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Size effect studies on a notched plain concrete beam using
initial stiffness method
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Summary
A simple numerical method namely Initial Stiffness Method using finite ele-

ment method has been employed to study the size effect which is prominent in
concrete structures. Numerous experimental investigations performed on notched
plain concrete beams subjected to three point or four-point bending have revealed
the fracture process to be dependent on size of the structural member. It was found
that, the nominal stress at maximum load decreases as the size of the structure in-
creases. The nominal stress at failure on the characteristic dimension of structure
is termed as size effect. This has also been explained in energy concepts as, the
fracture energy G f decreases with increase in structure size. This size effect is
explained with regard to three parameters, namely, nominal stress at failure, post-
peak slope of the load-displacement diagram and softening slope parameter α . The
results obtained from the analysis of three point bend specimen of varying sizes
using initial stiffness method, also confirms the size effect of concrete structures.

keywords: Initial stiffness method; Size effect; Concrete fracture energy;
Notched plain concrete beam.

Introduction
The size effect is probably the most compelling reason for using the fracture

mechanics in analyzing the cracking of concrete structures. The size effect can be
explained clearly through a comparison of geometrically similar specimens but of
different sizes. The nominal strength σN , at failure is calculated by dividing the
maximum load with the uncracked ligament area. According to the classical the-
ories, the above calculated apparent strength σN , should be same for all the spec-
imens. But it is observed that this apparent strength σN , varies with the structure
size. This dependence of σN on the specimen size is termed as size effect. The
strength σN is found to decrease with increase in structure size. In the early stages,
when fracture mechanics was introduced to analyze the concrete structures, prin-
ciples of linear elastic fracture mechanics (LEFM) were used to explain this size
effect. According to LEFM, the size effect is described by an inclined line of slope
1/2 as illustrated in Fig. 1. In reality, the failures of concrete structures are not
governed by LEFM principles. It is observed that the failure of concrete structures
show a transitional behavior as shown by the curve in Fig. 1.

Hence, it can be said that neither strength criterion nor the principles of LEFM
exactly describe the size effect of concrete structures. Even though, a similar size
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effect is observed in other materials, it is of paramount importance for concrete
structures because the concrete structures are so large that real scale testing is im-
possible. Usually, small scale testing [RILEM Report 1,2] is done in laboratories
and the results are extrapolated to real sizes. Hence, it is imperative for the de-
sign method to account for the dependence of the apparent strength of the structure
on the characteristic dimension of the structure. This fact leads to the extensive
amount of research to understand the size effect more precisely. An International
workshop on the size effect in concrete structures [JCI Proc.,3] has been conducted
in Japan. There has been a great emphasis on the inclusion of this size effect into
the design codes.

Figure 1: Size effect in concrete structures

Developments in size effect of concrete structures
Bazant and Cedolin [4] through numerical approach have predicted that, with

the increase in structural size a transition from a strength collapse to a brittle col-
lapse occurs. Similar effect was also reported by Petersson [5] and Carpinteri [6].
Gopalaratnam and Shaw [7] has reported softening response of plain concrete in
direct tension. Reinforced concrete structures also show a similar size effect. This
was reported by Bazant and Cedolin, Bazant and Kazemi [8-10], Mihashi and No-
mura [11], and Michael D Kotsovos et al. [12]. Hence, it is generally accepted
that smaller specimens tend to fail by plastic collapse, while the larger specimens
fail by brittle failure. Plastic collapse can be analyzed by using the principles of
limit analysis with a suitable strength criterion. LEFM principles are adequate to
analyze brittle fracture behavior. Failures in the transition range in which, neither
strength criterion nor LEFM principles are applicable are obviously more difficult
to analyze. This seems to be the main problem in the failure analysis of concrete
structures. Size effect is observed even in concrete specimens with dissimilar initial
cracks. Weibull [13] attributed the size effect observed in the apparent strength of
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concrete structures to the randomness of the material strength. The observed size
effect has been explained due to the variation in the amount of energy release by
Bazant [14]. It has been shown that the rate of energy release from a larger structure
is larger than from a smaller one. Apart from the size effects due to energy release
and strength randomness, further size effects are introduced by diffusion phenom-
ena such as drying of concrete or dissipation of hydration of heat, and boundary
layer effects, caused by differences in composition and mechanical behaviour be-
tween the surface layer and the concrete in the core Sabnis [15]. Bazant [14] using
the principles of dimensional analysis has shown that the structural size effect for
geometrically similar specimens can be described by a simple relation of the fol-
lowing form,

σN = Bσ ′
t

(
1+

d
λo

da

)−1/2

(1)

Where, σN = nominal stress at failure; P = maximum load; b = width thickness;
σ ′

t = direct tensile strength; B, λo = empirical constants to be determined by fitting
test results for geometrically similar specimens of various sizes; da = maximum
aggregate size.

