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BEM stress analysis of 3D generally anisotropic elastic
solids
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Summary
A BEM formulation for the numerical stress analysis of 3D generally anisotropic

elastic solids is presented in this paper. It is based on closed-form algebraic expres-
sions of the fundamental solutions derived by Ting and Lee [7] and Lee [8] which
are defined in terms of Stroh’s eigenvalues, and has never been implemented pre-
viously in the literature. The veracity of the formulation and implementation is
demonstrated by two engineering examples.

Introduction
The boundary element method (BEM) is well recognized as a very efficient

numerical tool for the elastic stress analysis of solids, particularly those with high
stress gradients. Although well established for isotropic elastostatics, and for 2D
anisotropic elasticity, its development for 3D anisotropic elasticity in the past three
decades has been sporadic and less mature. This is because of the mathematical
complexity of the fundamental solutions which are necessary items in the formu-
lation of the boundary integral equation (BIE), and the computational burden to
evaluate them. In the pioneering work of Wilson and Cruse [1], the Green’s func-
tion for displacements employed and its derivatives, which are in terms of a contour
integral over a unit circle, are evaluated numerically into a database, from which
interpolation of the stored values is carried out in the BEM calculations. It is,
however, demanding on computer storage requirements and in addition, may not
provide sufficient accuracy for materials with high degree of anisotropy. Sales et
al. [2] and Phan et al. [3] had proposed more efficient schemes to evaluate the 3D
fundamental solutions, but there was no report of their implementation into a BEM
formulation. Other BEM implementations that have been developed include that
by Tonon et al.[4], and more recently, by Wang and Denda [5]. Both are based on a
more explicit Green’s function solution [6] in which the algorithm to compute it in-
volves contour integration over a rectangular parallelepiped, and over a semi-circle,
respectively.

An alternative, explicit, real-variable, algebraic form of the fundamental solu-
tions for the displacements and its derivatives for 3D generally anisotropic solids
have been derived by Ting and Lee [7] and Lee [8], respectively. They are expressed
in terms of Stroh’s eigenvalues and can be evaluated in fairly straight-forward man-
ner involving primarily multiplication of matrices related to the material properties
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and the field point position. Their veracity has been demonstrated recently [9]; sur-
prisingly, they have never been employed previously in BEM. In this paper, these
fundamental solutions are used in a conventional BEM formulation for 3D gen-
erally anisotropic elastostatics. The implementation has been successfully carried
out by modifying a code which had been previously developed for 3D isotropic
elasticity using quadratic isoparametric elements [10]. As this numerical algorithm
is well-established in the literature, only the explicit-form fundamental solutions
employed are presented next. The success of the implementation is then illustrated
by two examples involving stress concentrations in engineering stress analysis.

Fundamental Solutions
Only the final forms of the fundamental solutions are presented here, the reader

is referred to [7] and [8] for more details of their derivation. Consider a source
point P in an infinite anisotropic body at the local origin x = 0 where a unit load
is applied, and the field point Q at x = (x1, x2, x3) at distance r away. For a a unit
circle |n∗| on an oblique plane normal to xQ, the unit vector n∗ can be written in
terms of an arbitrary parameter ψ as

n∗ = ncosψ +msinψ , (1)

where the vectors n, m along with x/r form a right-handed triad [n,m, x/r]. By
introducing the following three tensors,

Q ≡ Qik = Ci jksn jns, R ≡ Rik = Ci jksn jms, T ≡ Tik = Ci jksm jms, (2)

where Ci jks is the material stiffness matrix, Ting and Lee [7] have obtained the
Green’s function for displacements, U(x), to be

U(x) =
1

4πr
Hi j =

1
4πr

1
|T|

4

∑
n=0

qnΓ̄ΓΓ(n)
, (3)

where Γ̂ΓΓ, with components Γ̄ΓΓ(n)
, is the adjoint of ΓΓΓ and

ΓΓΓ(p) = Q+ p(R+RT )+ p2T. (4)

In eq.(8), p = tanψ and a sextic equation in p is obtained by setting the determinant,
|ΓΓΓ(p)|, to zero. The six independent roots of this equation are complex, pv =
αv + iβv, βv > 0, (ν = 1,2,3), and they appear as conjugate pairs ; they are the
Stroh’s eigenvalues. Also in eq. (3), qn is given by

qn =
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(5)



BEM stress analysis of 3D generally anisotropic elastic solids 29

where the overbar in pt denotes the complex conjugate, δ i j is the Kronecker delta
and the subscript t follows the cyclic rule t = (t −3) if t>3. More explicit expres-

sions of Γ̄ΓΓ(n)
in terms of Q, R and T may be found in [9].

