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On essential work of fracture method: theoretical
consideration and numerical simulation

X.-H. Chen1, Y.-W. Mai2

Summary
A general elastoplastic fracture mechanics theory is proposed for applying the
Essential-Work-of-Fracture (EWF) Method to quasi-static and impact toughness
characterization. Advanced finite element modeling is developed to simulate the
EWF Method using the crack-tip opening angle criterion (CTOA) and the consti-
tutive relation of the material under consideration. For Poly(ethylene-terephlate)
(PET) films, the load-displacement curves are calculated for the whole crack prop-
agation process of deeply double-edge notched tensile specimens (DENT) with
different ligament lengths so as to determine the total work, the essential work
and the non-essential work of fracture. The effects of specimen gauge length and
ligament length on crack growth stability are also discussed in combination with
experimental results.

Keywords: Essential Work of Fracture Method; Finite Element Modeling;
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Introduction
The Essential-Work-of-Fracture method, developed by Cotterell, Mai and cowork-
ers (Cotterell & Reddel, 1977; Mai & Cotterell, 1980, 1986; Mai et al., 2000)
based on the original ideas of Broberg (1971, 1975), has been widely used for frac-
ture characterization of thin metal sheets, polymeric films, paper sheets, toughened
plastics and blends. The advantage of this technique by separating the total work
into the essential work consumed in the inner fracture process zone and the non-
essential work dissipated in the outer region lies in its experimental simplicity and
the ease of test data analysis.

Chan and Williams (1994), Karger-Kocsis and Czigany (1996), Hashemi (1997)
and Ching et al. (2000) studied the effects of gauge length and loading rate on
the essential fracture work measurement of several ductile polymers. Specifically,
Ching et al. (2000) observed that by increasing the gauge length of the Poly(ethylene-
terephlate) (PET) samples crack growth became unstable for some ligament lengths
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leading to the occurrence of ductile-brittle fracture transition. In contrast, Knock-
aert et al. (1996) studied the fracture behavior of deeply double-edge notched ten-
sion steel plates, both experimentally and numerically. However, since the load-
displacement curves were calculated only to the maximum load, the total work of
fracture, the essential and non-essential works of fracture could not be obtained.
Chen et al. (1999) overcame this difficulty and provided a full numerical simula-
tion of the essential fracture work method for high-density polyethylene thin sheets
(Mai and Powell, 1991). The objectives of this paper are to provide further the-
oretical consideration and numerical simulation of the Essential-Work-of-Fracture
method and compare analytical predictions with experimental results obtained by
Ching et al. (2000).

Theoretical consideration
As an extension of the previous studies by Nguyen et al. (2005) and Simha et
al. (2008), the Helmholtz free energy is taken to be a function of the elastic La-
grange strain tensor, Ee = (FeT Fe− I)/2, and the absolute temperature, T , with
the isotropic hardening parameter, p, and the back strain tensor, α , as internal vari-
ables:

ĥ = ĥ(Ee,T, p,α) (1)

where multiplicative decomposition of the deformation gradient into elastic and
plastic parts is adopted, that is, F = FeF p.

Consider a body B̃ that contains an extending crack. The contour Γ̃ translates
with the crack tip moving at a speed c. Based on the fundamental principles of
thermodynamics, the energy flux integral can be expressed as:

F(Γ̃)≡
∫

Γ̃

[n ·σ · v+(ρ̃ ĥ+ ρ̃ k̂)n · c]dΓ̃

=
∫

∂ B̃
n ·σ · vdS̃−

∫
B̃−Ṽ

Γ̃

∂̃

∂̃ t
(ρ̃ ĥ+ ρ̃ k̂)dṼ +

∫
B̃−Ṽ

Γ̃

ρ̃ f̂ · vdṼ

−
∫

B̃−Ṽ
Γ̃

(τi jD
p
i j + x̂i jα̇i j + ŷ ṗ)dṼ −

∫
B̃−Ṽ

Γ̃

ρ̃ ŝṪ dṼ (2)

where v = u̇ is velocity vector; σ Cauchy stress tensor; τ = Jσ Kirchhoff stress
tensor; Dp = (Lp + LpT )/2; Lp = FeḞ pF p−1Fe−1; J = ρ̃/ρ in which ρ is the
mass density in current configuration; ρ̃ mass density in reference configuration; f̂
mechanical body force per unit mass; k̂ kinetic energy per unit mass; ŝ entropy per
unit mass; ŷ and x̂i j are thermodynamic forces conjugate to the isotropic hardening
parameter p and the back strain tensor α , respectively.
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The dynamic contour integral is related to the energy flux integral by:

