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Abstract: The world has been suffering from the Coronavirus (COVID-19)
pandemic since its appearance in late 2019. COVID-19 spread has led to
a drastic increase of the number of infected people and deaths worldwide.
Imminent and accurate diagnosis of positive cases emerged as a natural alter-
native to reduce the number of serious infections and limit the spread of the
disease. In this paper, we proposed an X-ray based COVID-19 classification
system that aims at diagnosing positive COVID-19 cases. Specifically, we
adapted lightweight versions of EfficientNet as backbone of the proposed
recognition system. Particularly, lightweight EfficientNet networks were used
to build classification models able to discriminate between positive and nega-
tive COVID-19 cases using chest X-ray images. The proposed models ensure
a trade-off between scaling down the architecture of the deep network to
reduce the computational cost and optimizing the classification performance.
In the experiments, a public dataset containing 7,345 chest X-ray images was
used to train, validate and test the proposed models for binary and multi-
class classification problems, respectively. The obtained results showed the
EfficientNet-elite-B9-V2, which is the lightest proposed model yielded an
accuracy of 96%. On the other hand, EfficientNet-lite-B0O overtook the other
models, and achieved an accuracy of 99%.
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1 Introduction

COVID-19 appeared in Wuhan, China, in December 2019. It has been named Coronaviruse (CoV)
because it appears under an electron microscope as a solar corona (crown-like) [1]. The World Health
Organization (WHO) called the infection caused by this type of virus COVID-19 on February 11th,
2020 [2]. COVID-19 spread rapidly around the world and infected more than three hundred million
people till January 2022 [3]. The World Health Organization stated officially on March 11th, 2020 that
COVID-19 has become a pandemic [4]. Precisely, until 05:30 pm CET, on January 26th, 2022 there have
been 356,955,803 confirmed infections around the world, and the number of deaths reached 5,610,291
[3]. In particular, in Saudi Arabia, the total number of confirmed infections has reached 666,259 and
the number of deaths attained 8927 [5].
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To slow down the pandemic spread, governments all around the world have imposed drastic
restrictions on their populations, such as halting international travellers, imposing wearing masks,
social distancing, and closing barbershops. Despite these restrictions, the pandemic affected strategic
sectors, such as education. The schools closed and many countries, such as in Saudi Arabia, where
schools and universities shifted to online/distance learning [6]. Furthermore, the global economy was
impacted, and many people lost their jobs. Saudi Arabia government provided considerable financial
support to the companies acting in the damaged sectors. A support of 17.3 billion Riyals contributed
to compensating for the salaries of the affected employees [7].

The early diagnosis of Coronavirus limits its spread around the world and helps to boost the
recovery rate of infected patients. Currently, the diagnostic tool widely used is the Real-Time Reverse
Transcription-Polymerase Chain Reaction (RT-PCR) test on respiratory specimens. However, the
clinicians reported that this technique yields a low positive rate when conducted during the early stage
of the infection. Moreover, the manual process required is tedious and laborious for the involved
manpower. Furthermore, a high contamination risk holds for the medical staff in addition to a
relatively long time required to release the test results. These limitations and disadvantages fostered the
use of medical imaging as a promising alternative to positive COVID-19 case detection. Particularly,
chest X-ray modalities have been introduced as less time consuming and more deployable diagnoses
on a larger scale [8]. However, with the continuously increasing number of cases, the sanitary facilities
as well as their staff are put under pressure, which limits their ability to “manually” diagnose such a
huge number of patients [9]. Also, the accuracy of the diagnosis may be affected due to the lack of
prior knowledge and experience related to the lung region being damaged by COVID-19 [§]. Machine
Learning (ML) has been introduced as an option to automate the X-ray-based detection of positive
COVID-19 cases and improve the overall recognition performance. Actually, ML based Computer
Aided Diagnosis (CAD) system would provide an automatic, safe, fast, and more reliable solution for
early detection of COVID-19 cases.

Nowadays, machine learning techniques, especially deep learning, are being used to address
various problems in the medical field [10]. Particularly, they have been used in applications such
as brain tumour detection [11], breast cancer detection [12], and pneumonia detection [13]. Lately,
Convolutional Neural Networks (CNN) based solutions have been proposed to alleviate pneumonia
and COVID-19 detection using chest X-ray images [§].

