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Numerical solutions of time-space fractional
advection–dispersion equations
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Summary
This paper establishes a difference approximation on time-space fractional advection-

dispersion equations. Based on the difference approximation an ideal numerical
example has been solved, and the result is compared with the one of the rigor-
ous time fractional advection-dispersion equation and the rigorous space fractional
advection-dispersion equation respectively. The results show: when time fractional
order parameter γ=1 or space fractional order parameter α=2, the numerical cal-
culation result of the time-space fractional advection-dispersion equations is in ac-
cordance with that of the rigorous time fractional advection-dispersion equation or
the rigorous space fractional advection-dispersion equation. The variation law of
the result with parameter is also similar to them, that is when γ is smaller, diffusion
is slower; when α is smaller, diffusion is faster. The simulation calculation for a
practical example indicates that time-space fractional advection-dispersion equa-
tions can simulate the skewness and the tail of anomalous diffusion. This paper
provides a efficient tool for the research of fractional advection-dispersion equa-
tions.
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Introduction
In recent years, the phenomenon of the anomalous diffusion (dispersion) has

aroused people’s broad attention. It has been studied as complicated dynamical sys-
tem and has had an extensive application in the fields such as semiconductor, porous
media, life science, economy finance [1]. Anomalous diffusion is relative to nor-
mal diffusion: In normal diffusion, particle motion is Brownian Motion, the Green
Function Solution of whose Cauchy problem is the density function of Gaussian
distribution, and mean square displacement is the linear function of moving time,
while particle diffusion can be described by traditional second order advection-
diffusion (dispersion) equation. Anomalous diffusion is essentially regarded as a
kind of non-locality motion of non-markovian, so time-space relativity must be
considered. Particle motion is not Brownian motion, and mean square displace-
ment is the non-linear function [2, 3, and 4].
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Research indicates that, in order to describe the anomalous diffusion (disper-
sion), the control equation must be improved and the physical process of diffu-
sion must be described. So we can start with fractional calculus to get fractional
advection-diffusion (dispersion) equation [5]. Many studies have discussed the
character of the analytic solution of fractional advection-diffusion equation and
can commendably explain the phenomenon of anomalous diffusion. In view of
the difficulty of fractional advection-diffusion (dispersion) equation relative to the
traditional equation, at present many studies intend to get numerical algorithm by
means of considering time fraction and space fraction independently[6,7,8,9]. In
this paper, the time and space fraction is considered at the same time in fractional
advection-diffusion (dispersion) equation to get a numerical solution.

If considering time-space fraction at the same time, the time-space fractional
advection-dispersion equation can be obtained (in order to discuss simply, we take
the one-dimension space as the object of study), which is defined as follows:

∂ γC(x, t)
∂ tγ = −v

∂C
∂x

+D
∂ α

∂xα C(x, t) (1)

Where 0<γ ≤1, 0<α ≤2. This equation includes the traditional advection-dispersion
equation (when γ=1, α=2). When α=2, the equation is rigorous time fractional
advection-dispersion equation; when γ=1, the equation is rigorous space fractional
advection-dispersion equation.

Former research indicates that in the process of advection-dispersion, the change
law on time and space of the breakthrough curve is when the value of time frac-
tion order γ is increasingly smaller, time relativity is increasingly stronger, the so-
lute diffuses more slowly, and the breakthrough curve becomes smoother. When
the value of space fraction order α is increasingly smaller, space relativity is in-
creasingly stronger, the solute diffuses faster, and the breakthrough curve becomes
more abrupt. The γ value and α value respectively describe the time and space
non-locality relationship between the concentration flux of solute and the concen-
tration. The time relativity causes the concentration of different time in the same
point having effect on the concentration flux of current moment. It has memory
effect, namely the process of solute diffusion is slower than regularly. The space
relativity causes the concentration of all points at the same time having effect on
the concentration flux of current point, namely the process of solute diffusion is
quicker than regularly.

Numerical approximation
The grids which the space step is h and the time step is τ is introduced, which

is defined as follows:

x j = jh, h > 0; tn = nτ , τ > 0; ( j = 0,1,2, · · · ;n = 0,1,2 · · ·) (2)
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Discretization of the time fractional term
For the left term of the equation(1), the fractional derivative is changed into

integral form, which is defined as follows [7,8]:

∂ γC(x, t)
∂ tγ =

⎧⎨
⎩

1
Γ(1−γ)

t∫
0

(t−η)−γ ∂C(x,η)
∂η dη 0 < γ < 1

∂C(x,t)
∂t γ = 1

(3)

The integral form can be recast as:

∂ γC(x, t)
∂ tγ

∣∣∣∣
(x j,tn)