J̃
Γ̃

=
F(Γ̃)

Bc
=

1
Bc

∫
Γ̃

[n ·σ · v+(ρ̃ ĥ+ ρ̃ k̂)n · c]dΓ̃ (3)

where c = |c|, and B is the thickness along the crack front.
Following Freund (1998), the dynamic energy release rate is defined as the rate

of energy flow out of the body and into the fracture process zone per unit crack
advance:

J̃0 = lim
Γ̃→Γ̃0

{
1

Bc

∫
Γ̃

[n ·σ · v+(ρ̃ ĥ+ ρ̃ k̂)n · c]dΓ̃

}
(4)

The relationship between the global and local dynamic contour integrals is ob-
tained from:

J̃g−
1

Bc

∫
Ṽg

[
∂̃

∂̃ t
(ρ̃ ĥ+ ρ̃ k̂)− ρ̃ f̂ · v+(τi jD

p
i j + x̂i jα̇i j + ŷ ṗ)+ ρ̃ ŝṪ

]
dṼ

= J̃l−
1

Bc

∫
Ṽl

[
∂̃

∂̃ t
(ρ̃ ĥ+ ρ̃ k̂)− ρ̃ f̂ · v+(τi jD

p
i j + x̂i jα̇i j + ŷ ṗ)+ ρ̃ ŝṪ

]
dṼ

= J̃0 (5)

where Ṽg and Ṽl are the volumes bounded by the closed surfaces Γ̃g and Γ̃l including
the crack faces.

For steady-state crack propagation along the ẽ1–direction, the dynamic contour
integral expression takes the special form:

J̃
Γ̃

=
1
B

∫
Γ̃

n · [−σ ·u∇̃+(ρ̃ ĥ+ ρ̃ k̂)I]dΓ̃ · ẽ1 (6)

Hence, the dynamic energy release rate serves as the thermodynamic driving
force for crack propagation in elastoplastic materials, which can be taken as the
time-continuous counterpart to the discrete path-domain independent integral de-
veloped by Simo and Honein (1990) as well as the dynamic counterpart to the
quasi-static global material (configuration) force given by Nguyen et al. (2005)
and Simha et al. (2008).

The conditions for stable crack propagation can be expressed as:

J̃0 = Jc (7)

dJ̃g

da
− dJR

da
≤ 0 (8)
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Unstable crack growth occurs when

dJ̃g

da
− dJR

da
> 0 (9)

The global energy balance equation can be written by:

dW
dt

=
dH
dt

+
dK
dt

+
∫

Ṽ
(τi jD

p
i j + x̂i jα̇i j + ŷ ṗ)dṼ +

∫
Ṽ

ρ̃ ŝṪ dṼ + JcȦ (10)

where W is external work, H is Helmholtz free energy, and K is kinetic energy.
As the time frame is taken from the start of loading, t0, till final fracture, t f ,

the total work of fracture, Wf , can be partitioned into the essential work of fracture,
We, and the non-essential work of fracture, Wne, that is,

Wf = We +Wne (11)

We =
∫ t f

t0
weȦdt =

∫ t f

t0
JcȦdt (12)

Wne = ∆H +∆K +
∫ t f

t0
dt
∫

Ṽ
(τi jD

p
i j + x̂i jα̇i j + ŷ ṗ)dṼ ++

∫ t f

t0
dt
∫

Ṽ
ρ̃ ŝṪ dṼ (13)

Hence, the specific essential work of fracture is equivalent to the critical value
of the dynamic contour integral, whereas the non-essential work of fracture is a
sum of Helmholtz free energy change, kinetic energy change, plastic dissipation,
and thermal dissipation. The EWF method can be conveniently used for the char-
acterization of plane-stress fracture toughness for ductile metals, paper and plastic
sheets with deeply-cracked specimens, where the height of the outer plastic re-
gion is proportional to the ligament length l. Thus, the specific total fracture work
w f (=Wf /Bl) is given by:

w f = we +βwpl (14)

where we and βwp are the specific essential and specific non-essential work of
fracture, respectively. Assuming that we is a material property and that wp and β

are independent of l in all tested samples, there should exist a linear relationship
when w f is plotted against l.