Despite the promising results achieved by the existing works, the typical limitations of CNN
architectures are inherited by most the previous contributions. Specifically, their deep architectures
are complex and need powerful computing resources. Therefore, it is difficult to embed the resulting
CAD systems in medical equipment or smart devices. In this work, we intend to overcome these
limitations by using lightweight EfficientNet. Specifically, the proposed approach aims at a finding
trade-off between scaling down the deep network architecture to reduce the computational cost and
optimizing the classification performance. In addition, due to the lack of data in the medical field,
we need a lightweight architecture that has less learnable parameters to avoid overfitting problem.
The proposed approach aims to build a CAD system for the classification of COVID-19 cases using
X-ray images. Specifically, we design a lightweight EfficientNet inspired architecture. The designed
network is intended to build a model able to automatically discriminate between positive and negative
COVID-19 cases.

The rest of this manuscript is organized as follows: Section 2 depicts the related works relevant to
image-based detection of positive COVID-19 cases. Section 3 outlines the proposed methods. The
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results are presented in Section 4. Moreover, a discussion of the obtained results is conducted in
Section 5. Lastly, the conclusions and future work are presented in Section 6.

2 Related Work

In this section, we review the recent studies that rely on end-to-end deep learning models, as well
as the related works that use deep learning for feature extraction only.

2.1 End-to-End Architecture Based Solutions

The authors in [14] proposed a deep learning framework, called COVIDX-Net, to support
radiologists in the diagnosis of COVID-19 using X-ray images. In particular, they used a small
public dataset that included 50 X-ray images only. On the other hand, they investigated seven pre-
trained models. Namely, they used VGG19 [15], DenseNet201 [16], InceptionV3 [17], ResNetV2 [1£],
InceptionResNetV2 [19], Xception [20], and MobileNetV2 [21]. It should be noted that VGGI19
and DenseNet201 models yielded the highest accuracy. Similarly, the researchers in [22] introduced
a deep learning-based solution for accurate discrimination between COVID-19, pneumonia, viral
pneumonia, bacterial pneumonia, and healthy cases, using chest X-ray and CT images. Specifically,
they applied transfer learning techniques to exploit AlexNet [23], ResNet [18,24], and GoogleNet [25],
for automated features extraction. Besides, they divided the classificationi problem into: (i) Binary
classification (i.e., COVID-19 vs. healthy, COVID-19 vs. bacterial pneumonia, and COVID-19 vs. viral
pneumonia) and (if) Multi-class classification including, either three classes (COVID-19, healthy and
bacterial pneumonia) or four classes (COVID-19, healthy, bacterial, and viral pneumonia). In the
experiments, MobileNet achieved an accuracy of 97.20% and 80.95% for the three-classes and four
classes classification problems. On the other hand, the binary classification problem was addressed
with an accuracy of 98.75% using ResNet. Further, other deep learning models for automatic detection
of COVID-19 pneumonia using chest X-ray images were introduced in [10]. Particularly, transfer
learning and data augmentation techniques were used to train and validate several pre-trained (CNNs).
Specifically, the authors used eight different pre-trained CNN models: three of them were shallow
networks, and the rest consisted of deep networks. The authors concluded that deep networks overtake
shallow networks. Recently, [26] developed a model that uses chest X-ray images to automatically
diagnose COVID-19. They formulated the detection problem as: (i) A binary classification (COVID vs.
No-Findings) and (i7)) A multi-class classification (COVID vs. No-Findings vs. Pneumonia) problem.
They used the You Only Look Once (YOLO) [27] model that is typically used for real-time object
detection. The experiments yielded a classification accuracy of 98.08% for the binary classification
problem vs. 87.02% for the multi-class classification challenge.

