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Summary
The Finite Element (FE) solution to consolidation equations in large geologi-

cal settings raises a few numerical issues depending on the actual process addressed
by the analysis. There are two basic problems where the solver efficiency plays a
crucial role: 1- fully coupled consolidation, and 2- non-linear faulted (uncoupled)
consolidation. Using a proper nodal numbering the FE matrices exhibit a block
(or multilevel) structure. Krylov subspace solvers are attracting a growing atten-
tion, provided that a relatively inexpensive and effective preconditioner is available.
For both problems possible preconditioners include the Diagonal Scaling (DS), the
Incomplete Triangular Factorization (ILU), the Mixed Constraint Preconditioning
(MCP) and the Multilevel Incomplete Factorization (MIF). The present communi-
cation provides a review and a critical discussion of DS, ILU, MCP and MIF when
used as preconditioners for the numerical solution of a consolidation model.

Introduction
Krylov subspace, or Conjugate Gradient (CG)-like, methods are attracting a

growing interest for the iterative solution to large sets of linear equations that gen-
erally arise from the numerical integration of partial differential equations [1]. A
key-factor, however, for a successful implementation of any Krylov method is the
availability of a relatively cheap and efficient preconditioner capable to accelerate
properly the convergence to the wanted solution. An important class of problems
where CG-like solvers are becoming more and more popular occurs in compu-
tational geomechanics, e.g. with the Finite Element (FE) solution to coupled or
uncoupled consolidation of faulted porous media. In the former example the FE
coefficient matrix is typically symmetric indefinite [2] while in the latter is sym-
metric positive definite (SPD) [3] with in both cases a block or multilevel structure
provided that the FE nodes are numbered in a suitable order. Being the FE ma-
trix either symmetric indefinite or SPD makes a big difference. In the first case
the Symmetric Quasi-Minimal Residual (SQMR, [4]) should be used, while for
a SPD problem the classical Preconditioned Conjugate Gradient (PCG) is much
more attractive. Both SQMR and PCG have to be properly preconditioned to be-
come competitive with direct solvers. Most traditional preconditioners advanced
in computational geomechanics include the Diagonal Scaling (DS, [5]) and the In-
complete Triangular Factorization (ILU) with either zero [6] or partial controlled
fill-in [7] possibly improved by an ad hoc preliminary scaling [8]. Recently novel
preconditioners have been developed that take advantage of the particular block
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or multilevel structure of the coefficient matrix. These are the Mixed Constraint
Preconditioners (MCP, [3] [9]) and the Multilevel Incomplete Factorization (MIF,
[10]). The present communication provides a brief review of DS, ILU, MCP and
MIF as they are implemented into a FE consolidation model along with a discussion
of their respective computational advantages/disadvantages.

The block (multilevel) consolidation problem

Linear coupled consolidation

Coupled consolidation describes the transient process that involves simultane-
usly groundwater flow and solid skeleton deformation in saturated porous media
and is typically solved in space by the FE method and in time by a finite differ-
ence scheme. Although the final coefficient matrix may take on a different form,
i.e. symmetric indefinite, unsymmetric indefinite or unsymmetric positive definite
[2], the former structure is to be generally preferred and is actually more often used.
The corresponding block or two-level matrix A reads:

A =
[

K B
BT −C

]
(1)

where K is a classical elastic stiffnes SPD matrix, C is the classical subsurface
flow SPD matrix and B is a rectangular matrix accounting for coupling between
fluid flow and medium stress. Matrix C incorporates the time integration step Δt,
hence it generally changes as Δt is small at the beginning of the simulation and
progressively grows as the steady state is approached.

