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Using genetic algorithms to find a globally optimal
solution in uncertain environments with multiple sources

of additive and multiplicative noise
Takéhiko Nakama1

Summary
Random noise perturbs objective functions in a variety of practical optimization

problems, and genetic algorithms (GAs) have been widely proposed as an effective
optimization tool for dealing with noisy objective functions. In this paper, we in-
vestigate GAs applied to objective functions that are perturbed by multiple sources
of additive and multiplicative noise that each take on finitely many values. We re-
veal the convergence properties of GAs by constructing and analyzing a Markov
chain that explicitly models the evolution of the algorithms in noisy environments.
Our analysis shows that this Markov chain is indecomposable; it has only one pos-
itive recurrent communication class. Using this property, we establish a condition
that is both necessary and sufficient for GAs to eventually (i.e., as the number of
iterations goes to infinity) find a globally optimal solution with probability 1. Simi-
larly, we identify a condition that is both necessary and sufficient for the algorithms
to eventually with probability 1 fail to find any globally optimal solution. We also
discuss how the transition probabilities of the chain can be used to derive an upper
bound for the number of iterations sufficient to ensure with certain probability that
a GA selects a globally optimal solution upon termination.

Introduction and Summary
Random noise perturbs objective functions in many practical problems, and ge-

netic algorithms (GAs) have been widely proposed as an effective optimization tool
for dealing with noisy objective functions (e.g., [??], [??]). Theoretical studies that
examine evolutionary computation schemes applied to perturbed fitness functions
typically assume that fitness functions are disturbed by a single source of addi-
tive noise (e.g., [??], [??], [??], [??], [??], [??]). In this study, we examine GAs
applied to fitness functions perturbed concurrently by multiple sources of noise.
In many practical optimization problems, objective functions may be perturbed by
more than one noise source. For example, if objective function values are measured
by a device that consists of multiple components, then each component may disturb
objective function evaluations. Clearly, disturbance by multiple sources of noise is
in general stochastically quite different from that by a single source of noise.

In this study, we focus on a noisy environment where fitness functions are per-
turbed concurrently by multiple sources of additive and multiplicative noise. To our
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knowledge, this study is the first to investigate the transition and convergence prop-
erties of GAs in this rather complex noisy environment. For analytical tractability,
we assume that additive and multiplicative noise sources each take on finitely many
values and that they independently disturb fitness function evaluations. However,
we do not assume that they are identically distributed, and neither do we make any
assumptions about their expected values or variances. We fully characterize this
noisy environment in Section 3.

We take a novel approach to investigating GAs in noisy environments; we ex-
plicitly construct a Markov chain that models the evolution of GAs applied to per-
turbed fitness functions and analyze the chain to investigate the transition and con-
vergence properties of the algorithms (see [??] and [??]). In Section 5, we show
that the Markov chain that models GAs with multiple sources of additive and multi-
plicative noise is indecomposable; it has only one positive recurrent communication
class. See Theorem 2. Using this property, we establish a condition (Condition 1)
that is both necessary and sufficient for GAs to eventually find at least one globally
optimal solution with probability 1. This is Theorem 3. Furthermore, in Theorem 4,
we identify a condition (Condition 2) that is both necessary and sufficient for GAs
to eventually with probability 1 fail to find any globally optimal solution. We will
show that, interestingly, both of these essential conditions are completely deter-
mined by the fitness function and multiplicative noise; they are unaffected by the
additive noise. Theorem 5 states that the chain has a stationary distribution that is
also its steady-state distribution, and we will discuss how this property can be used
to provide an upper bound for the number of iterations sufficient to ensure with
certain probability that a GA selects a globally optimal solution upon termination.

Space limitations on this paper do not allow us to present the complete proofs
of these theorems; we will provide them in our full-length paper.