2.2 Solutions Using Deep Learning for Features Extraction

The researchers in [28] outlined a method based on fusing and ranking deep model decisions
along with an SVM classifier for the early detection of positive COVID-19 cases. For the experiments,
they extracted two subsets of patches from 150 CT images. Each patch was divided into normal and
positive COVID-19 cases. The outlined model achieved an accuracy of 98.27%. Similarly, the authors
in [29] developed a CNN architecture that includes 15 layers to extract features from CT images
in order to address the same classification problem. Specifically, the features were first extracted a
global average pool and a fully connected layers, then fused into the max layer. Besides, a correntropy
technique was also used to choose the most discriminative features. Finally, the selected features
were fed into a One-Class Kernel ELM (OCK-ELM) [30] for the classification task. The experiments
proved that this feature selection approach improved the classification accuracy from 89.2% to 95.1%.
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A framework to predict COVID-19 pneumonia from X-ray images was also introduced in [31]. The
authors used a deep network for feature extraction, and deployed a ResNet152 [18] model along with
a synthetic minority oversampling technique (SMOTE) intended to address an unbalanced dataset
problem. Then, they investigated the performance of k-Nearest Neighbour (kKNN), Decision Trees
(DT), Random Forest (RF), and Adaptive Boosting (AdaBoost) when associated with the extracted
features. The best results were obtained using the Random Forest (RF) classifier and the XGBoost
(XGB) ensemble. The researchers in [32] outlined a hybrid system that combines deep learning
techniques to detect COVID-19 symptoms in X-ray images. Specifically, they used three CNN models
(i.e., AOCTNet [33], ShuffleNet [34], and MobileNet [35] and four classifiers (Softmax, SVM, k-
Nearest Neighbor (kNN), and Random Forest (RF)) for this COVID-19 classification task based
on chest X-ray images. The obtained accuracy, sensitivity, specificity, and precision exceeded 98%.
Further, the authors in [36] introduced a new methodology based on analyzing X-ray images to detect
COVID-19 pneumonia. They formulated the problem as three-classes classification problem. Namely,
they considered COVID-19, pneumonia, and healthy categories. They adapted 13 deep network
models for feature extraction and associated them with an SVM classifier. As a result, ResNet50
coupled with SVM overtook all the other models.

3 Dataset & Methods

In this section we provide a description of the dataset used to build the proposed models. Then,
we provide the system design and methodology as well as the network architectures proposed in this
research.

3.1 Dataset Description and Pre-Processing

The dataset used in this work was collected by the researchers in [37]. In particular, it contains four
classes. Namely these categories enclose positive COVID-19, negative COVID-19, viral pneumonia,
and lung opacity cases. For the binary classification problem, 4000 images for the positive and negative
COVID-19 classes were considered. To assess further the proposed models, a viral pneumonia class
containing 1345 images, and a lung opacity class including 2000 images were added to address the
multi-class classification problem. One should note that the resulting 7,345 grayscale images exhibit a
resolution of 299 x 299 pixels. FFig. | shows samples from each class of the considered dataset.

(b)
Figure 1: (Continued)
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(d)

Figure 1: (a) Sample of positive COVID-19 images. (b) Sample of negative COVID-19 images. (c)
Sample of lung opacity images. (d) Sample of viral pneumonia images

As pre-processing step, all images were converted to the RGB color space, and resized to 224 x 224
pixels in order to fulfill the input requirements of the lightweight EfficientNet models. Moreover,
typical data augmentation techniques were deployed to address the data shortage and unbalance issues.
Namely, image rotation, flipping, zooming, normalizing (scaling), and shearing were conducted on the
training set images. Sample augmented images are shown in Fig. 2.

Augemented Images

Figure 2: Samples augmented image instances

3.2 System Design and Methodology

The proposed system aims at classifying new chest X-ray images of patients by feeding them into
lightweight EfficientNet models and mapping their visual features into the pre-defined COVID-19
classes. Fig. 3 overviews the proposed system. As it can be seen, the proposed models were trained
using labeled instances. Then, during the testing phase, the learned models are fed with unseen
chest X-ray images of patient under diagnosis. In particular, we investigated three architectures of
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lightweight EfficientNet. Namely, we adapted EfficientNet-elite-B9-V2, EfficientNet-elite-B9-V3 and
EfficientNet-lite-BO [38]. One should mention that EfficientNet-elite-B9-V2 and EfficientNet-elite-
B9-V3 were trained from scratch, while the EfficientNet-lite-B0 [38] was pre-trained and fine-tuned
using our X-ray image collection.
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Figure 3: Overview of the proposed system

