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A simple and effective preconditioner for
integrated-RBF-based Cartesian-grid schemes
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Summary
This paper presents a preconditioning scheme to improve the condition number of
integrated radial-basis-function (RBF) matrices in solving large-scale 2D elliptic
problems. The problem domain is discretised using a Cartesian grid, over which
integrated RBF networks are employed to represent the field variable. The present
preconditioner is constructed from 1D integrated RBF networks along grid lines.
Test problems defined on rectangular and non-rectangular domains are employed
to study the performance of the scheme.
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Introduction
Integrated RBF networks (IRBFNs), which have the ability to avoid the reduction
in convergence rate caused by differentiation, were successfully developed for the
solution of partial differential equations (PDEs) [[Mai-Duy and Tran-Cong(2005)];
[Mai-Duy and Tanner(2005)]; [Mai-Duy and Tran-Cong(2006)]]. IRBFN-based meth-
ods were shown to work well with both scattered and gridded data points. This
paper is concerned with a preconditioning scheme designed for the latter in solving
large-scale problems such as porous rocks under high hydraulic pressure.

Integrated radial-basis-function networks incorporating Cartesian
grids

RBFNs allow a conversion of a function f from a low- to a high-dimensional space
in which the function can be expressed as a linear combination of RBFs

f (x) =
N

∑
i=1

w(i)G(i)(x), (1)

where the superscript (i) is the summation index, x the input vector, N the number
of RBFs, {w(i)}N

i=1 the set of weights to be found, and {G(i)(x)}N
i=1 the set of RBFs.

This paper is concerned with second-order differential problems in two di-
mensions. The integral approach uses RBFNs (1) to represent the second-order
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derivatives of the field variable u in a given PDE. Approximate expressions for the
first-order derivatives and the variable itself are then obtained through integration
as

∂ 2u(x)
∂x2

j
=

N

∑
i=1

w(i)G(i)(x), (2)

∂u(x)
∂x j

=
N

∑
i=1

w(i)H(i)(x)+C1(xk), (3)

u(x) =
N

∑
i=1

w(i)H(i)(x)+ x jC1(xk)+C2(xk), (4)

where C1(xk) and C2(xk) are the constants of integration which are univariate func-
tions of the variable other than x j (i.e. xk with k 6= j); H(i)(x) =

∫
G(i)(x)dx j and

H(i)(x) =
∫

H(i)(x)dx j.
Using IRBFNs to represent the variations of the constants of integration and

then expressing them in terms of the nodal values of C1 and C2, one has

∂u(x)
∂x j

=
N

∑
i=1

w(i)H(i)(x)+
Nk

∑
i=1

P(i)(xk)C
(i)
1 , (5)

u(x) =
N

∑
i=1

w(i)H(i)(x)+
Nk

∑
i=1

x jP(i)(xk)C
(i)
1 +

Nk

∑
i=1

P(i)(xk)C
(i)
2 . (6)

For convenience of presentation, expressions (2), (5) and (6) can be rewritten as

∂ 2u(x)
∂x2

j
=

N+2Nk

∑
i=1

w(i)G(i)(x), (7)

∂u(x)
∂x j

=
N+2Nk

∑
i=1

w(i)H(i)(x), (8)

u(x) =
N+2Nk

∑
i=1

w(i)H(i)(x), (9)

where
{G(i)(x)}N+2Nk

i=N+1 ≡ {0}
2Nk
i=1,

{H(i)(x)}N+Nk
i=N+1 ≡ {P

(i)(xk)}Nk
i=1, {H(i)(x)}N+2Nk

i=N+Nk+1 ≡ {0}
Nk
i=1,

{H(i)(x)}N+Nk
i=N+1 ≡ {x jP(i)(xk)}Nk

i=1, {H(i)(x)}N+2Nk
i=N+Nk+1 ≡ {P

(i)(xk)}Nk
i=1,

{w(i)}N+Nk
i=N+1 ≡ {C

(i)
1 }

Nk
i=1, and {w(i)}N+2Nk

i=N+Nk+1 ≡ {C
(i)
2 }

Nk
i=1.
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We seek an approximate solution in terms of nodal values of the field variable.
To do so, multiple spaces of the network weights will be transformed into the phys-
ical space. Collocating (9) at the nodal points associated with the x j grid lines,{

x(i)
}N

i=1, leads to

T̃

 w̃
Ĉ1

Ĉ2

= ũ, (10)

where T̃ is a N×(N+2Nk) matrix, w̃ =
(
w(1), · · · ,w(N)

)T
, Ĉ1 =

(
C(1)

1 , · · · ,C(Nk)
1

)T
,

Ĉ2 =
(

C(1)
2 , · · · ,C(Nk)

2

)T
, and ũ =

(
u(x(1)), · · · ,u(x(N))

)T
. The transformation ma-

trix T̃ has the entries T̃li = H(i)(x(l)) for 1 ≤ l ≤ N and 1 ≤ i ≤ (N + 2Nk). It is
noted that at a grid node P(i)(x( j)

k ) is equal to 0 if i 6= j and 1 if i = j.
Solving (10) for the coefficient vector yields w̃

Ĉ1

Ĉ2

= T̃ +ũ, (11)

where T̃ + is the generalised inverse of T̃ .
The values of first- and second-order derivatives of u at the nodal points asso-

ciated with the x j grid lines can then be computed in terms of nodal variable values
as

∂̃u
∂x j

= H̃ T̃ +ũ, (12)

∂̃ 2u
∂x2

j
= G̃ T̃ +ũ, (13)

where H̃ and G̃ are N×(N +2Nk) matrices, derived from (8) and (7), respectively.
Their corresponding entries are H̃li = H(i)(x(l)) and G̃li = G(i)(x(l)) for 1≤ l ≤ N
and 1≤ i≤ (N +2Nk).

