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The boundary layer phenomenon in bending of thick
annular sector plates

S. R. Atashipour1, A. R. Saidi2

Summary
In this article, the bending equations of thick annular sector plates are derived
based on the third-order shear deformation theory (TSDT). Using a function, called
boundary layer function, the coupled system of equations is converted into two de-
coupled equations and solved analytically. It is shown that the value of the bound-
ary layer function for TSDT is higher than that of the Mindlin theory. Thus, vari-
ations of stress components in the edge zone of the plate are more significant. It
is seen that there exist no boundary layer, a weak boundary layer, and a strong
boundary layer effect for simply supported, clamped, and free edges, respectively.

Introduction
The unusual changes of different parameters in the vicinity of the edges of plates are
known as boundary layer phenomenon. The cause of these effects is the existence
of the boundary layer function. This function has a significant value near the edges
and is zero in the interior zone.

There are some studies in literature dealing with the boundary layer function of
Mindlin plates. Nosier et al. [1] described the boundary layer function in rectangu-
lar plates. Also, they obtained the same results for the boundary layer function of
sector plates [2]. Jomehzadeh et al. [3] developed an analytical solution for bend-
ing of functionally graded sector plates using the boundary layer function in polar
coordinates.

Apparently, the boundary layer effects are more significant for thick plates.
Although some studies have been carried out for the boundary layer phenomenon
in Mindlin theory, no studies can be found for the boundary layer phenomenon in
the third-order shear deformation theory. In this paper, the governing equations
of the third-order shear deformation theory are converted to new uncoupled equa-
tions and solved analitically. The new equations are in terms of the boundary layer
function and transverse deflection of the plate. The effects of the boundary layer
phenomenon in the third-order shear deformation plate theory are considered and
compared with those of the Mindlin plate theory.
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Governing Equations
According to the third-order shear deformation plate theory in polar coordinates
the displacement components are assumed to be [4]
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Based on the displacement field (1), the out-of-plane shear stresses on the top
and bottom surfaces of the plate are equal to zero. The principle of minimum total
potential energy is defined as [5]

δ (U +V ) = 0 (2)

where δ is the variational symbol, U and V are the strain energy and potential
energy of applied forces, respectively. Considering plane-stress state and using the
strain-displacement relations and the displacement field (1), the governing equilib-
rium equations of sector plate in polar coordinate are obtained as follows
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Decoupling the Governing Equilibrium Equations
Introducing a function which will be referred to the boundary layer as

φ(r,θ) =
1
r
[ψr,θ − (rψθ ),r] (4)

and using some algebraic operations, three highly coupled governing equations
(3) can be converted into two independent equations as
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It can be seen that the rotation functions (ψrand ψθ ) can be written in terms of
transverse deflection and the boundary layer function as
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Solution of the Bending Equations of Sector Plate
Consider an annular sector plate of inner radius a, outer radius b,sector angle θ0
and uniform thickness h.It is assumed that two opposite edges of the plate at θ = 0
and θ = θ0 are simply supported. For the bending analysis of the sector plate,
the boundary layer function, transverse deflection and distributed load have been
considered as
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(7)

Substituting series solutions (7) into reformulated Eqs. (5), two ordinary dif-
ferential equations are obtained. The solutions of these equations are as
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Φm(r) = Cm1Iβm (µ1r)+Cm2Kβm (µ1r)

W H
m (r) = Cm3rβm +Cm4r−βm +Cm5rβm+2 +Cm6r−βm+2 +Cm7Iβm(µ2r)+Cm8Kβm(µ2r)
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(8)

where W H
m is homogeneous solution of w. The particular solution of w depends

on the distributed load.

Numerical Results and Discussion
In this section, the numerical results are presented for an annular sector plate with
b/a = 2 and θ0 = π/6. It is assumed that the plate is an isotropic plate with h =
a/10 and ν = 0.3.

In Fig. 1, the boundary layer function is plotted for an annular sector plate with
different boundary conditions on its edges. It can be seen that only at the near of
the plate edges, the boundary layer function has significant value and at the interior
zone of the plate, the value of this function is equal to zero. Because of this effect,
it is called the boundary layer function.

 Figure 1: The boundary layer function of TSDT for an annular sector plate

The variation of the out-of-plane shear stress σθz is depicted across the ra-
dial edges in Fig. 2 for both FSDT and TSDT. The annular sector plate is simply
supported in the inner edge and clamped along the outer edge. In this figure, the
variation of σθz is also plotted by omitting the boundary layer function to show the
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Figure 2: Variation of the out-of-plane shear stress along the radial direction for an
annular sector plate with simply supported and clamped edges

S - F

⎯r

⎯σ
θz

1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

TSDT
FSDT

φ = 0

 

Figure 3: Variation of the out of plane shear stress along the radial direction for an
annular sector plate with simply supported and free edges

effects of this function on the stress distribution. It can be concluded that with van-
ishing boundary layer function, the sudden change of the stress in the edge zones
of the plate vanishes in both theories.

The variation of the out of plane shear stress σθz is depicted in Fig. 3 for an
annular sector plate with simply supported inner edge and free outer edge. By
comparing Fig. 3 with Fig. 1, it can be seen that the intensity and limitation of
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the sudden changes of the stress are similar to that of the boundary layer function,
and a vanishing boundary layer function will result in vanishing of the rapid stress
changes. As the effect of the boundary layer function, the value of the stress at the
vicinity of the edges for TSDT is higher than that of FSDT.

As it has been seen previously, the boundary layer function is zero at simply
supported edges. Therefore, in this case the stress has no rapid change at the edges
of the plate.
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