3.2.1 The Proposed Efficient Net-Elite-B9—V2

In fact, EfficientNet-elite-B9 [39] was obtained by scaling down the baseline model EfficientNet-
B0 [38]. Specifically, the original network was scaled down in each stage s in terms of channels C;, depth
R, and resolution H, x W, as illustrated in Fig. 4e. This yielded a lower number of parameters with
fewer layers and less number of channels compared to EfficientNet-B0. We modified EfficientNet-
elite-B9 by removing the support squeeze-and-excite (SE) block because some mobile accelerators do
not support it. Moreover, we replaced all swish activation functions in the hidden layers with Relu6
functions and we called the modified version EfficientNet-elite-B9-V2. This modification makes it
EfficientNet-elite-B9-V2 lighter and suitable for embedding on mobile devices. It contains a lower
number of parameters equal to 751,938. Fig. 4e illustrates the scaling down process that uniformly
reduces the three dimensions of the model with a fixed ratio. This scaling down method is applied on
the baseline model, EfficientNet-B0 as depicted in Fig. 4a. Similarly, Figs. 4b—4d show a typical scaling
that decrease only one dimension such as the width, the depth, or the resolution of the network.

On the other hand, Fig. 5 shows EfficientNet-elite-B9-V2 architecture while Fig. 6 details its core
building block, MBConv (mobile inverted bottleneck). As it can be seen in Fig. 5, EfficientNet-elite-
B9-V2 has seven main MBConv blocks preceded by a 3 x 3 convolution layer, and followed by a 1 x 1
convolution, an average pooling and a fully connected layer. Lastly, a softmax layer is considered for
the classification task.

In particular, Fig. 6a depicts the MBConv of the first sub-block in the main blocks 2, 4, and 7.
Similarly, Fig. 6b shows the MBConv of the first sub-block in the main blocks 3, 5, and 6. As one
can see, MBConv block contains a 1 x 1 convolution layer with batch norm, Relu, and an expansion
factor of 6 applied to the input tensor. Then, a 3 x 3 ora 5 x 5 depthwise convolution with batch norm
and Relu is deployed. Lastly, a 1 x 1 convolution layer with batch norm is applied. In Fig. 7a, one
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can see the architecture of the remaining sub-block of the main block 4. Specifically, Fig. 7b shows
the architecture of the remaining sub-blocks of the main blocks 5 and 6. The remaining sub-blocks
contain the basic layers of the MBConv. Besides, the dropout layer at the end of the sub-block and the
skip connection are designed to connect it to the previous sub-block.
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Figure 4: Model scaling (a) is a baseline model (EfficientNet-B0). (b), (c), and (d) are traditional scaling
that only decrease one dimension of network width, depth, or resolution. (e) is scaling down method
that uniformly scales down all three dimensions of the model with a fixed ratio
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Figure 5: EfficientNet-elite-B9-V2 architecture
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Conv 1x1 ,BN,Relu
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Figure 6: (a) MBConv6 (k 3 x 3) architecture for the first sub-block of main blocks 2, 4, and 7. (b)
MBConv6 (k 5 x 5) architecture for the first sub-block of main blocks 3, 5, and 6
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Figure 7: (a) MBConv6 (k 3 x 3) architecture for the remaining sub-block of main block 4. (b)
MBConv6 (k 5 x 5) architecture for the remaining sub-blocks of main blocks 5 and 6

One should note that the MBConv1 contains a 3 x 3 depthwise convolution with batch norm,
Relu, and an expansion factor applied to the input tensor equal to 1. This block is followed by a 1 x 1
convolution layer with batch norm as illustrated in Fig. 8.

| Hxwxr
| Hxwxr
l HXWxF

Figure 8: MBConv1 architecture
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In this research, we designed another version of EfficientNet-elite-B9-V2, called EfficientNet-
elite-B9-V3, that includes a larger number of sub-blocks. Particularly, the depths of the main blocks 1,
2, and 3 are set to 3 while the depth of main blocks 4, 5, and 6 are set to 6. Besides, the depth of main
block 7 is set to 4, as presented in Table 1. This yielded 1.2 M learnable parameters.