The above size effect law was confirmed by various experimental results by
Bazant and Pfeiffer, analytical models by Bazant and Lin and Bazant and Kazemi,
[16,17,10]. Karihaloo [18] has presented analytical model for the size effect in
notched three-point bend fracture specimen of concrete and other quasi-brittle ma-
terials based on the cohesive crack model. Prado and Van Mier [19] have reported
mode-I fracture of concrete in a series of numerical analyses with a simple beam
lattice model on the effect of material structure both on the pre-peak and softening
regimes of the stress-deformation diagram in uniaxial tension. Other models called
the softening beam model Ananthan et al. [20], Rao,TVRL and Raghu Prasad [21-
23] and the Lattice model Raghu Prasad et al. [24-26] were attempted to study the
fracture behavior of plain concrete beam.

Attempts to characterize the effects of structure size on the fracture behaviour
by some non-dimensional numbers also known as brittleness numbers are also evi-
dent in the literature. Hillerborg [27] has used the non-dimensional ratio d/�ch and
Carpinteri [28] has an another non-dimensional ratio S = K1c/σyb1/2. Only when
the values for these numbers are known, quantitative predictions can be made.
Bazant and Pfeiffer [16] have pointed that these numbers are objective only for
comparison of different sizes of structure of the same geometry. They have pro-
posed a brittleness number, β = d

δoda
. It is to be noted that β can be calculated

only after determining δo either experimentally or by finite element analysis. β
is also found to be independent of the shape and size of the structure. They have
also concluded that for β < 0.1, the behaviour is close to plastic limit analysis and
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for β > 10, it is closer to LEFM. For 0.1 < β < 10, nonlinear fracture analysis
must be used. Thus, the brittleness number can only serve as basic qualitative in-
dicator of the type of fracture of a given structure of some shape and size. The
extensive amount of results in size effect emphasizes the need for the revision of
building design codes. With this in view, the size effect in concrete structures using
numerical model based on initial stiffness method [21-22] are studied for notched
plain concrete beam subjected to three point bending. In addition to the size effect
on nominal stress at failure two new parameters, namely post peak slope of load
-deflection curve and softening slope parameter α have been studied to confirm the
size effect in concrete structures.

Initial Stiffness Method of Analysis
Conventional linear elastic fracture mechanics principle cannot be directly ap-

plied to concrete due to the existence of slow crack growth, formation of nonlinear
fracture process zone ahead of crack tip and softening of concrete. Hence, new
fracture models have been developed to get a better description of the actual frac-
ture behaviour of concrete. Keeping this in view, a simple numerical model called
Initial Stiffness Method was developed for Mode-I fracture analysis in plain con-
crete beam [21-22]. The method leading to the present model was obtained from
the Initial Stress Method by Zienkiewicz et al. [29]. The softening property of
concrete enables the material to bear stress even after crossing the tensile strength
as shown in Fig. 2. In the present method, stiffness matrices of the elements are
generated only once based on the initial Young’s modulus and is used for the rest of
the analysis, even in the softening portion of concrete. Hence, the method is named
as Initial stiffness method. Fracture is assumed to start as soon as the maximum
principal stress reaches the limiting tensile stress. Thereafter, the stress carrying
capacity of the softened concrete (decrease of stress with increasing deformation)
is taken care of, without any modification in the stiffness of the element.

Ultimately, when the principal strain reaches the ultimate value, the element
is removed by making the elements of stiffness matrix extremely small. Thus, al-
though fracture is assumed to start as soon as the maximum principal stress reaches
tensile strength σt , final fracture occurs when ultimate strain εu shown in Fig. 2 is
reached. This ultimate strain εu, is a function of the softening slope parameter α
as shown in Fig. 2. This parameter is a size dependent parameter and is based on
the fracture mechanics concepts. The area under the stress-strain curve shown in
Fig. 2 is a measure of the fracture energy G f , which is the energy consumed in the
formation and opening of all micro-cracks per unit area of crack plane. For a given
value of E and σt as the value of the α increases, the area under the stress-strain
curve increases and hence the fracture energy, G f increases.