=
1

Γ(1− γ)

t∫
0

(t −η)−γ ∂C(x j,η)
∂η

dη

=
1

Γ(1− γ)

⎡
⎣n−2

∑
k=0

tk+1∫
tk

(tn−η)−γ ∂C(x j,η)
∂η

dη +
tn∫

tn−1

(tn−η)−γ ∂C(x j,η)
∂η

dη

⎤
⎦ (4)

The derivative term can be discretized furthermore as follows:

∂ γC(x, t)
∂ tγ

∣∣∣∣
(x j,tn)

=
1

Γ(1− γ)

⎡
⎣n−2

∑
k=0

C(x j, tk+1)−C(x j, tk)
τ

tk+1∫
tk

(tn−η)−γ dη +

C(x j, tn)−C(x j, tn−1)
τ

tn∫
tn−1

(tn−η)−γ dη

⎤
⎦

=
τ1−γ

Γ(2− γ)

[
n−2

∑
k=0

C(x j, tk+1)−C(x j, tk)
τ

(
(n−k)1−γ − (n−k−1)1−γ) +

C(x j, tn)−C(x j, tn−1)
τ

]

(5)

At the moment of tn, C(x j, tk) (k < n) is known, so the first term of the equation
above is constant which is named A:

A =
τ1−γ

Γ(2− γ)

n−2

∑
k=0

C(x j, tk+1)−C(x j, tk)
τ

(
(n−k)1−γ − (n−k−1)1−γ) (6)
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Discretization of the space fractional term
Adopt lemma[10,11]:

if f (x) ∈ L2(R) and f (x) ∈ Cα−2(R), Ah f (x) = A f (x)+O(h), where:

Ah f (x) =
1

Γ(−α)
1

hα

∞

∑
k=0

Γ(k−α)
Γ(k +1)

f (x− (k−1)h)

A f (x) =
∂ α f (x)

∂xα

(7)

Of the grids having boundary on both sides,

∂ α f (x)
∂xα |(x j,tn)

= A f (x)|(x j,tn)

= Ah−(x)|(x j,tn) +Ah+(x)|(x j,tn)

=
1

Γ(−α)
1

hα

j

∑
k=0

Γ(k−α)
Γ(k +1)

C(x j−k+1, tn−1)+
1

Γ(−α)
1

hα

n− j

∑
k=0

Γ(k−α)
Γ(k +1)

C(xn−k, tn−1)

(8)

The difference approximation of time-space fractional advection-dispersion
equation

Based on discrete difference of the time and space fractional term in the sec-
tions above, the difference approximation can be obtained as follows:
implicit difference schemes:

τ1−γ

Γ(2− γ)
C(x j, tn)−C(x j, tn−1)

τ
+A = −v

C(x j+1, tn)−C(x j, tn)
h

+

D

[
1

Γ(−α)
1

hα

j

∑
k=0

Γ(k−α)
Γ(k +1)

C(x j−k+1, tn−1)+
1

Γ(−α)
1

hα

n− j

∑
k=0

Γ(k−α)
Γ(k +1)

C(xn−k, tn−1)

]

(9)

explicit difference schemes:

τ1−γ

Γ(2− γ)
C(x j, tn+1)−C(x j, tn)

τ
+A = −v

C(x j+1, tn)−C(x j, tn)
h

+

D

[
1

Γ(−α)
1

hα

j

∑
k=0

Γ(k−α)
Γ(k +1)

C(x j−k+1, tn−1)+
1

Γ(−α)
1

hα

n− j

∑
k=0

Γ(k−α)
Γ(k +1)

C(xn−k, tn−1)

]

(10)
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Numerical calculation example and discussion
This paper adopts an ideal test case done by Xia Yuan and Wu Jichun [6]. The

case is calculated by different numerical calculation algorithms each with different
parameters. Then the results are compared with each other. In one dimension space
(0,100), an instantaneous point source of solute is set in x=50. The concentration
of solute put in is 100 units, and in other points initial concentration are all 0.
Time step length is 0.1. Focusing on dispersion, let advection term coefficient v=0,
diffusion term coefficient D=0.8, in order to observe the phenomenon of anomalous
diffusion better.

Comparison with traditional advection-dispersion equation
In the space-time correlative fractional advection-dispersion equation, we take

γ=1, α=2. Then at x=45, get the comparison of numerical solutions with the ones
of traditional advection – dispersion, which is showed in figure 1.

When γ=1, α=2, the numerical solutions of time-space correlative fractional
advection -dispersion equation and traditional advection-dispersion equation are in
complete agreement.

