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Abstract: The paper deals with the novel multiscale approaches for modelling of 

both quasi-brittle and ductile damage responses of heterogeneous materials. The 

damage is induced at the microstructural level and, after the homogenization 

procedure, it is included in the constitutive stiffness of the material point at 

macrolevel. The derived algorithms are implemented into the finite element 

software ABAQUS. The new two-scale transition procedures have been verified 

on the standard benchmark examples. 
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1 Introduction 

Damage phenomena, macroscopically characterized by decrease in material stiffness or so-called 

softening, are common in engineering materials and can decrease structural load-carrying capacity, and 

lead to loss of mechanical integrity. A lot of engineering materials can be treated as heterogeneous, 

particularly if they are observed at microscale. Therefore, in order to assess structural integrity and to 

predict structural lifetime, an analysis evolving microstructure is necessary. Derivation of an efficient 

multiscale approach is still an important challenge in the computational mechanics community. 

In the present contribution the damage responses of both quasi-brittle and ductile materials are considered 

using two-scale computational procedures. To model quasi- brittle damage, a second-order computational 

homogenization approach is applied. The C1 continuous triangular finite element formulation based on the 

nonlocal continuum theory is used for the discretization at both micro- and macroscale. The damage 

enhanced constitutive relations are employed at the microlevel, where an appropriate representative 

volume element (RVE), representing a sample of heterogeneous material, is considered. The ductile 

damage is modelled using the first-order computational homogenization scheme. The macrolevel 

discretization is performed by means of the regular displacement finite element formulation, while the 

RVE is discretized by the newly developed mixed finite element. Herein, the microstructural boundary 

value problem is solved by employing the gradient-enhanced elastoplasticity. According to the multiscale 

computation technique, all homogenized variables are mapped to the macrolevel. All developed 

algorithms are implemented into the finite element software ABAQUS via user subroutines. The 

proposed computational models are verified by means of several benchmark examples. 

2 Numerical Formulation  

The multiscale approach is based on the transition of state variables between two or more scales. Here a 

two-scale transition is considered, which employs the solution of the two boundary value problems, one at 

the macroscopic and one at the microscopic scale. In this framework the constitutive relation in a material 

point at the macrolevel is obtained by the simulation of a microscopic representative sample of material, 

i.e., an RVE. The state variables computed at the material point at the macrolevel are transferred to the 
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microlevel using the RVE boundary conditions. After solution of the RVE boundary value problem, the 

homogenized microstructural variables forming the constitutive relation are upscaled at the macroscopic 

material point. The transition scheme is displayed in Fig. 1. The algorithms derived are implemented into 

the ABAQUS which significantly contributes to numerical efficiency.  
 

 
 

Figure 1: Two-scale computational scheme 

2.1 Modeling of Quasi-Brittle Damage  

As mentioned above, the C1 continuous plane strain triangular finite element is used for the discretization 

at both micro- and macrolevel. It consists of three nodes, each having 12 degrees of freedom which are 

two displacement components and their first- and second-order derivatives. The element is based on the 

nonlocal continuum theory under assumption of small strain. The constitutive relations at the macrolevel 

and the finite element derivation are presented in [1]. The state variables computed at the macrostructural 

material point are the strain and the strain gradient which are transformed to the RVE boundary 

displacement. The constitutive relations at the microscale employ the damage variable as presented in the 

following incremental expressions 
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Here, σ and ε  are the Cauchy stress and the strain tensors, respectively. The values 
1xε  and 

2xε stand for 

the strain gradients with respect to the Cartesian coordinates, and 
1xμ  and 

2xμ are their work conjugates. l 

represents the microstructural parameter, while C  is the elasticity matrix which describes the stiffness 

behavior of the bulk material of RVE. D is the damage variable expressed by the exponential softening 

law [2]. After solution of the microscale boundary value problem and the homogenization procedure, the 

stress tensor components and stiffness dependent on the damage are mapped at the macrostructural level. 

In this way the RVE damage response is upscaled at the macrostructural finite element integration point, 

which yields the macrostructural material softening.  

2.2 Modeling of Ductile Damage  

According to the the first-order computational homogenization, the discretization at the macrolevel is 

performed by using a standard 4-node quadrilateral finite element formulation. Here the constitutive 

relation includes the damage variable and it is expressed as 

( ) B1 ,D= −σ C ε                                                                                                                   (2) 

where BC  is the bulk material constitutive matrix of the heterogeneous RVE. Both the damage variable 

and the constitutive matrix are computed by the homogenization at the microstructural level. During the 

two-scale transition the macrostructural strain is mapped to the RVE, where the microstructural boundary 

value problem is solved. Here the damage variable, which is governed by the nonlocal equivalent plastic 

strain, is embedded into the Von Mises yield function. The exponential damage law is used. An implicit 

gradient approach driven by the nonlocal equivalent plastic strain is applied [3], which requires an 

additional differential equation employing the microstructural parameter, leading to additional degrees of 
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freedom in the finite element framework. Therefore, the mixed finite element formulation is applied at the 

microlevel, where the nodal variables are the displacement and the nonlocal equivalent plastic strain. To 

model elastoplastic response, a standard well-known elastoplastic algorithm is applied. The new 

homogenization strategy is proposed in which the elastoplastic responses and the damage evolution are 

homogenized separately and upscaled at the macrostructural level.   

3 Numerical Examples  

3.1 Ductile Damage Responses of the Strip under Tensile Loading  

To demonstrate ductile damage responses by means of the approach described, a strip with a weakened 

zone in the middle area subjected to the tensile loading is considered, as shown in Fig. 2. 

a)       b)  

c)    d)  
 

Figure 2: a) Geometry and loading of strip, b) heterogeneous RVE, 

c) damage response of macromodel, d) damaged microstructural volume element 

 

Fig. 2(c) displays the damage distribution over the deformed strip at the failure stage. The spreading of 

the softening zones over the RVE is shown in Fig. 2(d). As evident the realistic damage behaviour, 

typically observed in ductile materials, is obtained.  

4 Conclusion  

A two-scale algorithm for modelling of damage evolution at heterogeneous microstructure has been 

proposed.  The softening in the quasi-brittle material response is captured by using the strain gradient 

continuum formulation, where the C1 continuous triangular finite element discretization is applied. The 

ductile damage response is modelled by using the gradient-enhanced elastoplasticity, where the nonlocal 

elastoplastic variable is driven by the implicit formulation. Therein the discretization by means of the 

mixed C0 finite elements is performed. It has been demonstrated that newly developed computational 

procedures are capable to capture evolution of the microstructural softening, which yields the realistic 

formations of the macrolevel localization zones.  
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