Preliminaries
We assume that, as in traditional GAs, the search space S consists of 2L binary

strings of length L. These 2L candidate solutions are also referred to as chromo-
somes. Since the search space is finite, these chromosomes will be labeled by
integers 1, . . . ,2L. Let f denote the (noiseless) fitness function, and let S∗ denote
the set of chromosomes that are globally optimal solutions: S∗ := {i ∈ S | f (i) =
max j∈S f ( j)}. Then the objective of GAs is to find i ∈ S∗.

We consider executing GAs with the elitist strategy. This guarantees that the
best candidate solution in the current population, which is a chromosome with the
highest observed fitness value, is included in the next population. Hence it is im-
portant to realize that the elitist strategy guarantees the monotonic improvement of
(noisy) observed fitness but may fail to monotonically improve (noiseless) fitness.
We also assume that GAs reevaluate the fitness value of each population member



Using genetic algorithms to find a globally optimal solution 235

except for that of the chromosome preserved by the elitist strategy every time a new
population is formed. These two strategies turn out to be essential for ensuring that
GAs eventually find a globally optimal solution in noisy environments.

When GAs terminate, note that they select a chromosome that has the highest
observed fitness value among the chromosomes in the last population as a (candi-
date for a) globally optimal solution. Since the observed fitness value may not be
the same as the (noiseless) fitness value of the chromosome due to noise, GAs may
not choose a globally optimal solution even if it is included in the last population;
in order for GAs to correctly identify a globally optimal solution contained in the
last population, the chromosome must have the highest observed fitness value. This
observation is important for properly characterizing GAs in noisy environments.

Mathematical Details of Noisy Fitness and Genetic Operations
We will follow and extend the notation developed by Nakama [??], who estab-

lished a Markov chain framework for analyzing GAs in noisy environments. First,
we select M chromosomes from S to form an initial population P0. The population
generated during the k-th iteration (the k-th population) will be denoted by Pk, and
the number of instances of chromosome i included in the k-th population Pk will
be denoted by m(i,Pk). We let i( j,Pk) represent the j-th instance of chromosome
i in Pk (thus 1 ≤ j ≤ m(i,Pk)). We need this notation because it is necessary to
distinguish all the elements of the multiset Pk in order to precisely characterize the
mathematical properties of noise considered in this study and to define the states of
the Markov chain we construct in Section 4.

Using this notation, we can mathematically describe the noisy environment
considered in this study. At each iteration, we evaluate the fitness value of each
chromosome in the population. We suppose that multiple sources of additive and
multiplicative noise concurrently disturb each fitness function evaluation. Let
F(i( j,Pk)) denote the resulting noisy observed fitness of chromosome i( j,Pk)
(the j-th instance of chromosome i in Pk). Since the noiseless fitness f (i) of this
chromosome is perturbed by multiple sources of additive and multiplicative noise,
its observed fitness F(i( j,Pk)) can be written as

F(i( j,Pk)) =

(
DX

∑
d=1

X (d)
i( j,Pk)

)
f (i)+

DY

∑
d=1

Y (d)
i( j,Pk)

, (1)

where the DX random variables X (1)
i( j,Pk)

, . . .,X (DX )
i( j,Pk)

and the DY random variables

Y (1)
i( j,Pk)

, . . . ,Y (DY )
i( j,Pk)

represent the multiplicative and additive noise sources, respec-
tively, that concurrently perturb the fitness value f (i) of i( j,Pk). In many practical
optimization problems, objective functions may be perturbed by more than one
noise source, and we will consider this rather complex noisy environment.
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For analytical simplicity, we assume that each of these DX + DY noise sources
is discrete and takes on finitely many values. Thus for each i( j,Pk) and d, we

define the distribution of the d-th multiplicative noise source X (d)
i( j,Pk)

by

X (d)
i( j,Pk)

= x(d)
n with probability p(d)

n , 1 ≤ n ≤ N(d)
X , (2)

where N(d)
X represents the number of distinct possible values of X (d)

i( j,Pk)
. Similarly,

for each i( j,Pk) and d, we define the distribution of the d-th additive noise source

Y (d)
i( j,Pk)

by

Y (d)
i( j,Pk)

= y(d)
n with probability q(d)

n , 1 ≤ n ≤ N(d)
Y ,

where N(d)
Y represents the number of distinct possible values of Y (d)

i( j,Pk)
. We will

also assume that these random variables are mutually independent. However, we do
not assume that the DX +DY noise sources are identically distributed, and neither do
we make any assumptions about their expected values or variances—our analysis
is valid even if their expectations are nonzero, for example.

