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Determination of response spectrum of a linear time
invariant gyroscopic system to random excitations using

finite element method
Sibi Chacko1

Summary
In this work, dynamic analysis of a compliant shaft while it rotates about its

axis has been carried out using Finite Element Method. This system is linear time
invariant gyroscopic system. The governing equations are formulated for the shaft
supported at both ends. Both ends of the shaft are supported to allow rotations
by constraining all degrees of freedom, except axial rotations. The shaft is mod-
eled using beam elements, with six degrees of freedom at the nodes. The effect
of rotation on displacements is analysed by assessing the total kinetic energy and
potential energy. In this work dynamic response of the shaft while rotating, excited
by random forces at various points are analysed along with free vibration analysis.

Introduction
In this paper Finite element method is used to analyse a rotating shaft subjected

to random excitations, which are ergodic in nature. The shaft is discretised by beam
elements. The beam elements are one-dimensional Euler- Bernoulli beam element
[4]. The beam element has six degrees of freedom at the nodes- three translations
and three rotations. The procedure includes formulation and solving of the fourth
order differential equation for shaft bending vibrations with second order equation
for axial vibrations and torsional vibrations [2]. The governing equations are
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∂x2
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]
+ f (x, t) = m(x)
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∂ 2w(x, t)
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In the Euler-Bernoulli beam theory, it is assumed that plane cross sections per-
pendicular to the axis of the beam, remain plane and perpendicular to the axis after
deformation. In this theory the transverse deflections w of the beam is governed by
the fourth order differential equation. Beam element is described in figure 1.

The formulation of stiffness and mass coefficient matrices includes the degrees
of freedom, at the nodes. Bending deflections are contributed by displacement u2

and rotation θ3 at nodes superposed by that contributed by u3, and θ2 at nodes.
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(a) One dimensional beam element showing  
bending degrees of freedom (four) at each nodes 

(b) One dimensional beam element showing  
axial degrees of freedom (two) at each nodes 
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Figure 1: Beam element

Axial displacement denoted as u1 and torsion denoted by θ1. The xm axis coincides
with the centroid axis of the member and is positive from i to j. The ym and zm axes
are chosen such that xm − ym and xm − zm planes are principal planes of bending.
The member axes xm,ym, and zm are parallel to the global axes and the degrees of
freedom in global and local axes system are the same.

FEM procedure is as follows. The weak form of the governing equation is
formulated, the domain is discretised into elements, interpolation functions are se-
lected, finite element equations are formulated, elements are assembled for obtain-
ing the matrix equations considering the boundary conditions and finally the matrix
equations are solved to get the solutions. The weak form of the bending equations
is as follows

xe+1∫
xe

v

[
d2

dx2
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b
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)
− f

]
dx = 0 (3)

Interpolation functions are obtained by considering the displacement function,
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which is to be solved as continuous with its second derivative also continuous.
The second derivative describes the curvature. The following equations show the
interpolation functions describing the bending (equation 4) followed by axial dis-
placement and torsion (equation 5).
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N̄1 = 1−x/le N̄2 = x/le (5)

Following equations show the formulation of stiffness and mass matrix [7]

Ke
i j =

xe+1∫
xe

b
d2Ni

dx2 · d2Nj

dx2 dx Me
i j =
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xe

ρANe
i Ne

j dx

The general displacements at any point on the element can be calculated from
the nodal displacement values. Here it can be seen that rotations about ym and zm

adds to the deflections through zm and ym respectively. Refer figure 1.

Analysis
As the system is gyroscopic, the governing equations are formulated from ba-

sic principles for adopting in FEM. The displacement vector at each node of the
element is denoted as

u
∼ =

⎧⎨
⎩

u1

u2

u3

⎫⎬
⎭ (6)

and the velocity vector as

u̇∼ =

⎧⎨
⎩

u̇1

u̇2

u̇3

⎫⎬
⎭ (7)

Global velocity vector of the node is calculated as

U̇∼ = u̇∼+ω∼ ×u
∼ (8)

Kinetic energy of the element with respect to global coordinates can be written
as
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ρdv(α +β + γ) (9)
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Where α =
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Elemental Kinetic energy can be written as
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where [Me◦] =
∫
v

NT Nρdv, [Me
1] =

∫
v

NT [R]Nρdv and [Me
2] =

∫
v

NT [S]Nρdv.

The energy dissipation is accounted from Raleigh’s dissipation function given
as

ℜ = 1/2
e
u̇∼

T
[Ce]

e
u̇∼

T
(11)

where [Ce] = α0 [Me]+β0 [Ke]
Potential energy is given as

V = 1/2
e
u
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e
u
∼ (12)

Governing equation is obtained using Lagragian formulation.

M ü∼+
(
M1 −MT

1

)
u̇∼+C u̇∼+(K −M2) u

∼ = Q (13)

which is modified as

M ü∼(t)+(C +G) u̇∼(t)+(K +H)u
∼(t) = Q (14)

where [G] is the gyroscopic matrix and [H] the circulatory matrix. With this for-
mulation the elemental mass matrix, stiffness matrix, damping matrix, gyroscopic
matrix and circulatory matrix are obtained. Here the damping is treated as struc-
tural damping, where the coefficient of damping is taken as linear combination of
mass and stiffness parameters. The proportional parameters α0 and β0 are obtained
form the material properties.

