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A thermo-hydro-mechanical problem for an embedded
disc inclusion
A.P.S. Selvadurai1

Summary
This paper examines the problem of the internal heating of a poroelastic halfs-
pace by an embedded rigid disc inclusion. A computational approach is adopted
for modelling the resulting coupled thermo-hydro mechanical processes associated
with the heating by the disc inclusion.
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Introduction
The three-dimensional formulation of the theory of consolidation was first proposed
by Biot (1941). The theory was developed with classical Hooke’s law as the consti-
tutive relationship for the mechanical response of the porous skeleton and Darcy’s
law as the principle governing the flow of the fluid through the pore space. Within
the context of the assumed forms of mechanical and transport behaviour, the theory
developed by Biot is exact and the coupling is correctly accounted for through con-
siderations of physics and mechanics of all the processes (Selvadurai, 1996; 2007).
The theory of poroelasticity has found application in diverse areas ranging from ge-
omechanics of resource exploration for oil and gas recovery to biomechanics. The
need for extending Biot’s classical theory to include other processes originated with
the development of new methodologies of interest to environmental geomechanics,
particularly those involving heating of fluid-saturated media. Here, the temperature
is a dependent variable that has a coupling influence on both the mechanical and
thermal phenomena. The motivation for considering thermo-poroelastic behaviour
of geomaterials stems from the need for development of efficient and reliable tech-
niques for deep geological disposal of heat-emitting nuclear fuel wastes (Laughton
et al., 1986; Selvadurai and Nguyen, 1996).

The Governing Equations
We consider Thermo-Hydro-Mechanical (THM) processes in a fully saturated porous
medium with an elastic fabric. The displacement vector defining the deformations
of the porous skeleton is denoted by u(x, t), where x is a position vector and t is
time. The pressure of the fluid occupying the pore space is denoted by p(x, t). The
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temperature of all phases at a point in the saturated medium is denoted by T (x, t).
The effective stress in the porous skeleton is defined through

σσσ = σσσ
′+α I p (1)

where σσσ is the total stress dyadic, σσσ ′ is the effective stress dyadic, I is the unit
dyadic, α is the pore pressure parameter which takes into consideration the com-
pressibilities of the solid and fluid phases and the porosity of the medium. As
α → 1, (1) reduces to the classical effective stress equation proposed by Terzaghi
(1925). For material isotropy of the deformable medium, the stress-strain relation-
ship for the elastic porous solid, which also accounts for the thermal deformations
of the solid skeleton, is given by the Duhamel-Neumann extension to Hooke’s law;
this can be written as

σσσ
′ = 2Gεεε +(λ∇.u−β KDT ) I (2)

In (2), the strain dyadic εεε is given by εεε = (1/2)(∇u+u∇), where ∇ is the gra-
dient operator, λ = 2νG/(1−2ν) is a Lamé constant, G and ν are, respectively, the
skeletal linear elastic shear modulus and Poisson’s ratio, KD(= 2G(1 + ν)/3(1−
2ν)) is a bulk modulus and β is the coefficient of volume expansion of the porous
skeleton. For the sign convention, we assume that compressive stresses are positive.
Darcy’s law describes the flow of the fluid through the pore space. In the definition
of the flow, we need to take into consideration the relative motion between the fluid
and the porous solid:

q f
r = v f −vs =− K

nµ
∇p (3)

where q f
r is the relative measure of the flux associated with the liquid phase, , K is

the permeability dyadic referred to the fully saturated condition, µ is the dynamic
viscosity of the fluid. It can be shown that for non-negative dissipation of energy
during fluid flow, K = KT , where KT is the transpose. In other words, the matrix
of coefficients constructed with K is positive definite and symmetric.

The process of heat transfer in the saturated porous medium is assumed to be
primarily due to heat conduction. Fourier’s law of heat conduction in its general
form can be written as

q =−κκκ ∇T (4)

where κκκ(= κκκC) is the dyadic of thermal conductivity. Considering the balance
equations applicable to linear momentum, we have, for quasi-static deformations
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of the partially saturated medium

∇.σσσ + f = 0 (5)

where f is a body force vector. The conservation of fluid mass takes into account
storage originating from the consideration of water increase in a saturated medium,
the storage originating from the compressibility of the solid matrix and storage/loss
from a control volume due to mismatch of thermal expansion between the water and
the porous solid. This gives

ρw

[
∂

∂ t
(∇.u)+

(1−n)
ρs

∂ρs

∂ t

]
= −∇.(q f

r −qv
l ) (6)

where n is the porosity and ρs is the mass density of the solid material constituting
the porous solid. The conservation of heat energy gives

∇.q + Q = ρC
∂T
∂ t

(7)

where ρ and C are, respectively, the mass density and specific heat of the saturated
porous solid which consists of the solid phase and the fluid phase. Combining
these we obtain the following set of coupled partial differential equations for the
dependent variables u , p and T :

G∇.(∇u) + (λ +G)∇(∇.u) + α∇p −β KD∇T + f = 0 (8)

∇.