Non-linear uncoupled faulted consolidation

The FE modeling of geological faults requires the use of special Interface El-
ements (IE, [11]) with the non-overlapping condition addressed by a penalty for-
mulation yielding an ill-conditioned stiffness matrix. In the simplest two-level case
the FE-IE SPD matrix A takes on the following block form:

A =
[

K B
BT C

]
(2)

where K is similar to that in (1), C is a SPD penalty matrix and B is a rectangular
matrix accounting for the connection between FE and IE. Matrix C contains all the
entries from the nodes lying on the fault surfaces and its coefficients depend on the
system solution as well as the structural block K in (2) if a non-linear constitutive
law is used also for the FE. Typically we may think of a region where the FE de-
forms non-linearly with the remaining volume discretized into linear FE and the
faults described by the highly non-linear IE. Altogether three levels can be iden-
tified, two related to linear and non-linear FE and one to the non-linear IE. If the
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unknown displacements associated to the linear FE nodes are numbered first, those
associated to the non-linear FE nodes second and those to the IE nodes last, the
final FE-IE matrix has the following block form:

A =

⎡
⎣ K1 B11 B12

BT
11 K2 B2

BT
12 BT

2 C

⎤
⎦ (3)

Based on the above premise K1, B11 and B12 in (3) are invariant during the simu-
lation while K2, B2 and C depending on the system unknowns may change during
the process. The size s1 of K1 is related to the number of linear FE nodes, the size
s2 of K2 to the number of non-linear FE nodes and the size s3 of C to the number of
IE nodes. Although highly variable from application to application, just to give an
idea, s1 can be 2÷5 times larger than s2 that in turn might be 2÷5 times larger than
s3.

Preconditioners
With reference to both matrix form (1) and (2), A can be factorized as follows:

A = L J U =
[

I 0
BT K−1 I

][
K 0
0 S = ∓C−BT K−1B

][
I K−1B
0 I

]
(4)

with sign - or + according to (1) and (2), respectively.

Diagonal Scaling (DS)

A diagonal substitute for A −1 can be generated by using the diagonal entries
of J in (4). However, since the Schur complement S is too expensive to calculate,
a further approximation is introduced using S̃ = ∓C−BT [diag(K)]−1B instead of
S. The diagonal preconditioner D−1, labelled as Generalized Jacobi [5], for A thus
becomes:

D−1 =
[

diag(K) 0
0 ϕ diag(S̃)

]
(5)

with ϕ a user specified parameter whose optimal value is to be found empirically.

Incomplete Triangular Factorization (ILU)

ILU is one of the oldest preconditioning strategy advanced by Kershaw [6] and
later improved by a number of authors. In essence, A being symmetric, only one
unit triangular factor is needed with the diagonal terms stored in a separate matrix
to avoid the generation of imaginary coefficients. Following [7], a controlled partial
fill-in can be allowed for to improve the preconditioner quality. The fill-in degree is
determined by two user-specified parameters related to the largest number of new
entries allowed for in the incomplete triangular factor (in excess of the original
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non-zeroes of A ) and the absolute value of any triangular factor entry (that must
be above a prescribed tolerance). To avoid instability problems Gambolati et al. [8]
suggest to properly left and right diagonally scale matrix A before performing the
ILU.

Mixed Constraint Preconditioner (MCP)

With reference to the exact form (4) K and S are replaced by K̂ and Ŝ, respec-
tively, where K̂ = LKLT

K and Ŝ = ∓LSLT
S with LK and LS the incomplete triangular

factors with partial controlled fill-in of K and Ŝ = C±BT ZZT B, respectively, ZZT

being the factorized approximate inverse (AINV) of K [12]. Thus the MCP reads:

M−1 =
[

L−T
K −L−T

K R
0 L−T

S

][
L−1

K 0
±RT L−1

K ∓L−1
S

]
(6)

where R = L−1
K BL−T

S . Equation (6) is obtained by inverting matrix M below:

A � M =
[

I 0
BT L−T

K L−1
K I

][
LKLT

K 0
0 ∓LSLT

S

][
I L−T

K L−1
K BT

0 I

]
(7)

In the case of the faulted uncoupled consolidation matrix (2), the approximate
Schur complement Ŝ is not guaranteed to be positive definite for any Z choice,
with the PCG convergence consequently not theoretically ensured. To avoid this
possible inconvenience we can define a new approximation for S which is always
positive definite. This is readily achieved by dropping Z, taking Ŝ = C and using
LS as the exact Cholesky factor of C. Factorizing C in an exact way does not
require a big effort due to the substantially 2D topology of C in a 3D medium.
This new preconditioner can be formally written as M−1 of equation (6), with the
understanding that LS is the exact triangular factor of C instead of the incomplete
triangular factor of Ŝ.