Numerical simulation
The elastoplastic crack growth analysis was performed using the ABAQUS com-
mercial software package with the “DEBOND” and “FRACTURE CRITERION”
options for DENT samples, as shown in Fig. 1. Based on experimental observa-
tion (Ching et al., 2000), we set the crack opening displacement to 1.07 mm at a
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distance of 1.35 mm behind the current crack tip, which corresponds to a constant
critical crack-tip opening angle (CTOA) of 23o. All the specimens have a thickness
(B) of 0.5 mm and a width (W ) of 50 mm. The ligament length (l) varies from 5
mm to 24.8 mm.

l W

Z

l W

Z

 

Figure 1: DENT Specimen

The numerical load-displacement curves (P ∼ ∆) are obtained for the DENT
samples with selected ligament lengths at gauge lengths (Z) of 100, 150, 200 mm
(Fig. 2a). When crack growth is stable throughout the fracture process, all these
curves have similar shapes and the steep stress-drops after the maximum load are
well simulated. Unstable crack growth leading to the ductile-brittle fracture transi-
tion is reflected by the precipitous load-drops for l= 24.8 mm at a gauge length of
150 mm. It is noted that simulation was conducted only up to the maximum load for
ligament length of 24.8 mm due to difficulty of obtaining numerical convergence.
The numerical load-displacement curves compare favorably with the experimental
load-displacement curves (Ching et al., 2000). The areas under these curves can be
calculated by integration to plot the specific total fracture work (w f ) against liga-
ment length (l) in Fig.2b. The two vertical dashed lines denote the valid range of
ligament length, 5t (= 2.5 mm) ≤ l ≤W/3 (= 16.6 mm), within which the data
points were used for the linear regression analysis.
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Figure 2: (a) Load-displacement curves and (b) specific total fracture work against
ligament length for DENT samples at gauge length Z=150 mm

The numerical specific essential work of fracture (we) and non-essential work
of fracture (βwp), are listed in Table 1 for the three gauge lengths of 100, 150 and
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200 mm in comparison with the experimental data. It is noted that the calculated
total specific works of fracture are somewhat larger than the experimental values
at long ligament lengths. This subsequently leads to the predictions of a lower
specific essential fracture work but a higher specific non-essential fracture work
when compared to the corresponding regression values based on the experimental
data.
Table 1: Comparisons of numerical and experimental we (kJ/m2) and βwp (MJ/m3)

Gauge length we βwp

Exp. Num. Exp. Num.
Z=100 mm 29.84 27.38 8.11 9.64
Z=150 mm 34.13 26.20 8.17 9.85
Z=200 mm 33.98 24.48 7.53 10.28

The contour plots in the central ligament region around the crack tip in DENT
specimen with ligament length of 15.23 mm for Von Mises stress just prior to crack
initiation and equivalent plastic strain at final failure are shown in Fig.3a and 3b.
It is clear that prior to crack initiation the ligaments in these samples have fully
yielded. The large plastic deformations of the fracture specimens obtained by nu-
merical simulation are consistent with the experimental observations.

 

Figure 3: (a) Von Mises stress just prior to crack initiation and (b) equivalent plastic
strain at final failure in the central ligament region around the crack tip in DENT
specimen.

Concluding Remarks
The proposed general elastoplastic fracture mechanics theory provides the guide-
lines to extend the Essential-Work-of-Fracture method to quasi-static and impact
fracture characterization of ductile materials under isothermal and non-isothermal
conditions. Finite element results of load-deflection curves for a PET using the
DENT specimen geometry with different gauge lengths and ligament lengths have
been obtained based on the CTOA criterion. These simulated curves fit well with
available experimental data. Linear dependence of the specific total fracture work
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(w f ) on ligament length (l) is found for all three gauge lengths from the numerical
simulation of stable crack growth. The ductile-brittle fracture transition may be af-
fected by varying specimen gauge length and ligament length, which needs further
investigation for future work.
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