tions

ρ
d
dt

V = divT+ρb (4)

And assumed that the fluid is incompressible and the flow is in isochoric motion
to obtain

divV = 0 (5)

For the steady, two-dimensional laminar flow under conservative body force b,
the following were defined:

P∗ = P− (2α1 +
α2

2
)(

∂u
∂y

)2 +ρΦ (6)
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b = ∇Φ (7)

From Bernoulli’s principle and the substitution of the edge velocity ue, the
following was obtained:

ue
∂ue

∂ χ
= − 1

ρ
∂P∗

∂ χ
(8)

Consequently, one can eliminate the pressure term in the momentum equation
and obtain the dimensionless boundary-layer equations

∂U
∂X

+
∂V
∂Y

= 0 (9)

U
∂U
∂X

+V
∂U
∂Y

= Ue
dUe

dX
+

∂ 2U
∂Y 2 +E

[
∂

∂X

(
U

∂ 2U
∂Y 2

)
+

∂U
∂Y

∂ 2V
∂Y 2 +V

∂ 3U
∂Y3

]
(10)

Where E = α1ReL/ρL2, ReL is the Reynolds number, L is the characteristic length.
The corresponding dimensionless parameters are

X =
x
L

Y =
y
L

√
ReL U =

u
U∗ V =

υ
U∗

√
ReL Ue =

ue

U∗ (11)

The dimensionless boundary conditions are

Y = 0 U = 0 V = 0 Y → ∞ U → Ue (X) (12)

By using the stream function ψ one can define

U =
∂ψ
∂Y

V = −∂ψ
∂X

(13)

And substitute into equation (10) to get

∂ψ
∂Y

∂ 2ψ
∂X∂Y

− ∂ψ
∂X

∂ 2ψ
∂Y 2 = Ue

dUe

dX
+

∂ 3ψ
∂Y 3

+E

[
∂

∂X

(
∂ψ
∂Y

∂ 3ψ
∂Y 3

)
− ∂ 2ψ

∂Y 2

∂ 3ψ
∂Y2∂X

− ∂ψ
∂X

∂ 4ψ
∂Y 4

]
(14)

Where E = α1ReL
ρL2 is the visco-elastic parameter. Where L is characteristic length or

fin length and Tw = T∞ +A = constant. The boundary conditions are written as

Y = 0
∂ψ
∂Y

= 0
∂ψ
∂X

= 0 Y → ∞
∂ψ
∂Y

→Ue (X) (15)
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The visco-elastic model is applicable for diluted polymer fluids under retarded-
motion expansion. So one can assume E«1 and expand the stream function ψ with
respect to E as

ψ = ψ0 (X ,Y )+Eψ1 (X ,Y)+ · · ·+Enψn (X ,Y ) (16)

Substituting equation (16) into equations (14) and (15), and introducing the
similar transformation parameters

η =
(

m+1
2

)1/2

X (m+1)/2Y (17)

f0 (η) =
(

m+1
2

)1/2

ψ0X−(m+1)/2 (18)

One can obtain a set of nonlinear ordinary differential equations from the con-
cepts of perturbation technique and power series expansion. The equation of the
zeroth-order term, f0 is of the form

f ′′′0 + f0 f ′′0 +β
[
1− ( f ′0)

2] = 0 (19)

Where β = 2m/(m+1) is the shape factor of the wedge. Also from the potential
flow theory, the edge velocity Ue is expressed as

Ue = Xm (20)

The boundary conditions are then written as

f0(0) = 0 f ′0(0) = 0 f ′0 (∞) → 1 (21)

Similarly, by assuming

f1 (η) =
(

2
m+1

)1/2

ψ1X (1−3m)/2 (22)

And performing the similarity transformation, one can also obtain a nonlinear
ordinary differential equation

m+1
2

f ′′′1 +
m+1

2
f0 f ′′1 − (3m−1) f ′0 f ′1 +

3m−1
2

f ′′0 f1 +(3m−1) f ′0 f ′′′0

− 3m−1
2

(
f ′′0

)2 − m+1
2

f0 f
′′′′
0 = 0 (23)
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For the first-order term, f1 the corresponding boundary conditions of the equa-
tion are

f1(0) = f ′1(0) = 0, f ′1 (η → ∞) → 0. (24)

In the present study, we simply set β = 0(m = 0) and β = 1.0(m = 1.0) re-
spectively, to represent a wedge flow and a stagnation flow. Consequently, the
velocity distribution can be obtained by solving equations (19-21) and (23-24) with
numerical methods. By introducing the non-dimensional temperature,