(
ρwK

µ
[∇p +ρw g]

)
−Cw

∂ p
∂ t

+ρw
∂

∂ t
(∇.u)− ρw(nβw +(1−n)βs)

∂T
∂ t

= 0

(9)

∇ .(κκκ ∇T ) +Q = ρC
∂T
∂ t

(10)

Computational Modelling
A 3D finite element code (Selvadurai and Nguyen, 1995) has been developed to
solve, computationally, the system of coupled partial differential equations de-
scribed by (8) to (10). When the problem governing THM processes is posed in
terms of a system of governing partial differential equations along with a con-
sistent set of boundary conditions and initial conditions, it is convenient to take
advantage of the Galerkin-type weighted residual technique to formulate the com-
putational scheme. Comprehensive expositions of the basic procedures are given



60 Copyright © 2010 ICCES ICCES, vol.15, no.2, pp.57-64

in a number of advanced texts on finite element modelling and the reader is re-
ferred, in particular, to the texts by Lewis and Schrefler (1998) and the articles by
Selvadurai (2007) and Selvadurai and Nguyen (1995). Considering standard finite
element procedures, the domain is discretized into Ne elements. In the modelling
of the geological medium with isoparametric elements, the displacements within
the element are interpolated as functions of displacements of all nodes whereas the
pore fluid and temperature are interpolated as functions of the values at the corner
nodes. Details of the rationale for the procedure are well documented (Selvadurai
and Nguyen, 1995). The Galerkin procedure, when applied to the partial differen-
tial equations (8) to (10), gives rise to matrix equations of the general form

α1

[
[K] ς2 [CP]

ς2 [CP]T −α ∗ (∆t) [KP]− ς3 [CM]

]{
{d}(n+1)

{p}(n+1)

}

= { f}+
[(

α∗−1
α∗
)
[K] ς2

(
α∗−1

α∗
)
[CP]

ς2 [CP]T (1−α)(∆t) [KP]− ς3 [CM]

]{
{d}(n)

{p}(n)

}
[

ς4
α∗ [K] [0]
[0] ς5 [CM]

]{
(1−α∗){T}(n) +α ∗{T}(n+1)

{T}(n+1)−{T}(n)

} (11)

[ α ∗ [KH]+
(

ς1
∆t

)
[CM] ]{T}(n+1)

= {FH}+{FQ} [(1−α∗) [KH]+
(

ς1
∆t

)
[CM] ]{T}(n) (12)

where the unknowns are the nodal displacements {d}(n+1), the nodal tempera-
tures {T}(n+1) and the nodal pore pressure values {p}(n+1) at the current time step
{}(n+1) and the superscripts {}(n) refer to the values of the corresponding variables
at the preceding step. The parameters ςi depend on the THM processes. Also {f}
is the force vector, {FQ} and {FH} are heat flux vectors, ∆t is a time increment
and α∗ is a time integration parameter. This time integration parameter can vary
between 0 and 1. It is found that by setting α∗ = 0.75, a reliable stable solution
is achieved. All other matrices [K], [CP], etc., are assembled from element ma-
trices, which are dependent on thermal, mechanical and hydraulic properties of
the individual elements and the interpolation functions used. The accuracy of the
computational modelling has been verified by comparison with analytical solutions
obtained for the one-dimensional TH, HM and THM behaviour of a finite column
of a fluid saturated porous medium which is subjected, where appropriate, to sur-
face tractions and /or to a temperature rise in the form of Heaviside step functions.
In the computational scheme, the one-dimensional behaviour is simulated by con-
sidering a three-dimensional prismatic region, the surfaces of which are subjected
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to appropriate temperature, fluid pressure, displacement and traction boundary con-
ditions, consistent with the requirements for one-dimensional behaviour. The com-
putational estimates for the time-dependent responses of the dependent variables
compare very accurately with results of analytical solutions.