To construct the overall system equations the matrices formed for elements are
assembled. The mathematical statement for assembly of stiffness is done as follows
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E

∑
e=1

[K](e), [M] =
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∑
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E

∑
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E

∑
e=1

[H](e)
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Figure 2: (a) Domain of analysis (b) FEM discretisation by beam elements

Dynamic analysis (Free vibration)
Finite element analysis in the previous section leads to the formulation of equa-

tions of motion as shown by equation 15. In free vibration the load vector is zero.
For obtaining the natural frequencies and modes of vibration a free vibration anal-
ysis is carried out. In this analysis applied forces are assumed to be null and the
system does not dissipates energy

M ü∼(t)+(C +G) u̇∼(t)+(K +H)u
∼(t) = 0 (15)

Dynamic Analysis (Random Excitation)
For the analysis a shaft of 1meter length and diameter 25.4mm is considered.

The material of the shaft is assumed as C 40 steel. The shaft is assumed to be fixed
at the ends with axial rotation degree of freedom is left free. The analysis is carried
out using Matlab and the results are plotted as mode shapes. The first four mode
shapes are plotted. Figure 2 shows the domain analysed. The mode shapes are
plotted by formulating the problem as an Eigen value problem and then finding all
Eigen vectors

In order to carry out the forced vibration analysis the equation 14 has to be
considered completely. In this section the analysis is pertaining to find the response
due to random excitation. The generalised force {Q} is considered to be an ergodic
random process. Using the mass, stiffness and damping matrices the complex fre-
quency response matrix is obtained. Theory of random vibration depicts that the
spectral density of response can be obtained from spectral density of excitation us-
ing the complex frequency response function.[3]. Hence the analysis is carried out
in frequency domain.

Su(ω) = H (−ω)H (ω)S f (ω) (16)

where Su(ω) is the spectral density of response and S f (ω)is the spectral density
of excitation and H(ω) is the complex frequency response function. For a multi
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degree freedom system the equation takes the form,

[S]u = [H]T [S] f [H] (17)

where [H] =
[
[K +H ]+ [C +G]−ω2 [M]

]−1
is the frequency response matrix for

a non-natural system. The system state matrices are formed. For time history
the following procedure is done. The transfer function of the multi input multi
output system is obtained. The time history of excitation is transformed to Laplace
domain and is input to the system. The system response obtained is transformed
back to time domain and results are plotted. This analysis shows that any non-
natural system can be analysed by this formulation using finite element method.
The formation of the gyroscopic matrix circulatory matrix for non-natural system
is made simple using the finite element technique.

Results and Discussion
The analysis is carried using Matlab programming. The complex frequency re-

sponse matrix for the multi degree freedom system is calculated. The mode shapes
for first five frequencies are shown in figures 3 to 6. The results obtained are in good
agreement with actual modes of vibration obtained by closed form solutions. The
transverse modes of vibration are harmonics of the form (1− cos(x)). The results
plotted are the same harmonics. The results shown are normalised with respect to
the maximum value.

White noise of unit amplitude [1] is considered as the input excitation (Figure
7). the shaft is excited at the midpoint. Results are tabulated and responses at
various locations of the shaft are plotted. The results show the response function
in frequency domain and also resonance state. The program developed can extract
response spectrum at any node, through any degree of freedom. the spectral density
of response are shown in figures 8 9 and 10. The time history of response is also
analysed and the results are plotted (figure 11). In this analysis the time history is
obtained using state variable approach. A comparison is also made (figure 7) in the
result, to show the difference between the response at two different points, for the
same excitation at the nodes.

Conclusion
Finite element method based technique is developed for dynamic analysis of

Gyroscopic system .The numerical method proposed for dynamic analysis of flex-
ible rotating members can be applied to any kind of members with any geometry.
This method uses basic dynamic principles. The response spectrum for the ergodic
excitations are obtained for the system considered. free vibration analysis has also
been carried out. Results are obtained and plotted. As this is a fundamental work,
it can be used for applied dynamic analysis.
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Figure 3: First mode of transverse vibration (normalised); ωn=32 Hz
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Figure 4: Second mode of transverse vibration (normalised); ωn= 67 Hz
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Figure 5: Third mode of transverse vibration (normalised); ωn=197 Hz

-3

-2

-1

0

1

2

3

0 2 4 6 8 10 12

Shaft Nodal Points

Normalised Mode

Figure 6: Forth mode of transverse vibration (normalised); ωn=288 Hz
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Figure 7: Input unit white noise excitation given at all transverse nodes
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Figure 8: Spectral density of response at node 3 (transverse) (rpm of shaft
=100rad/sec)
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Figure 9: Spectral density of response at node 9 (transverse) (rpm of shaft
=100rad/sec)

0

5E-15

1E-14

1.5E-14

2E-14

2.5E-14

3E-14

-30000 -20000 -10000 0 10000 20000 30000
exciting frequency omega  rad/sec

sp
ec

tr
al

 d
en

si
ty

Figure 10: Spectral density of response at node 27 (transverse, middle of the shaft)
(rpm of shaft =100rad/sec)
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Figure 11: Displacements at middle node and node at quarter length (Time History)
for speed 100 rad/s
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Nomenclature

[C] Damping matrix
[D] Transition matrix
[G] Gyroscopic matrix
[K] Stiffness matrix
[M] Mass matrix
[S] Spectral density matrix
{Q} Generalised forces
〈 f ,g〉 Inner product of f and g
A(x) Cross sectional area
C Damping coefficient
E Young’s modulus N/mm2

f (x) Continuous function
f [x] Discrete function
k Stiffness
L(s) Laplace transformation
Le Evaluation length
m Mass
Ni,Nj Interpolation functions
S(ω) Spectral density function
u Generalised local displacements
Ui Global displacements
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V Potential energy
x,y Coordinate directions normal to the shaft axis
z Coordinate direction parallel to the shaft axis
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