Expressions (12) and (13) can be rewritten in compact form

∂̃u
∂x j

= D̃
′
jũ, (14)

∂̃ 2u
∂x2

j
= D̃

′′
j ũ, (15)
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where D̃
′
j = H̃ T̃ + and D̃

′′
j = G̃ T̃ + are the first and second-order differentiation

matrices in the physical space.
Consider a Poisson equation ∇2u = b with Dirichlet boundary conditions. Us-

ing point collocation, it can be transformed into

Ã ũ(θ) =
(
D̃
′′

1(η ,θ) + D̃
′′

2(η ,θ)

)
ũ(θ) = b̃(η), (16)

where Ã is the system matrix, and η and θ the two sets of indices representing the
interior points. The integral solution procedure involves computing the transforma-
tion matrix T̃ and the system matrix Ã . From a computational point of view, it is
desirable to have T̃ and Ã with low condition numbers.

Present preconditioning scheme
Consider the transformation system (10). The numerical stability of this system is
dependent on the condition number of T̃ . In the case that T̃ is ill-conditioned,
special treatments are required. Here, we adopt a preconditioning approach. Both
sides of (10) are multiplied by a matrix, denoted by B̃, that is close to the inverse
of T̃ .

We propose the use of 1D-IRBFNs to construct the preconditioner B̃. For 1D-
IRBFNs, the approximations are constructed “locally” on each grid line. On a grid
line that is parallel to the x j axis, the field variable u is sought in the form

u(x j) =
M

∑
i=1

w(i)h
(i)(x j)+ x jc1 + c2, (17)

where M is the number of RBF centres (interior and boundary points) on the grid
line (M = N j for a rectangular domain). It can be seen that the number of RBFs
used in (17) is much less than that in (2) (i.e. M � N). One can describe the
transformation system for the 1D case as

T̂

 ŵ
c1
c2

= û, (18)

or  ŵ
c1
c2

= T̂ +û, (19)

where T̂ + is the generalised inverse of dimensions (M + 2)×M, and ŵ and û the
vectors of length M. The first M rows of T̂ + are associated with the values of w
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at the grid points and we use this sub-matrix to construct the preconditioner B̃. In
the case of rectangular domains, the assembly process can be simply carried out by
means of Kronecker tensor products. Assume that the grid node is numbered from
bottom to top and from left to right. The preconditioner will take the form

B̃ = T̂ (1 : N j, :)⊗1, (20)

for x j ≡ x1, and
B̃ = 1⊗ T̂ (1 : N j, :), (21)

for x j ≡ x2. In (20) and (21), 1 represents a unit matrix of dimensions N2×N2
and N1×N1, respectively. For the case of non-rectangular domains, the assembly
process is similar to that used in the finite-element method.

The transformation system (10) can be preconditioned as

B̃T̃

 w̃
Ĉ1

Ĉ2

= B̃ũ. (22)

It leads to  w̃
Ĉ1

Ĉ2

=
(
B̃T̃

)+
B̃ũ. (23)

Numerical results
The proposed preconditioning scheme is examined numerically for both rectangu-
lar and non-rectangular domains.

Rectangular domain
Consider a square domain [0,1]2. Condition numbers of the transformation matrix
are computed for uniform grids, [3× 3, 5× 5, · · · , 95× 95]. The growth in the
condition number is reduced from O(N2.71) (unpreconditioning) to O(N1.74) (pre-
conditioning). At N = 9025, the proposed preconditioning scheme produces the
condition number lower by about 4 orders of magnitude than the original system.

To study the numerical stability of the system matrix Ã , we also employ
conventional RBFN techniques to provide a basis for the assessment. Conven-
tional techniques seek the solution in the RBF space so that their solution proce-
dures involve computing the system matrix only. The field variable u is decom-
posed into RBFs, which are then differentiated to obtain expressions for its deriva-
tives (differentiated RBFNs (DRBFNs)). We employ a set of RBFs for DRBFNs
which is exactly the same as that for IRBFNs (i.e. both approaches have the
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same number of RBFs, centres and widths (grid spacing)). Grid employed are
[7×7,11×11, · · · ,71×71]. The present system matrix is much better conditioned.
The condition number grows at the rate of O(N1.10) and O(N1.62) for IRBFNs and
DRBFNs, respectively. At N = 5041, the gap is about 4 orders of magnitude be-
tween the two RBF techniques (i.e. 4.89× 103 for IRBFNs and 2.58× 107 for
DRBFNs).

Non-rectangular domain
The domain of interest is a circular domain of radius 1/2. The problem domain is
embedded in a uniform Cartesian grid and the exterior grid nodes are removed. We
generate boundary nodes through the intersection of the grid lines and the boundary.
The preconditioned system has a much lower condition number. Its rate is reduced
from O(N2.52) (unpreconditioning) to O(N1.86) (preconditioning). The condition
number of the system matrix is in the range of 4.72× 101 to 4.38× 103 for grids,
[7×7,13×13, · · · ,61×61].

Concluding remarks
This paper presents a simple and effective preconditioning scheme for IRBFN-
based Cartesian-grid methods. Numerical results obtained show that the IRBFN
matrix condition number is significantly improved.
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