Comparison with rigorous time fractional advection-dispersion equation
For α=2, γ=0.6, 0.8, we first get the numerical solutions of time-space frac-

tional advection-dispersion equation using the same ideal example. Then compare
the numerical solutions with the numerical results of rigorous time fractional equa-
tion (fig. 2). For saving the amount of calculation, only the first 3000 time steps
are adopted.

Figure. 2 displays the results for α=2, as it can be seen that the variation
law of anomalous diffusion caused by changing γ are the same, while the corre-
sponding numerical solutions are in full accordance, of either time-space fractional
advection-dispersion equation or rigorous time fractional advection-dispersionequa-
tion.

Comparison with rigorous space fractional advection-dispersion equation
With γ=1, α=1.2, 1.6, get the numerical solutions of time-space correlative

fractional advection-dispersion equation respectively. Then compare it with the
results of rigorous space fractional advection-dispersion equation for α=1.2, 1.6,
as shown in figure. 3.

As shown in Figure. 3, the variation law of anomalous diffusion caused by
changing α are also the same, while the corresponding numerical solutions are in
full accordance, of either time-space fractional advection-dispersion equation or
rigorous space fractional advection-dispersion equation.

Computation example
Data sources used for computation came from references [12]. In this labora-
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Figure 1: The comparison of breakthrough curve of time-space fractional
advection-dispersion (TS-FADE) equation with the one of traditional equation (TE)
at x=45, when γ=1, α=2.

Figure 2: Comparison of numerical solutions of time-space fractional advection-
dispersion equation (TS-FADE) at different values of γ with rigorous time
advection-dispersion fractional equation (T-FADE), when α=2.
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Figure 3: Comparison of numerical solutions of time-space fractional advection-
space equation with different α with rigorous space fractional advection-space
equation (S-FADE), when γ=1.

Figure 4: Measured data changed with time and the fitting curve.
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tory dispersion experiment, a tracer (NaCl) was first put instantaneously, then the
change of electrical conductivity of an observation point was measured, which was
80cm away from the injecting well. The concentration was approximately pro-
portional to the conductivity, and could be directly obtained via multiplying the
corresponding electrical conductivity by a coefficient. Using our method, the fit-
ting results were: α=1.76, γ=0.993, D=0.033, v=0.48. The fitting results show in
figure. 4.

As it is seen from figure. 4, there are two differences between the fractional sta-
ble distribution and the Gaussian distribution. The first difference lies in the body
part, of which the measured points’ distribution is asymmetric, so it has positive
skewness. However, as a normal distribution, the Gaussian distribution is sym-
metrical. The Gaussian distribution includes two parameters, of which μ used to
denote the center point or the location of mean value, while the variance describes
discrete degree around the mean value. This is to say, lacking parameters used to
describe skewness, the Gaussian distribution cannot be applied to skewed distribu-
tion, while the fractional stable distribution has four parameters, among which α
could describe the deviation from normality.

The second difference is that tailing phenomenon was observed at the tail of
the decline curve. Because of little measured data at the tail from references, the
phenomenon in figure 4 was not obvious. However, references [12] to the tail-
ing phenomenon, point out that the Gaussian distribution cannot explain this phe-
nomenon. But the fractional stable distribution has this characteristic, and satisfies
the phenomenon well.

Conclusion

1. By comparing the results of different numerical algorithms on the ideal test
case, it can be proven that the numerical solution algorithm of time-space
fractional advection-dispersion equations put forward in this paper is com-
patible with rigorous time fractional advection-dispersion equations and rig-
orous space fractional advection-dispersion equations. That is when γ=1 or
α=2, the numerical calculation result of the time-space fractional advection-
dispersion equations is absolutely in accordance with that of the rigorous
time fractional advection-dispersion equation or the rigorous space fractional
advection-dispersion equation.

2. By numerical calculation of time-space fractional advection-dispersion equa-
tions with different parameters, it can be shown that when the value of time
fraction order γ is increasingly smaller, time relativity is increasingly stronger,
the solute diffuses more slowly, and the breakthrough curve becomes smoother;
when the value of space fraction order α is increasingly smaller, space rela-
tivity is increasingly stronger, the solute diffuses faster, and the breakthrough
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curve becomes more abrupt. The variation law of the calculation result with
parameters is also similar to that of the rigorous time fractional advection-
dispersion equation or the rigorous space fractional advection-dispersionequa-
tion, and the result is also in accordance with the analytic solution.

3. By the numerical calculation simulation of practical testing results, the time-
space fractional advection-dispersion equation can simulate the skewness
and the tail of the breakthrough curve, which is not available with traditional
advection-dispersion equations. This means time-space fractional advection-
dispersion equation is in accordance with the law of anomalous diffusion. It
can be used as a control equation of solute transport simulation, and reflect
solute transport phenomenon more accurately.
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