Let i∗( j∗,Pk) represent an instance of a chromosome in Pk that has the high-
est observed fitness value in Pk. Then the elitist strategy guarantees the inclu-
sion of i∗( j∗,Pk) in the next population Pk+1. Hence GAs perform selection,
crossover, and mutation to determine the other M−1 members of the next popula-
tion. Selection is performed to form M−1

2 pairs (thus M is assumed to be odd), and
crossover is performed to generate M−1 chromosomes from these pairs. Our anal-
ysis is valid for any selection scheme and any crossover scheme. Finally, mutation
completes the formation of the new population Pk+1. The elitist strategy pre-
vents this genetic operation from altering i∗( j∗,Pk). For each of the other M −1
chromosomes, we suppose that mutation inverts each bit with some predetermined
probability μ . We assume 0 < μ < 1.

GAs evaluate the fitness of each chromosome in Pk+1 except for the chromo-
some i∗( j∗,Pk) included in this new population by the elitist strategy. These steps
are repeated until a stopping criterion is satisfied.

Framework of Markov Chain Analysis
For a Markov chain constructed to model GAs in the noiseless case, the state

space is typically the set of all possible distinct populations that can be formed from
S. However, this Markov chain fails to explicitly capture the evolution of GAs in
noisy environments. Instead, we construct a Markov chain, call it (Zk), whose state
space consists of multisets not of chromosomes but of the ordered (DX +DY +1)-
tuples defined below.
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For each iteration of GAs in the noisy environment described in Section 3, the
state of the chain (Zk) that correspond to a population P can be derived as fol-
lows. We form M ordered (DX +DY +1)-tuples from the M chromosomes in P by
pairing each chromosome i( j,P) with the values of the multiplicative and additive
noise sources that are each observed when the fitness of i( j,P) is evaluated [see
(1)]. We denote the resulting ordered (DX +DY +1)-tuple by[

i,X (1)
i( j,P), . . . ,X

(DX)
i( j,P),Y

(1)
i( j,P), . . .,Y

(DY )
i( j,P)

]
, (3)

where j and P are suppressed in the first entry because they are unnecessary. The
resulting M ordered (DX +DY +1)-tuples compose a state of the Markov chain for
the noisy case. Thus each state of the chain is a multiset of the ordered (DX +
DY + 1)-tuples. It is important to recognize that in order to explicitly model the
evolution of GAs in the noisy environment using any Markov chain, we need the
last (DX +DY ) entries of each ordered (DX +DY +1)-tuple in (3).

We analyze the Markov chain (Zk) to uncover the transition and convergence
properties of GAs in the noisy environment. We denote by T the state space of
(Zk). Let m(i,T ) denote the number of instances of chromosome i included in
the ordered (DX +DY +1)-tuples of T ∈ T (thus m(i,T ) is analogous to m(i,Pk)
defined at the beginning of Section ). We also denote by m(x(d)

n ,T ) the number of

instances of the value x(d)
n of the d-th multiplicative noise source contained in the

ordered (DX + DY + 1)-tuples of T ∈ T. Similarly, we denote by m(y(d)
n ,T ) the

number of instances of the value y(d)
n of the d-th additive noise source contained in

the ordered (DX +DY +1)-tuples of T ∈ T. Note that for each T ∈ T and d,

2L

∑
i=1

m(i,T ) =
N(d)

X

∑
n=1

m(x(d)
n ,T ) =

N(d)
Y

∑
n=1

m(y(d)
n ,T ) = M.

In order to simplify expressions for the one-step transition probabilities of the
chain (Zk), we let C (T ) denote the set of chromosomes contained in the ordered
pairs of T ∈ T. Thus C (T ) represents the population component of T .

