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Free vibrations of magnetoelectric bimorph beam devices
by third order shear deformation theory
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Summary
The axial and flexural natural frequencies of magneto-electro-elastic bimorph beam
devices are analyzed in the framework of the third-order shear deformation theory
(TSDT). Although the assumption of parabolic transverse shear strain distribution
along the thickness leads to higher order stress resultants the use of the TSDT al-
lows to avoid the need for shear correction factor. Moreover, since the electric and
magnetic potentials strictly depend on the shear strains, a more accurate model-
ing of the magneto-electric coupling can be achieved by expanding the kinemati-
cal model up to the cubic term. The natural frequencies for different mechanical
boundary conditions are computed by varying the magnetoelectric bimorph config-
uration. The results are compared to those obtained by a first-order shear deforma-
tion theory (FSTD).

Keywords: magneto-electro-elastic, third-order shear deformation theory, bi-
morph, natural frequencies.

Introduction
A new class of material, the so called magnetoelectric composites (MEE), are re-
ceiving an increasing attention for the design of smart devices, Fiebig (2005). In
fact, these materials can be profitably used in the field of Smart Structure technol-
ogy due to the capability of coupling different fields such as elastic, electric and
magnetic ones. In particular, due to the coexistence of piezoelectric and piezomag-
netic phases which provide the composite with both the electro-mechanical and the
magneto-mechanical coupling, a magneto-electro-elastic medium is able to cou-
ple the electric and magnetic fields through the elastic one, Nan (1994), Eerenstein,
Mathur and Scott (2006). Due to this unique feature, called magneto-electric effect,
the MEE materials can be used for magnetic field sensors, Fetisov, Bush, Kament-
sev, Ostashchenko and Srinivasan (2006), Dong, Li and Viehland (2004), as well as
generators, transformers and wireless power supply for microelectronics devices,
Bayrashev, Robbins and Ziaie (2004). The increasing interest towards the magneto-
electric composite gives rise to the development of analytical and numerical models
to investigate both the static and the dynamic responses of this new class of materi-
als. In the field of modal analysis, the finite element method has been used by An-
nigeri, Ganesan and Swarnamani (2007) to analyze the natural frequencies of mul-
tiphase and layered magnetoelectric beams while the propagation matrix method
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has been employed by Pan and Heyliger (2002) to study the free vibrations of sim-
ply supported multilayered magneto-electro-elastic plates. Analytical solutions for
the free and forced vibration problems of magneto-electric beams, based on the
classical Bernoulli beam theory and on a first-order Timoshenko-like beam theory
(FSTD), have been derived in the works of Milazzo, Orlando, and Alaimo (2009),
where the shear influence on the magneto-electric fields has been pointed out. In
the present paper the free vibration problem of magneto-electric bimorph beam has
been modeled by using the Third Order Shear Deformation Theory (TSDT), which
assumes parabolic distributions of the shear strains with respect to the thickness
coordinate, Reddy (2004). By using the TSDT the shear factor correction is not
needed overcoming the drawback of its dependence on the magnetic and electric
fields in the FSTD model for magneto-electro-elastic beams. Computation of the
natural frequencies of homogeneous and bimorph magneto-electro-elastic beams
are presented.

Model Derivation and Solution
Let us consider a magneto-electro-elastic composite bimorph beam of length L and
thickness h whose laminae are considered perfectly bonded from the mechanical,
electric and magnetic point of view. Under the assumptions of zero electric den-
sity charge and current and quasi-static electric and magnetic fields, the electric
and magnetic state of the beam are described in terms of the electric and mag-
netic potential function φ and ψ , respectively. Moreover, the electric polarization
and magnetization directions are supposed to be directed along the y-axis, namely
the thickness direction, while the components of the electric and magnetic fields
along the x-axis, namely the beam length direction, are assumed to be negligible.
The presented bimorph beam model relies upon the third order shear deformation
beam theory, Reddy (2004), which is here extended by considering the magneto-
electro-mechanical constitutive relationships, written assuming a monoaxial stress
state, Milazzo, Orlando and Alaimo (2009). Accordingly, the following kinemati-
cal model is assumed for the beam

u(x,y, t) = u0 (x, t)− yϑ (x, t)+αy3
[
ϑ (x, t)− ∂ v(x,t)

∂x

]
v(x,y, t) = v0 (x, t)