The traction fundamental solution, T∗(x), is obtained via the first derivative
of the Green’s function for displacements, and invoking the generalized Hooke’s
law and the well-known relationship between the stress tensor and traction vector.
Thus, only the displacement derivative of U(x) as derived by Lee [8] is presented
here, as follows:

Ui j,l =
1

4π2r2

[−π yl Hi j +Cpqrs
(
ysMlqipr j +yqMslipr j

)]
(6)

where

Mi jklmn =
2π i

|T |2
3

∑
t=1

1

(pt − pt+1)
2 (pt − pt+2)

2[
Φ′

i jklmn(pt)−2Φi jklmn(pt)×
(

1
pt − pt+1

+
1

pt − pt+2

)]
(7)

Φi jklmn(p) =

[
ni n j +(ni m j +mi n j) p+mi m j p2

] [
Γ̂kl(p)Γ̂mn(p)

]
(p− p̄1)2(p− p̄2)2(p− p̄3)2 (8)

In eq. (11), the prime in Φ′
i jklmn(pt) denotes differentiation with respect to p.

It is not necessary to rewrite this term as a fully explicit expression, since it is a
relatively simple matter to program the functions Γ̂ΓΓ(p), (p− p̄t )2,[
ni n j +(ni m j +mi n j) p+mi m j p2

]
, and their derivatives into subroutines in the

computer code and then apply the chain rule in the differentiation.

Numerical Results
Due to space limitations, only two examples are presented here to demon-

strate the veracity and capability of the BEM formulation developed. Both prob-
lems had been solved first in isotropy using the 3D BEM isotropic algorithm, and
then re-solved using the present algorithm for 3D anisotropic elasticity as a check;
nearly identical results were obtained. For the two example problems, the following
anisotropic stiffness coefficients corresponding to alumina were employed:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

465 124 117 101 0 0
124 465 117 −101 0 0
117 117 563 0 0 0
101 −101 0 233 0 0

0 0 0 0 233 101
0 0 0 0 101 170.5

⎤
⎥⎥⎥⎥⎥⎥⎦

GPa
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The first example, shown in Fig.1, is a rectangular plate with a central hole sub-
ject to remote uniaxial tension, σo, in the x3-direction at the top face and restrained
at the bottom face. Table 1 lists the stress concentration factor, k = σ33/σo, at the
edge of the hole for this geometry in the mid-thickness plane (where it is largest)
as obtained from the present 3D anisotropic analysis. Also shown for comparison
are the corresponding results from an ANSYS FEM anisotropic and BEM isotropic
analysis (with Poisson’s ratio ν = 0.3).

Table 1: BEM computed stress concentration factor, k = σ33/σo - Example 1
3D Anisotropy (BEM) 3D Anisotropy (ANSYS) 3D Isotropy (BEM)

3.2778 3.227 3.197
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20

Figure 1: Example 1 Figure 2: BEM mesh: Ex. 1

The second example considered is a cylindrical bar with a spherical cavity un-
der remote tension, σo, as shown in Fig. 3. A range of relative cavity sizes were
considered, with a/R = 0.2 to 0.5, where a and R are the radii of the cavity and
bar, respectively. A typical BEM 3D mesh employed is shown in Fig. 4. Figure
5 shows the variation of the stress concentration k = σ33/σo with the relative size
of the cavity as measured by a/R; the corresponding results obtained from ANSYS
FEM anisotropic analysis and from the BEM isotropic analysis are also shown for
comparison.

It can be seen that agreement between the 3D BEM and FEM results for both
examples is very good indeed. The deviations of k from the corresponding isotropic
cases are also very small; this is not too surprising in view of the near quasi-isotropy
in the x1 −x2 plane and not very severe anisotropy in the x1 −x3 plane.
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Figure 3: Example 2
Figure 4: Typical BEM
mesh: Ex. 2
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Figure 5: Variation of stress concentration factor, k = σ33/σo, with a/R– Example
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