θ =
T −Te

Tf −Te
(25)

The non-dimensional energy equation (including the viscous dissipation) in the
boundary layer is written as

U
∂θ
∂X

+V
∂θ
∂Y

=
1
Pr

∂ 2θ
∂Y2 +

υ
Cp

(
∂U
∂Y

)2 (26)

With the boundary conditions

θ (X ,0) = 1, θ (X ,∞) = 0. (27)

To utilize the concept of the local similarity transformation, one can define

ξ = Xm−1 (28)

And assume that the non-dimensional energy equation can be expanded ac-
cording to E as

θ = g0 (ξ ,η)+Eg1 (ξ ,η)+ · · ·+Engn (ξ ,η) . (29)

Finally, by substituting equation (29) into equation (26), the zero-order equa-
tion with respect to E and corresponding boundary conditions are

∂ 2g0

∂η2 +Pr . f0
∂g0

∂η
= Pr

2(m−1)
m+1

.ξ . f ′0.
∂g0

∂ξ
−Pr ·Ec ·ξ 2m

m−1 · f ′′20 (30)

g0 (ξ ,η = 0) = 1 g0 (ξ ,η → ∞) = 0. (31)

The first-order equation and boundary conditions are

∂ 2g1

∂η2 +Pr

(
f0

∂g1

∂η
+

3m−1
2

.ξ . f1.
∂g0

∂η

)

= Pr

(
2(m−1)

m+1
. f ′0.ξ .

∂g1

∂ξ
+(m−1) . f ′1.ξ 2.

∂g0

∂ξ

)
+Ec · (m+1

2
)2 · f

′′2
1 ·ξ 4m−2

m−1

(32)
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g1 (ξ ,η = 0) = 0, g1 (ξ ,η → ∞) = 0 (33)

One can solve equations (30-33) by neglecting terms with ξ -derivatives (a local
similar concept) to obtain temperature distributions. The heat flux on the surface of
the fin is

qw = −k
∂T
∂y

∣∣∣∣
y=0

= h(Tf −Te) (34)

And with some manipulations the local Nusselt number can be expressed as

Nux = hx/k = −
(

m+1
2

)1/2

Re1/2
x

∂θ
∂η

∣∣∣∣
η=0

(35)

The corresponding local heat convective heat transfer coefficient can be written
as

h = −(k/x)
(

m+1
2

)1/2

Re1/2
x

∂θ
∂η

∣∣∣∣
η=0

(36)

The constant, related to the wedge angle and the temperature gradient in equa-
tions (35) and (36), may be expressed as

θ ′(0) = −
(

m+1
2

)1/2 ∂θ
∂η

∣∣∣∣
η=0

(37)

Or expanded according to the order of E as

θ ′
0(0) = −

(
m+1

2

)1/2 ∂g0

∂η

∣∣∣∣
η=0

(38)

And

θ ′
1(0) = −

(
m+1

2

)1/2 ∂g1

∂η

∣∣∣∣
η=0

(39)

The formulation of the first analysis principle for forced convection along a
fin involves the energy conservation for the fin and the boundary layer equations
for the flow. For a slender fin, ample evidence based on finite difference solutions
shows that a one-dimensional model is adequate [30]. The fin temperature at any
x location serves as the wall temperature for the adjacent fluid and is denoted as
Tf (x). The energy equation for the fin may be written in two different forms,
depending on how the coupled-fin/boundary-layer problem is solved. The method
used here involves a succession of consecutive iteration solutions for the fin and the
boundary-layer flow, with the sequence continued until there is no change (within
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a preset tolerance) between the nth iteration and the (n - 1) iteration. Within each
iteration information must be transferred from the boundary-layer solution which
is current for that period and be used as input to update the fin solution. This
information may be either in the form of the local heat flux g(x) or the local forced
convective heat transfer coefficient h(x). Both q(x) and h(x) are available from the
current wedge-type boundary layer solution. The flat plate fin energy equation can
be expressed as

d2Tf

dx2 =
q

k f t
(40)

or
d2Tf

dx2 =
(

q
h f t

)
(Tf −Te) (41)

Where k f and t are the thermal conductivity and the half thickness of the fin, re-
spectively. For the solutions of either equations (40) or (41) at a given cycle of the
iterative procedures, h and q can be regarded as known quantities. At first glance,
it appears advantageous to use equation (40) rather than equation (41) because it is
easier to solve; however, equation (41) is employed in the solution scheme. This
choice made was based on experience, which has shown that at any stage of an
iterative cycle h is closer to the final converged result than q. Thus, equation (41) is
chosen to obtain rapid convergence of the iterative procedure, whereby this objec-
tive is satisfactorily fulfilled, as will be documented shortly. Equation (41) is recast
in a dimensionless form by the substitutions