The Heated Inclusion Problem
We apply the computational modelling to examine the THM behaviour of a fluid
saturated medium of finite extent, which is internally heated by a rigid disc-shaped
inclusion (Figure 1). The geometry of the heated area is a flat planar circular re-
gion, which is intended to model a deep repository of large area situated in a fluid
saturated geological medium. The disc-shaped region is subjected to heating which
has a time history of the form of a Heaviside step function and the excess pore fluid
pressure generated due to the heating is allowed to dissipate within the medium
itself. Since the problem is axisymmetric and since symmetry also exists about the
plane of the heated inclusion, we can formulate the initial boundary value prob-
lem governing the resulting THM problem in relation to a cylindrical region where
r ∈ (0,λa) and z ∈ (0,λa), where λ is an arbitrary parameter. Owing to the sym-
metries associated with the problem, the computational modelling can be restricted
to a quarter-region of a halfspace, where appropriate symmetries are invoked to
simulate the extended nature of the domain. The pore pressure boundary con-
ditions at the heated inclusion region are specified as being of the homogeneous
Dirichlet type. Figure 1 also illustrates the finite element discretization involving
20-node brick elements. The outer boundary of the quarter-halfspace domain is
located at 20a where a is the radius of the heated inclusion region. Since the rigid
disc inclusion is embedded in an infinite space region, by considering the symme-
try conditions the boundary conditions can be identified on the planes of symmetry
and along the axis of symmetry. In order to complete the formulation of the initial
boundary value problem governing the THM process we need to specify initial con-
ditions pertaining to the dependent variables and /or combinations of their spatial
and time derivatives. In the problem dealing with the embedded rigid disc inclu-
sion problem, we assume that the temperature and pore pressure fields relate to the
excess values and that the poroelastic medium is at zero reference temperature and
pressure.

The mesh discretization shown in Figure 1 provides a degree of mesh refine-
ment to account for the steep gradients in the effective stress, pore pressure and tem-
perature fields usually associated with the mixed boundary conditions prescribed on
the plane of the disc inclusion. The computational modelling is performed using
the developments presented previously. The thermo-poroelastic parameters used in
the computations are as follows:
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Figure 1: A disc inclusion problem for a poroelastic infinite space and the finite
element discretization of the a sub-region

Mechanical: E = 60×109Pa ; ν = 0.3 ; Cs = C f = 0

Thermal: β ′ = βs = 24.6×10−6
(

0C
)−1 ;β f = 0.4×10−3

(
0C
)−1 ;

κ = 4.0W/m 0C Cs = 718J/kg/0C; C f = 4190J/kg/0C

Physical: ρs = 2700kg/m3; ρ f = 1000kg/m3; µ = 0.001kg/m/s
Hydraulic: K = 10−19 m2; n = 0.01
Time-dependent distributions for u, σσσ ′, p and T within the poroelastic domain

can be obtained from the computational analysis. Since the poroelastic medium is
of infinite extent, the displacement field is of marginal interest. A result of some
importance to the assessment of THM coupling relates to the time-dependent varia-
tions in the pore pressure field that result from the heating of the rigid disc inclusion
and the thermo-mechanical deformations that materialize in the pore fluid as well
as the porous skeleton of the poroelastic medium. In order to assess the greatest
influence of the pore pressure generation effect, attention is restricted to the case of
the impermeable rigid disc inclusion.

Figure 2 illustrates the time-dependent variation of pore fluid pressure at the
central and edge locations of the poroelastic medium for four specific situations
where both the far field boundary conditions and the location of the far field bound-
ary are changed. These include, cases where either the boundaries are free or they
are fixed and the extent of the cylindrical region is changed from 20a to 40a. Null
boundary conditions are, of course, specified for the pore fluid pressure and the
temperature at the outer surfaces of the region. It is found that for the specific prob-
lem examined, the far field boundary conditions and the extent of the domain have
only a marginal effect on the time-dependent variation in the pore fluid pressure.
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Figure 2: Time-dependent variation of pore fluid pressure at the center and at the
edge of the rigid disc inclusion

Concluding remarks
The development of computational methodologies for the study of such THM prob-
lems is considered to be an important aspect that can enhance the application of
such coupled theories to practical problems in environmental geomechanics. The
reduction of the completely coupled system of equations into a weakly coupled
form is an attempt to make the coupled problem more tractable. In certain classes
of linear problems these weak links of coupling can be identified by through the
physics of the problem. In this paper it is shown that in the context of the thermo-
mechanical processes in fluid saturated porous geological materials with low per-
meability, the weak form of coupling results in a set of governing equations for
which both the parameter identification and computational modelling are feasible
exercises.
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