The details of the softening slope (either ultimate strain εu or the parameter, α)
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are not mentioned by the researchers for the beams tested by them. Hence, in the
present model in order to introduce the size dependent nature of the parameter, α it
is varied and adjusted such that the value of the maximum load obtained from the
analysis is close to the experimental one, according to the size of the beam by trial
and error. Such a value of α is considered as the softening slope of the material
used for that particular size. If the obtained maximum load from the analysis is
less than the experimental value, the softening slope parameter α is increased and
vice-versa.
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Figure 2: The stress strain curve of softening material like concrete

The strain softening property of concrete is considered in finite element analy-
sis in a novel and simple way. Here, the principal stress in the region ahead of crack
tip is assumed to be mainly in the direction perpendicular to the crack [22]. The
analysis is based on displacement control. Suppose at some prescribed deflection,
the maximum principal stress in some elements exceeds the tensile strength σt , the
stress in excess of the tensile strength is converted into equivalent nodal loads of
the element and applied in a reverse direction and the structure is analyzed again.
The load and the stresses in all the elements obtained in this analysis are added to
the values obtained during the prescribed displacement. Another check is applied
to see whether the resultant maximum principal stresses in all the elements are ac-
cording to the true stress-strain curve of the material. Thus, it is possible to trace the
softening slope for all the elements. At any stage, if it is found that the strain in any
element has reached its ultimate strain εu, the element is said to have completely
failed and the stiffness matrix of the element is made in effective by making the
components of the matrix negligibly small. The analysis is continued until the load
bearing capacity of the structure reduces to zero. The model has been validated
with many of the published experimental results on three point bend specimens.

Discussion of Results
The size effect as explained in the previous section has been observed in the
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results obtained from the present model. It is found that the nominal stress σN

decreases with increase in the characteristic dimension of the structure. This has
also been explained in energy concepts as the fracture energy G f decreases with
increase in structure size. The results obtained from the analysis of three point
bend specimens of varying sizes using Initial stiffness method, also confirm the
size effect. The size effect observed in the results obtaining from Initial stiffness
method is explained in three ways. They are,

• Variation of nominal stress at failure with structure size.

• Variation of post peak slope of load-deflection diagram with structure size.

• Variation of softening slope parameter ‘α’ (of stress-strain curve) with struc-
ture size.

It is observed that the results tend to simulate the experimental size effect sat-
isfactorily. The variation of nominal stress at failure with structure size is well
known. The later two, that is, the variation of post peak slope of load-deflection
diagram and softening slope parameter α with structure size are new in literature.
The variations of these two parameters also confirm the existing size effects in con-
crete structures.

Variation of Nominal Stress at Failure with Structure size
The nominal stress at failure for the various beams analyzed using Initial stiff-

ness method is calculated. The nominal stress at failure is calculated by dividing
the maximum load Pmax with the uncracked ligament area, Fig. 3. Although, it is
known that load at failure Pf ail is lower than Pmax, Pmax itself has been considered
as Pf ail for, in most of the results, Pf ail is not mentioned. Initially, the nominal
stress is calculated based on the maximum load obtained in the experiments. Table
l gives the nominal stress at the maximum load, obtained for various beams. It can
be seen from the Table 1 that in every set of beams performed by some experimen-
talist, the nominal stress at failure decreases as the structure size increases. The
results of beams tested by Bazant et al. [16], indicate that the nominal stress at
failure decreases from 1.56 N/mm2 to 0.94 N/mm2 as the structure size (uncracked
ligament, d-a) increases from 31.6 mm to 126.6 mm. Similarly, it can be seen that
σN of beams tested by Petersson et al. [30] decreases from 0.177 N/mm2 to 0.137
N/mm2 as the structure size (d-a) increased from 25mm to 100mm.

Similar size effect is observed in beams of same dimensions with varying ini-
tial crack length. This has been experimentally shown by Kim, et al. [31]. It is
found that as the size of the initial crack increases, the nominal stress σN at fail-
ure decreases. The values in Table 1 indicate that the nominal stress σN at failure
decreases from 0.356 N/mm2 to 0.254 N/mm2 as the initial crack length increased
from 15.2 mm to 30.4 mm for the beams tested by Nallathambi et al. [32]. If the
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Figure 3: Calculation of nominal stress at maximum load

initial crack length ‘a’ increases while the characteristic dimension d is held con-
stant, which means that uncracked ligament size (d-a) decreases, σN decreases. It
can be inferred that, if the overall size ‘d’ is held constant and as the crack length ‘a’
is increased, the nominal stress σN decreases, and if the overall size ‘d’ increases,
along with crack length ‘a’, holding d/a constant, the nominal stress σN decreases.