X = x/L, Y = y/L, θ f = (Tf −Te)/(T0−Te) (42)

Where T0 is the base temperature of the fin, so that

d2θ f

dx2 +
d2θ f

dy2 = ĥNccθ f (43)

With boundary conditions

θ f = 1 (X = 1), k f
dθ f

dX
+hθ f = 0 (X = 0) (44)

Where Ncc is the conduction-convection number and is defined as

Ncc =
(

hL
k f

)
Re1/2

L (45)
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The quantity ĥ is a dimensionless form of the local convective heat transfer
coefficient and can be written as

ĥ =
(

hL
k

)
Re1/2

L (46)

The Biot number is not an appropriate parameter in the present problem be-
cause the heat transfer coefficient varies with x and is also unknown prior at the
beginning of the computations. It will be change the Ncc number to the Biot num-
ber for this conduction-convection problem. These conjugate ordinary differential
equations are discretized by a second-order accurate central difference method, and
a computer program has been developed to solve these equations. To avoid errors
in discretization and calculation processing and to ensure the convergence of nu-
merical solutions, some conventional numerical procedures have been applied in
order to choose a suitable grid size, a suitable η range and ξ positions, etc, and
a directly gauss elimination with Newton’s method [33] is used in the computer
program to obtain solutions of these difference equations. Calculation steps of the
entire conjugate system are as follows:

1. Estimate the fin temperature distribution Tf (x).
2. Solve flow fields [equations (19),(21), (23)-(24) and (30)-(33)] and the lo-

cal convective heat-transfer coefficient (equation (46)) according to the local
Prandtl number, elastic parameter, and the local fin temperature from the re-
lated equations.

3. Solve the heat-conduction equation of the fin (equation (43)) with the re-
newed local convective heat-transfer coefficient.

4. Compute thermodynamic fluid properties from the fin temperature and free-
stream temperature.

The sequences from 2 to 4 are repeated until an acceptable convergence for fin
temperature has been reached. The conditions of continuity in the heat flux and
temperature at the fluid-solid interface are then satisfied and all relevant heat trans-
fer characteristics can be calculated.

Results and Discussion
Many previous studies of conventional and conjugate problems didn’t consider

convective effects of the stagnation flow at the tip, but simply substituted the con-
vective condition by an adiabatic boundary condition. However, from the fin-flow
configuration shown in Figure 1, the heat transfer at the tip of the fin should not be
ignored. It is important to include stagnation flow effects at the tip point of the fin
in either conventional heat transfer problems or conjugate problems. Results also
support that the heat transfer at the tip is significant, and will be discussed in the
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later part of the present study. A generalized Falkner-Skan flow derivation is used
to analyze a stagnation flow (shape factor β = 1.0 at the fin tip and a pin shape flow
β = 0.0) on the fin surface.

Fig 1. A sketch of the physical model for conjugate heat transfer of forced
convection with viscous dissipation for visco-elastic fluid past a flat plate fin.

Table 1: f ′′0 (0) and f ′′1 (0) vs. β
f ′′0 (0) Present f ′′1 Present

β Re f . [5] Solution Errors Re f . [5] solution Errors
0.05 0.5311 0.5312 0.0001 0.8214 0.8278 0.0064
0.10 0.5870 0.5871 0.0001 0.5296 0.5279 0.0017
0.20 0.6867 0.6869 0.0002 0.3009 0.2985 0.0024
0.30 0.7748 0.7751 0.0003 0.1418 0.1401 0.0017
0.40 0.8544 0.8548 0.0004 -0.0112 -0.0123 0.0011
0.50 0.9277 0.9282 0.0005 -0.1708 -0.1717 0.0035
0.60 0.9958 0.9965 0.0007 -0.3409 -0.3419 0.0010
0.80 1.1202 1.1211 0.0009 -0.7164 -0.7181 0.0017
1.00 1.2326 1.2337 0.0011 -1.1390 -1.1420 0.0030
1.20 1.3357 1.3371 0.0014 -1.6064 -1.6112 0.0048
1.60 1.5215 1.5234 0.0019 -2.6641 -2.6744 0.0003