We are now ready to precisely characterize the transitions of the Markov chain
(Zk). The following theorem shows the one-step transition probabilities of (Zk).
It turns out that these transition probabilities can be used to bound the number of
iterations sufficient to ensure with certain probability that a GA selects a globally
optimal solution upon termination.

Theorem 1 Let (Zk) denote the Markov chain with state space T that models GAs
in the noisy environment. Let T and T ′ denote states in T, and let i∗(T ) denote
a chromosome in an ordered (DX + DY + 1)-tuple of T ∈ T that has the highest
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observed fitness value. If the observed fitness value of i∗(T ′) is greater than or
equal to that of i∗(T ), then for each k,

P{Zk+1 = T ′|Zk = T } = P{C (Zk+1) = C (T ′)|Zk = T }

×
DX

∏
d=1

(M−1)!
N(d)

X

∏
n=1

1

m̃(x(d)
n ,T ′)!

(p(d)
n )m̃(x(d)

n ,T ′)

×
DY

∏
d=1

(M−1)!
N(d)

Y

∏
n=1

1

m̃(y(d)
n ,T ′)!

(q(d)
n )m̃(y(d)

n ,T ′),

where

m̃(x(d)
n ,T ′) =

⎧⎨⎩ m(x(d)
n ,T ′)−1 if i∗(T ) is paired with x(d)

n in T (and in T ′)

m(x(d)
n ,T ′) otherwise,

and

m̃(y(d)
n ,T ′) =

⎧⎨⎩ m(y(d)
n ,T ′)−1 if i∗(T ) is paired with y(d)

n in T (and in T ′)

m(y(d)
n ,T ′) otherwise.

On the other hand, if the observed fitness value of i∗(T ′) is less than that of i∗(T ),
then

P{Zk+1 = T ′|Zk = T } = 0.

It is straightforward to prove this theorem by realizing that given Zk, the numbers of
instances of multiplicative or additive noise values in Zk+1 are each multinomially
distributed.

Convergence Analysis
Using the Markov chain (Zk) constructed in Section 4, we analyze the conver-

gence properties of GAs applied to fitness functions perturbed concurrently by the
additive and multiplicative noise sources described in Section 3. First we state one
of the most fundamental properties of the chain:

Theorem 2 The Markov chain (Zk) is indecomposable: It has only one positive
recurrent communication class.

It is easy to prove this theorem using Theorem 1, and Theorems 3–5 described
below can be easily proved using Theorem 2.
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We will let X(d) denote the set of all possible values of the d-th multiplicative
noise source. Hence |X(d)| = N(d)

X (see (2)). The following is one of the essential
conditions for characterizing the convergence properties of GAs in the noisy envi-
ronment with multiple sources of additive and multiplicative noise:

Condition 1. The maximum of the multiplicatively perturbed fitness value of glob-
ally optimal solutions is greater than that of any suboptimal solution:

max

{(
DX

∑
d=1

x(d)

)
f (i) | x(d) ∈ X(d), 1 ≤ d ≤ DX , i ∈ S∗

}

> max

{(
DX

∑
d=1

x(d)

)
f ( j) | x(d) ∈ X(d), 1 ≤ d ≤ DX , j ∈ S \S∗

}
.

Here define the right-hand side of this inequality to be −∞ for the trivial case that
S∗ = S.

Notice that Condition 1 is completely determined by the values of the fitness
function and multiplicative noise; it is independent of the additive noise. We are
now ready to state the following theorem:

Theorem 3 Suppose that GAs are executed in the noisy environment as described
in Sections 2–3. Then Condition 1 is necessary and sufficient for GAs to eventually
(i.e., as the number of iterations goes to infinity) find at least one globally optimal
solution with probability 1.

This theorem simply follows from Theorem 2; we can prove it by identifying and
examining the states of the positive recurrent communication class of the chain (Zk).
Theorem 3 shows that we can verify Condition 1 in order to determine whether GAs
in the noisy environment eventually find a globally optimal solution with probabil-
ity 1. We can also identify a condition that is both necessary and sufficient for GAs
to eventually fail with probability 1. First we define the eventual failure mathemat-
ically.