Table 1: Comparison of nominal stresses at maximum load (Pmax) for various beams
(both experimental and ISM results)

The nominal stress σN at failure are calculated using the maximum load ob-
tained from the analysis using Initial stiffness method (PISM). The nominal stresses
thus obtained are given in the Table 1 along with the experimental one. It can be
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observed that, the results from the initial stiffness method show a similar size effect
as seen in experiments. The nominal stress σN decreases from 1.566 N/mm2 to 0.94
N/mm2 as the structure size increases from 31.6 mm to 126.6 mm for the beams
tested by Bazant et al.[16]. From the Table 1, it can be seen that similar trend is ob-
served in other cases also. The nominal stress σN at failure from experiment, PEXP

for various sizes of beams of the same experiment are plotted against the charac-
teristic dimension of the structure (uncracked ligament, d-a) on a logarithmic scale.
Fig. 4 shows such a curve for the beams tested by Bazant et al.[16]. The figure
also shows the logarithmic plot of the nominal stress σN at failure based on max-
imum load obtained from the analysis using Initial stiffness method (PISM)against
the characteristic dimension of the structure uncracked ligament (d-a). The results
from initial stiffness method are found to satisfactorily predict the experimentally
observed size effect.

Figure 4: Variation of nominal stress at maximum load, Pmax with increasing size,
for the beams tested by Bazant and Pfeiffer [1987] (Size effect)

Variation of Post-Peak Slope of the Load-Deflection Curve with Structure Size
The experimental results confirm the fact that is already known viz., that as the

structure size increases, the failure transforms from ductile nature to brittle nature.
It can be observed that in the load-deflection diagrams, the post peak slope becomes
steeper as the structure size increases. If the post peak slope is steeper Fig. 5(a),
it indicates a brittle failure. The shallow post peak slope indicates a ductile failure
Fig. 5(b). However, the above view of the size effect although implied has not been
explicitly expressed in the literature available till now. In reality, the post peak
slope of load-displacement diagram is not linear and hence, a definite slope cannot
be determined for the same. Here an average notional slope is established for post
peak curve of the load-displacement diagram. Two extreme points on the post peak
slope of the load-displacement diagram (leaving the horizontal tail portion) are
selected for this purpose. The slope (N/mm) denoting the rate of decrease of load
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(N) per unit increase in displacement (mm) is calculated by dividing the difference
in loads by the difference in displacement at those two points.

Figure 5: (a) Typical load-displacement diagram for a large size beam, (b) Typical
load-displacement diagram for a smaller beam

Figure 6: Predicted load vs displacement diagram using Initial Stiffness method of
a beam tested by Bazant and Pfeiffer [1987] (using uniform mesh)

A higher value of this slope represents a steep post-peak load-displacement di-
agram thus showing brittle nature. This is usually seen in large structures, which
fail in brittle manner. The shallow post peak load-displacement diagram is repre-
sented by a low value of this slope thus showing a ductile nature. This is generally
observed in smaller structures, which show plastic collapse. Fig. 6 show the load-
displacement diagram obtained from the initial stiffness method for the beam tested
by Bazant et al.[16] using uniform mesh. Fig. 7 show the load-displacement dia-
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gram obtained from the initial stiffness method for the beam tested by Hilsdorf et
al.[33] using finer mesh near the crack tip. It can be seen that the post peak slope
becomes steeper as the structure size increases.

Figure 7: Predicted load vs displacement, load vs CMOD diagrams using Initial
Stiffness method of a beam tested by Hilsdorf et al. using graded mesh (including
discretization details)

A notional value of the post peak slope is evaluated to have a better understand-
ing of the size effect. Table 2 gives the values of these slopes for some of the beams
analyzed using the present model. It is seen that the value of this slope increases
from 52700 N/mm to 93575 N/mm as the structure size (uncracked ligament, d-a)
increases from 31.6 mm to 126.6 mm for the beams tested by Bazant et al.[16]. This
clearly indicates the transition from ductile to brittle failure as the structure size in-
creases. For the beams with varying crack length and constant overall dimensional
the value of the post peak slope increases as the crack length decreases. This can
be observed in the results of the beams tested by Nallathambi et al.[32], whereas
the crack length is varied from 15.2 mm to 30.4 mm, the value of the post peak
slope decreased from 15391 N/mm to 8800 N/mm. It can be inferred that, if the
overall size ‘d’ is held constant, and as ‘a’ is increased; there is gradual transition
from brittle failure to ductile failure.

Variation of Softening Slope Parameter α of Stress-Strain Curve with Struc-
ture Size

The results obtained by using initial stiffness method are analyzed with respect
to the strain softening slope parameter α . Fig. 8 shows the stress-strain curve of
a pure plastic material and a pure brittle material. If the value of α is infinity, it
indicates pure plasticity (line BB’). If the value of α is zero, it indicates pure brittle
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Figure 8: Variation of softening slope parameter α from plastic to brittle nature as
‘a’ is increased, there is gradual transition from brittle failure to ductile failure
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Figure 9: Variation of softening slopes for different sizes of beams tested by Bazant
and Pfeiffer [1987]

nature (line AA’).