Table 2: θ ′
0(0) vs. Pr β =0.0

θ ′
0(0) θ ′

0(0)
Pr Ref.[34] present Errors
0.3 0.2148 0.2207 0.0059
0.6 0.2770 0.2777 0.0007
0.72 0.2955 0.2960 0.0005
1.0 0.3321 0.3323 0.0002
2.0 0.4223 0.4227 0.0004
3.0 0.4850 0.4856 0.0006
6.0 0.6133 0.6145 0.0012
10.0 0.7281 0.7304 0.0013
30.0 1.0517 1.0602 0.0085
60.0 1.3255 1.3459 0.0204
100.0 1.5718 1.6106 0.0388

A second-order accurate finite difference method is used to obtain solutions of
these equations. Comparing f ′′0 (0) and f ′′1 (0) to results of [5] at various values of β
showed a good agreement and these values are listed in Table 1. Also, computed
values of θ ′

0(0) at various values of Pr for flat-plate flow consist with [34], and are
listed in Table 2. These tables indicated that the present results are correct, and the
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Table 3: Ec vs. θ ′(0), θ ′
0(0) and θ ′

1(0) (E=0.001, β =0, Pr=1, X=0.5, ξ=2)
Ec f ′′0 (0) g′0(0) θ ′

0(0) f ′′1 (0) g′1(0) θ ′
1(0) g′(0) θ ′(0)

0.000 0.4711 -0.4711 0.3331 1.9998 -39.6988 28.0695 -0.5110 0.3613
0.001 0.4711 -0.4711 0.3331 1.9998 -39.6988 28.0713 -0.5108 0.3612
0.005 0.4711 -0.4701 0.3324 1.9998 -39.7094 28.0788 -0.5099 0.3605
0.010 0.4711 -0.4690 0.3316 1.9998 -39.7221 28.0877 -0.5087 0.3597
0.020 0.4711 -0.4666 0.3299 1.9998 -39.7473 28.1056 -0.5064 0.3580
0.030 0.4711 -0.4642 0.3283 1.9998 -39.7727 28.1235 -0.5040 0.3564
0.040 0.4711 -0.4619 0.3266 1.9998 -39.7979 28.1414 -0.5017 0.3547
0.050 0.4711 -0.4595 0.3249 1.9998 -39.8232 28.1593 -0.4993 0.3531
0.060 0.4711 -0.4572 0.3233 1.9998 -39.8484 28.1771 -0.4970 0.3514
0.070 0.4711 -0.4548 0.3216 1.9998 -39.8737 28.1950 -0.4947 0.3498
0.080 0.4711 -0.4524 0.3199 1.9998 -39.8991 28.2129 -0.4923 0.3481
0.090 0.4711 -0.4501 0.3183 1.9998 -39.9244 28.2308 -0.4900 0.3465
0.100 0.4711 -0.4477 0.3166 1.9998 -39.9497 28.2487 -0.4877 0.3448

numerical method used is adequate. From table 3 shows the important factor Ec
calculation results by this study, it is a novel to the others related studies. Hsiao et
al. [36-39] and Vajravelu [40] were also using analytical and numerical solutions
to solve the related problems. So that, some numerical technique methods will be
applied to the same area in the future.

Figures 6, 7 and 8 show the conjugate fin temperature distributions and Figure
2,3,4 and 5 are their corresponding heat transfer coefficients . The results obtained
from the present researchers’ computation for different Ncc values and different
elastic coefficients by centered finite difference methods. The calculations require
about more than three iterations for convergence and provide a good solution to the
problem.

In addition to the above results, several points require discussion. One consid-
eration is the two kinds of flow fields selected to satisfy the boundary conditions
for the fin, constituting a generalization for dealing with convection-conduction
problems. Most other studies have used a simplified single flow field and selected
the adiabatic boundary condition only for the convenience of analysis. A second
consideration is the numerical method for the more accurate fourth-order Runge-
Kutta method may be good in one by one shooting case, but may not be suit to
the many unknowns initial guess conjugate problems. A third consideration is the
accuracy depending on the numerical calculation results. So, selecting an appro-
priate numerical method is very important. At the presents study, the second-order
Centered-difference method is selected as an example. A fourth consideration is a
comparison with other related works. The paper has compared with exist solutions
and list some of them on the tables (1), (2). All the comparisons seem to be having
a good agreement.
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Figure 2: Local Convective heat trans-
fer coefficient distributions

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

    X

   
 h

   NCC=1.0, Ec=0.05

β=0.0

 ( E  = 0.10) +

 ( E  = 0.05) *

 ( E  = 0.001) o

Figure 3: Local Convective heat trans-
fer coefficient distributions
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Figure 4: Local Convective heat trans-
fer coefficient distributions
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Figure 5: Local Convective heat trans-
fer coefficient distributions