Definition 1 (Eventual Failure). GAs are said to eventually fail if, after some
(random) finite number of iterations, they include in each subsequent population
at least one suboptimal solution whose observed fitness value is greater than that
of any globally optimal solution. In other words, GAs are said to eventually fail
if, after sufficiently many iterations, they are guaranteed to never find any globally
optimal solution.
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The following is another essential condition for characterizing the convergence
properties of GAs in the noisy environment with multiple sources of additive and
multiplicative noise:

Condition 2. The maximum of the multiplicatively perturbed fitness value of a
suboptimal solution is greater than that of globally optimal solutions:

max

{(
DX

∑
d=1

x(d)

)
f (i) | x(d) ∈ X(d), 1 ≤ d ≤ DX , i ∈ S \S∗

}

> max

{(
DX

∑
d=1

x(d)

)
f ( j) | x(d) ∈ X(d), 1 ≤ d ≤ DX , j ∈ S∗

}
.

Notice that Condition 2 is again completely determined by the fitness function and
multiplicative noise and is unaffected by the additive noise. We are now in position
to state the following theorem:

Theorem 4 Suppose that GAs are executed in the noisy environment as described
in Sections 2–3. Then Condition 2 is necessary and sufficient for GAs to eventually
fail with probability 1.

We can prove this theorem by again identifying and examining the states of the
positive recurrent communication class of the Markov chain (Zk).

The next theorem follows from Theorem 2 and ensures the convergence of the
chain (Zk) to stationarity regardless of whether Condition 1 (or Condition 2) holds
or not.

Theorem 5 The Markov chain (Zk) has a unique stationary distribution that is
also its steady-state distribution: There exists a unique distribution π on T such
that π = πK, where K is the |T| × |T| transition kernel of (Zk), and for any states
T and T ′ in T, we have π(T ) = limk→∞ P{Zk = T |Z0 = T ′}.

Let A denote the positive recurrent communication class of the chain. Then
the stationary distribution π in Theorem 5 satisfies π(T ) > 0 for each T ∈ A and
π(T ) = 0 for each T ∈ T\A. Therefore, if we let π (k) denote the distribution of
the chain (Zk) at time k, then it follows from Theorem 5 that limk→∞ ∑T ∈A π (k)(T ) =
1. Hence if Condition 1 holds, then we need to analyze the rate of this convergence
in order to determine how many iterations are sufficient to guarantee with certain
probability that a GA selects a globally optimal solution upon termination. It turns
out that the transition probabilities of the chain (Zk) shown in Theorem 1 can be
used to determine the convergence rate. Unfortunately, space limitations on this pa-
per force us to omit this analysis here; we will describe it in our full-length paper.
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Discussion
We believe that this study is the first to rigorously examine the transition and

convergence properties of GAs applied to fitness functions perturbed concurrently
by multiple sources of additive and multiplicative noise. Our novel Markov chain
analysis successfully shows that if the noise sources each take on finitely many
values, then Condition 1 is both necessary and sufficient for GAs in the noisy envi-
ronment to eventually (i.e., as the number of iterations goes to infinity) find at least
one globally optimal solution with probability 1. Furthermore, our analysis proves
that Condition 2 is both necessary and sufficient for the GAs to eventually with
probability 1 fail to find any globally optimal solution. As described in Section 5,
both Conditions 1 and 2 are completely determined by the fitness function and mul-
tiplicative noise and are unaffected by the additive noise. The noisy environment
considered in this study is relatively general—for instance, we did not make any
assumptions about the expected values or variances of the noise sources.

We are currently extending our Markov chain analysis to other noisy environ-
ments. For example, we are investigating the transition and convergence properties
of GAs with fitness functions perturbed by more general discrete noise or by con-
tinuous noise. We believe that our Markov-chain-theoretic approach to analyzing
GAs in noisy environments will further elucidate essential properties of the algo-
rithms.
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