The size effect based on the softening slope parameter α as shown in Fig. 2 is
also new to the literature. Due to the absence of the value of this parameter α for
the various beams reported in literature, α was varied keeping Young’s modulus
E, tensile strength σt constant until the maximum load obtained was closer to the
experimentally observed one. The analysis of the softening slopes used for the
various beams in the present model, indicate the size effect. It is observed that as
the size of the beam increases, the softening slope parameter α required for the
analysis of that beam decreases, thus showing a transition from plastic collapse to
brittle failure. Beams of the same material properties are chosen for explaining the
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Figure 10: Variation of softening slopes for beams with varying initial crack length,
tested by Kaplan [1961]

size effect. Table 3 indicates the values of the softening slopes used for the analysis
of various beams using uniform mesh. Table 4 indicates the values of softening
slopes used for the analysis of various beams using finer mesh near the crack tip.
It can be concluded that, by and large, the softening slope becomes steeper as the
size increases. Fig. 9 shows this variation clearly for the set of beams tested by
Bazant et al.[16]. Similar variation of softening slope is seen in Fig. 10, for the
set of beams tested by Kaplan [34]. It is observed from the Figures 9 and 10, that
as the size of the specimen increases, the softening slope moves from pure plastic
nature (line BB’) to pure brittle nature line (AA’).

Summary and Conclusions
The results from the initial stiffness method confirm the size effect, which

is prominent in concrete structures. This size effect is explained with regard to
three parameters, namely, nominal stress at failure, post-peak slope of the load-
displacement diagram and softening slope parameter α . It is observed that as the
structure size (uncracked ligament, d-a) is varied the nominal stress at the maxi-
mum load also varies. For the beams where a/d is held constant, the nominal stress
σN is found to decrease with increasing uncracked ligament size. When the overall
dimensions of the beams are kept constant and as the crack size is increased, the
nominal stress σN is found to decrease.

Similar effect is observed in the analysis of the results with regard to post-
peak slope. The value of the post-peak slope is found to increase for the beams
with increasing uncracked ligament size provided a/d is held constant. For the
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Table 2: Comparison of post peak slopes of load-displacement diagrams for various
beams

Table 3: Comparisonof softening slopes used for obtaining Pmax using ISM (using
uniform mesh)

beams where the overall dimensions are held constant and as crack size is varied the
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Table 4: Comparison of softening slopes used for obtaining Pmax using ISM (using
finer mesh)

  Suffix ‘EXP’ denotes Experimental value. 
  Suffix ‘ISM’ denotes value obtained from Initial Stiffness Method. 

Names of 
Investigators 

S×W×B 
mm

a
mm

E
N/mm2

σt
N/mm2

PEXP

kN

PISM

kN

Petersson 
 [1980] 

600x50x50 
2000x200x50 

25.0 
100.0 

42500 
30000 

4.2 
3.3 

0.22 
0.69 

0.211 
0.686 

5.0 
4.6 

Jenq & Shah 
[1984] 

305x76x26 25.4 34311 3.0 0.82 0.78 6.0 

Hilsdorf et 
al.[1984] 

500x100x100 
2000x400x200 
4000x800x400 

50.0 
200.0 
400.0

32250 
32250 
32250

2.7 
2.7 
2.7

1.92 
10.25 
42.91

1.84 
10.22 
42.89

8.5 
5.4 
5.6 

Nallathambi 
et al. 
[1984]

600x76x80 
600x76x80 
600x76x80 

15.2 
22.8 
30.4

33000 
33000 
33000

3.1 
3.1 
3.1

1.70 
1.07 
0.90

1.73 
1.078 
0.903

7.0 
4.5 
4.3 

Carpinteri et 
al.[1986] 

800x100x100 
1260x250x100 
800x100x100 
1260x250x100 

50.0 
125.0 
50.0 
125.0 

57400 
57400 
60600 
60600 

3.58 
3.58 
3.90 
3.90 

1.13 
3.63 
1.04 
3.75 

1.17 
3.636 
1.08 
4.08 

6.0 
4.6 
5.0 
4.5 

value of the average post-peak slope is found to increase with increasing uncracked
ligament size. The variation of the softening slope parameter α also confirms the
size effect. The value of this parameter α is found to decrease as the structure size
is increased thus showing a transition from plastic collapse to brittle failure. Thus,
it can be seen that the results from the initial stiffness method confirms the size
effect, which is prominent in concrete structures.
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