Conclusion
A steady two-dimensional forced convection of an incompressible second-grade

fluid adjacent to a fin is studied. A similar solution was obtained and results indi-
cate that the viscous dissipation force made an obviously influence to heat transfer
performance. The variation of the magnitude of dimensionless wall shear stress
important factor f ′′0 (0) depends on relative quantities of E, Ec, f ′0(0) and f ′1(0). Di-
mensionless heat transfer important factor θ ′(0) (according to Eq. (37)) increases
with increasing values of Pr and/or θ ′(0) is also increases with increasing E. In
the present study, it has been introduced into analyses of a conjugate heat transfer
problem of conduction in a solid fin and a forced convection in flow. The present
conjugate problem is a hybrid system of the ordinary convective problem with a
constant wall temperature. A local heat transfer coefficient is obtained from nu-
merical solutions. Numerical results in the present study indicate that elastic effect
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Figure 6: Conjugate fin tempera-
ture distributions for E=0.1; Ec=0.05;
β =0.015
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Figure 7: Conjugate fin tempera-
ture distributions for E=0.05; Ec=0.05;
β =0.015
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Figure 8: Conjugate fin temperature distributions for E=0.001; Ec=0.05; β =0.015

E in the flow can increase the local heat transfer coefficient and enhance the heat
transfer of a fin. Also, a better heat transfer is obtained with a larger Ncc, E, Ec and
a larger Pr.
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Nomenclature

A proportional constant.
A1, A2 kinematic tensors
A(x) the flat plate fin area at section of x.
b body force[Nm−3].
B proportional constant.
E elastic parameter.
Ec Eckert number.
f0 zero-order dimensionless stream function.
f ′0 zero-order dimensionless velocity.
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f ′′0 zero-order dimensionless velocity gradient.
f1 first-order dimensionless stream function.
f ′1 first-order dimensionless velocity.
f ′′1 first-order dimensionless velocity gradient.
f dimensionless stream function.
f ′ dimensionless velocity.
f ′′ dimensionless velocity gradient.
g0 zero-order dimensionless temperature funtion.
g1 first-order dimensionless temperature function.
gx gravitational acceleration in the x-direction.
h local heat transfer coefficient [Wm−2K−1].
ĥ dimensionless local heat transfer coefficient
I unit vector
k thermal conductivity of the fluid [Wm−1K−1].
k1 visco-elastic parameter.
k f conductivity of the fin. [Wm−1K−1].
L characteristic length or fin length. [m]
Ncc conduction-convection parameter
Nu Nusselt number.
P, P∗ pressure. [Nm−2].
Pr Prandtl number.
q local heat transfer rate at the fin [W].
qw heat transfer rate at the wall surface.
Rex Reynolds number. (u∞x/ν)
ReL Reynolds number. (u∞L/ν)
t fin half thickness. [m]
T stress tensor.
T temperature. [K]
Tw constant wall surface temperature. [K]
Te flow temperature at the outer edge of the boundary layer. [K]
Tf fin temperature. [K]
T∞ constant ambient fluid temperature. [K]
T0 fin base temperature [K]
U∗ characteristic velocity.
ue edge velocity [ms−1]
u, v velocity components in the x and y directions, respectively. [ms−1]
U , V dimensionless horizontal and vertical flow velocities.
V velocity vector.
X dimensionless coordinate, (x/L)
x, y horizontal and vertical coordinates.
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X, Y dimensionless horizontal and vertical coordinates.
V velocity vector.
x, y horizontal and vertical coordinate.

Greek symbols

α1,α2 first and second normal stress coefficients.
β the thermal expansion coefficient.
β shape factor
μ dynamic viscosity. [kgs−1m−1]
ν kinematic viscosity. [m2s−1]
ρ density of the fluid. [kgm−3]
η similar parameter.
ξ dimensionless local parameter.
Φ potential function.
Ψ stream function.
θ dimensionless temperature.
θ (0) dimensionless temperature at the wall for heat convection.
θ f (0) dimensionless temperature at the wall for heat conduction.
θ0(0) zero-order part of θ (0).
θ1(0) first-order part of θ (0).

θ ′(0) temperature gradient at the wall θ ′(0) = −(
m+1

2

)1/2 ∂θ
∂η

∣∣∣
η=0

.

θ ′
0(0) zero-order part of θ ′(0), θ ′

0(0) = −(
m+1

2

)1/2 ∂g0
∂η

∣∣∣
η=0

.

θ ′
1(0) first-order part of θ ′(0), θ ′

1(0) = −(
m+1

2

)1/2 ∂g1
∂η

∣∣∣
η=0

.