(1)

where u and v are the displacement components along the x and y axis, respec-
tively, u0 and v0 are the displacement components at the beam mean-line, ϑ is the
cross section rotation and t denotes the time variable. The coefficient α = 4/3h2

is determined by ensuring that the shear stress vanishes at the beam top and bot-
tom surfaces. Under the aforementioned assumptions, following the procedure pro-
posed in Milazzo, Orlando and Alaimo (2009), the Gauss’ laws for electrostatic and



Free vibrations of magnetoelectric bimorph beam devices 139

magnetostatic are firstly satisfied in terms of the kinematical variables derivatives
obtaining
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(2)

where the superscript± is used to denote variables pertaining to the upper or lower
layers of the bimorph. The A and B coefficients definitions and the computation
of the integration constants ai are omitted for the sake of brevity; the interested
reader can find a full description of the employed procedure in Milazzo, Orlando
and Alaimo (2009). It is just worth noting that once the magneto-electric boundary
conditions are imposed the electric and magnetic potentials through-the-thickness
distribution results known; only their x−dependence stands unknown and is re-
lated to the beam kinematical variables. Thus, in order to determine the electric
and magnetic fields variables, the beam equations of motion need to be derived
and solved. Following Reddy (2004), the Hamilton’s principle for a linear elas-
tic body is first considered. It points out that the primary variables of the prob-
lem are u0, v0, ϑ and ∂v0/∂x, while the corresponding secondary variables are
Nx, T̄x +α

(
∂Px/∂x− J4∂ 2ϑ/∂ t2 +αI6∂ 3v0/∂x∂ t2

)
, M̄x, −αPx. The beam equi-

librium equations are obtained as follows

∂Nx
∂x = I0

∂ 2u
∂ t2

∂ T̄x
∂x −α

∂ 2Px
∂x2 = I0

∂ 2v
∂ t2 −α

(
J4

∂ 3ϑ

∂x∂ t2 +αI6
∂ 4v

∂x2∂ t2

)
∂M̄x
∂x + T̄x = K2

∂ 2ϑ

∂ t2 +αJ4
∂ 3v

∂x∂ t2

(3)

where, denoted by ρ the mass density and set Ii =
∫ h

2
−h

2
ρyidy, one has J4 = I4−

αI6 and K2 = I2−2αI4 + α2I6. The new mechanical variables used in writing the
equilibrium equations, i.e. Eq. 3, are defined in terms of stress resultants according
to

M̄x = Mx−αPx

T̄x = Tx−3αRx
(4)

Taking into account the constitutive relationships for the stress components σ x

and σ xy and the expressions of the electric and magnetic potential functions given
by Eq. 2, the stress resultants can be written as
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where c44 is the shear stiffness. The coefficients Ku
i, Kϑ

i, Kv
i (i=N, M, P) are beam

equivalent extensional and flexural stiffness depending on both the elastic and mag-
netoelectric material constants, whereas the terms NEM,,MEM,,PEM account for the
applied magneto-electric loads. The expression of these coefficients is not given for
the sake of brevity. By substituting Eq.5-9 into Eq.3 the equations of motion are
obtained. The free vibration problem is solved by using the method of separation
of variables based on modal expansion of the kinetic variables. According to the
standard procedure, one assumes

u0 = Un (x)eiωnt , v0 = Vn (x)eiωnt , ϑ = Θn (x)eiωnt (10)

where Un, V n and Θn are the mode shapes and ωn is the natural circular fre-
quency, determined imposing the beam boundary conditions. In the present work
the clamped-clamped (CC), cantilever (CF) and simply supported boundary condi-
tions are considered. They are summarized in the following

S−S :

{
U (0) = V (0) = M̄x (0) = αPx (0) = 0
U (L) = V (L) = M̄x (L) = αPx (L) = 0

(11)

C−C :

{
U (0) = V (0) = Θ(0) = V ′ (0) = 0
U (L) = V (L) = Θ(L) = V ′ (L) = 0

(12)
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C−F :

{
U (0) = V (0) = Θ(0) = V ′ (0) = 0
Nx (L) = T̄ ∗x (L) = M̄x (L) = αPx (L) = 0

(13)

where T̄ ∗x = T̄x +α
(
P′x +ω2

n J4Θ−αI6ω2
nV ′
)
. It is worth nothing that in order to ob-

tain homogeneous governing equations the equivalent electromagnetic stress resul-
tants NEM,,MEM,,PEM,are set to zero by enforcing proper electromagnetic bound-
ary conditions.