Multilevel Incomplete Factorization (MIF)

MIF is particularly suited to problems having a multilevel structure, e.g. equa-
tion (3) with three levels or a similar matrix with more than three levels, for instance
a 4-level coupled FE-IE model or a 5-level coupled thermo-flow-mechanical FE-IE
model. Let us explain the basic MIF concept starting from equation (3). Write (3)
in the following form:

A =
[

K1 B1

BT
1 C1

]
(8)

where the definitions of B1 and C1 follow immediately comparing (8) with (3). The
partial incomplete factorization of (8) can be accomplished as:

A � P0 =
[

L1 0
H1 I

][
D1 0
0 S1

][
LT

1 HT
1

0 I

]
= L1D1L

T
1 (9)
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where L1 is the incomplete factor of K1 with unit diagonal, D1 is the corresponding
diagonal matrix, HT

1 is a rectangular matrix approximating D−1
1 L−1

1 B1, e.g. arising
naturally from the factorization process of the first s1 rows of A , and S1 = C1 −
H1D1HT

1 . As is well known PCG requires a product between the preconditioner
P−1

0 and the residual r at the current iteration which is materially performed as
the solution to the system L1D1L T

1 v = r. Setting L T
1 v = y, we get L1D1y = r.

Setting D1y = w, we can write L1w = r from which w is easily derived. The
intermediate vector y is computed inverting a block diagonal matrix. The first s1

components are readily computed as y1 = D−1
1 w1. To solve S1y2 = w2 we recall

that:

S1 = C1 −H1D1HT
1 =

[
K2 B2

BT
2 C

]
−H1D1HT

1 (10)

S1 is explicitly computed and can be written as:

S1 =
[

F11 F12

FT
12 C2

]
(11)

Now S1 can be treated in the same way as equation (8), i.e. we perform the incom-
plete factorization of the F11 block and write the corresponding approximation P1

of S1:

S1 � P1 =
[

L2 0
H2 I

][
D2 0
0 S2

][
LT

2 HT
2

0 I

]
= L2D2L

T
2 (12)

where L2, D2 and L T
2 have a similar meaning and structure as L1, D1 and L T

1
above and S2 reads C2 −HT

2 D2H2. Again S2 is explicitly calculated and the system
S1y2 = w2 is solved approximately with y2 obtained as L −T

2 D−1
2 L −1

2 w2. Again
D−1

2 times the vector L −1
2 w2 is regarded as a system with the coeficient matrix

D2. Again the first part of the second level unknowns are determined by solving
a diagonal (D2) system. The S2 system can now be solved exactly if the S2 size
is small, or, more conveniently, in an approximate way by using the incomplete
factorization of S2. Once the new y is calculated we get v by solving L T

1 v = y.
At this point the application of the preconditioner to the residual vector in a PCG
iteration is completed. The algorithm may be extended more or less easily to 4, 5,
etc., levels.

Careful inspection of MCP and MIF reveals that actually the former may be
regarded as a special case of MIF with two levels, where the block K of equa-
tion (2) is incompletely factorized, H1 of equation (9) is equal to (LKLT

K)−1B and
the (only one) Schur complement is computed with the aid of the approximate in-
verse (AINV) of K. On summary MCP may be thought of as a preconditioner
belonging to the class of MIF preconditioners with a different (more complex) se-
lection of the various approximations.
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Conclusions
MCP is natively designed for a two level consolidation problem. Although it

can be extended in principle to more than two levels the need for the calculation at
each level of both the incomplete factorization and the approximate inverse of the
upper left matrix block makes MCP quite cumbersome. In this respect MIF lends
itself to an easier and more natural generalization to higher levels, having said
that from a computational viewpoint MCP and MIF on two levels are more or less
equivalent for a linear simulation. Of course the comparison of the performance
of the different preconditioners is to be restricted between MCP and MIF on one
side and the classical ILU on the other (DS is a poor preconditioner and except for
very special cases it cannot successfully compete with MCP, MIF and ILU). In this
respect both MCP and MIF turn out to be superior in the consolidation problems
addressed in the present study to ILU implemented in the symmetric form by a
factor that based on our recent experience is between two or three [2] [3] [9] [10].
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