Numerical results
The natural frequencies for two different magnetoelectric beam configurations are
presented. The first application deals with the free vibration analysis of a homo-
geneous beam made of BF60, a particulate magnetoelectric composite with a 60%
volume fraction of BaTiO3 and 40% volume fraction of CoFe2O4 whose material
properties have been taken from Milazzo, Orlando and Alaimo (2009). The re-
sults have been obtained for the three different mechanical boundary conditions,
that is both ends clamped (CC), one end clamped and the other free (CF) and both
ends simply supported (SS). The magneto-electric boundary conditions are those
characterizing the sensing capability of the magneto-electro-elastic device and are
obtained by setting to zero the electric and magnetic potentials on the bottom beam
surface and the normal component of the electric displacement and magnetic in-
duction vectors on the top beam surface. The natural frequencies for these three
different mechanical boundary conditions are listed in Table 1.

Table 1: Natural frequencies (Hz) for the BF60 beam (axial mode in italic style).
Mode C-C C-F S-S

f T SDT f FSDT % difference f T SDT f FSDT % difference f T SDT f FSDT % difference
1 1052 1054 -0.19 % 170 170 0 % 475 475 0 %
2 2792 2800 -0.28 % 1042 1043 -0.09 % 1858 1861 -0.16 %
3 5230 5250 -0.38 % 2827 2832 -0.17 % 3961 3961 0 %
4 7922 7922 0 % 3961 3959 0.05 % 4037 4050 -0.32 %
5 8211 8250 -0.47 % 5307 5323 -0.3 % 6869 6901 -0.46 %
6 11613 11675 -0.53 % 8350 8386 -0.43 % 10208 10272 -0.62 %

It can be observed that the values of the natural frequencies obtained by using
TSDT slightly differs to those obtained by the FSTD beam model: they decrease
due to the less stiffness associated to the kinematical model of the TSDT. How-
ever, even if the difference between the natural frequencies obtained with TSDT
and FSDT is very small, practically negligible, the higher order theory gives a
meaningful improvement in the appraisal of the through-the-thickness distribution
of electric and magnetic potentials and it does not require a preparatory assessment
of the shear factor.
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Table 2: Natural frequencies (Hz) for BaTiO3/ CoFe2O4 beam (axial mode in italic
style).

Mode C-C C-F S-S
f T SDT f FSDT % difference f T SDT f FSDT % difference f T SDT f FSDT % difference

1 1095 1101 -0.54 % 177 178 -0.56 % 495 498 -0.60 %
2 2901 2919 -0.61 % 1086 1092 -0.55 % 1935 1948 -0.67 %
3 5421 5457 -0.66 % 2940 2959 -0.64 % 4126 4155 -0.71 %
4 8309 8311 -0.02 % 4155 4155 -0 % 4224 4230 -0.14 %
5 8492 8551 -0.69 % 5508 5549 -0.74 % 7126 7191 -0.90 %
6 11983 12069 -0.71 % 8647 8718 -0.81 % 10565 10678 -1.06 %

The second example investigates the free vibrations of a bimorph beam ob-
tained by stacking a piezoelectric BaTiO3 layer and a piezomagnetic CoFe2O4
layer. The beam has length L= 0.3 m and height h= 0.02 m and the mass den-
sity is 5550 kg/m3. Also for this case the results are compared to those obtained by
Milazzo, Orlando and Alaimo (2009) with a first order beam theory. The computed
natural frequencies are listed in Table 2. As expected the same considerations as in
the previous example can be pointed out.

Conclusion
In this paper an analytical model based on the third order shear deformation the-
ory for magnetoelectric bimorph beam has been presented. The piezoelectric,
piezomagnetic and electromagnetic coupling effect have been included in the beam
equivalent flexural and axial stiffness coefficients. Free vibration analyses have
been carried out by using the proposed model for three distinct boundary condi-
tions. The results obtained show that the difference between the natural frequencies
computed by TSDT and FSDT is practically negligible. Nonetheless, the higher
order theory can give a meaningful improvement in the appraisal of the through-
the-thickness distribution of electric and magnetic potentials and it does not require
a preparatory assessment of the shear factor.
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