Table 1: The structure of EfficientNet-elite-B9-V3

Block Operator Resolution Channels Depth
Conv 3 x 3 224 x 224 16 1
1 MBCIL,3x3 112 x 112 8 3
2 MBC6,3 x3 112 x 112 16 3
3 MBC6,5 x5 56 x 56 24 3
4 MBC6,3 x3 28 x 28 40 6
5 MBC6,5x5 14 x 14 56 6
6 MBC6,5x 5 14 x 14 96 6
7 MBC6,3 x3 7x7 160 4
Conv, 1 x 1 T x7 640 1
AVG, FC 7x7 640 1

3.2.2 The Proposed Efficient Net-lite- B0

EfficientNet-lite-B0 is a lightweight version of EfficientNet that has been pre-trained on ImageNet
[40] dataset. This version is a modification of the baseline model, EfficientNet-B0, that does not
contain squeeze-and-excite (SE) module and uses Relu6 in the hidden layer. EfficientNet-lite-B0
encloses the same number of layers and the same number of channels as the baseline model,
EfficientNet-B0. However, it contains less learnable parameters with a total of 3.5 M. Fig. 9 reports

EfficientNet-lite-BO architecture.
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Figure 9: EfficientNet-lite-B0 architecture

Actually, the architecture of EfficientNet-lite-BO is similar to EfficientNet-elite-B9-V2 architec-
ture but with an extra number of sub-blocks and with a zero-padding layer in each first sub-block of
the main blocks. Also, it differs from EfficientNet-elite-B9-V2 in terms of channels. The channels in
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EfficientNet-lite-B0O are wider than those in EfficientNet-elite-B9-V2. Fig. 10a displays the first sub-
block architecture in the main blocks 2 and 4. On the other hand, Fig. 10b shows the first sub-block
of the main blocks 3 and 6. Note that the first sub-block of the main block 5 is similar to the one in the
main blocks 3 and 6 but with no zero-padding layer. Similarly, the main block 7 is similar to the first
sub-block of the main blocks 2 and 4 but with no zero-padding layer. The architecture of the remaining
sub-blocks of the main blocks 2 to 6 is identical to the architecture of the remaining sub-blocks in the
EfficientNet-elite-B9-V2. Also, the architectures of the main block 1 in EfficientNet-elite-B9-V2 and
EfficientNet-lite-B0 are identical.

HxWxF

Conv 1x1 ,BN,Relu Conv 1x1 ,BN,Relu

HxWx6F
ZeroPadding2D
HxWx6F

ZeroPadding2D
HxWx6F

DWConv 3x3 ,BN,Relu

HxWx6F HxWx6F
l HXWxF l HxXWE
@ (b)

DWConv 5x5 ,BN,Relu

Figure 10: (a) MBConv6 (k 3 x 3) architecture for the first sub-block of main blocks 2 and 4. (b)
MBConv6 (k 5 x 5) architecture for the first sub-block of main blocks 3 and 6

4 Results

In our experiments, we considered a training/validation/testing holdout split strategy. Note that
we divided the dataset into three different sets: 60% for training, 20% for validation, and 20% for
testing when using the training/validation/test split.

4.1 Binary Classification Results

Table 2 reports the results obtained using the proposed models for the binary classification
problem. Specifically, the performance measure attainments are reported for the validation and the
testing phases. In order to fine-tune the considered models, we investigated different settings for the
relevant hyper-parameters. Particularly, we used two types of optimizers: (i) Adam and (ii) RSMprop.
As it can be seen in Fig. 11, Adam yielded the best performance when associated with EfficientNet-
lite-BO and EfficientNet-elite-B9-V2. On the other hand, RSMprop performed best with EfficientNet-
elite-B9-V3.
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Table 2: Results of the EfficientNet-lite-B0, the EfficientNet-elite-B9-V2, and the EfficientNet-elite-
B9-V3 of binary classification

Validation Testing

Accuracy Precision Sensitivity Fl-score Accuracy Precision Sensitivity Fl-score Specificity AUC
Efficient  99% 100% 100% 99% 99% 99% 99% 99% 99% 99%
Net-lite-
BO
Efficient  96% 96% 96% 96% 96% 96% 96% 96% 96% 96%
Net-elite-
B9-V2
Efficient  93% 93% 93% 93% 92% 93% 93% 93% 93% 92%
Net-elite-
B9-V3

Accuracy (Validation Data)

89%
82%

Adam RSMprop

100%

95%

90%

85%

80%

75%

70%

u EfficientNet-lite-B0  m EfficientNet-elite-B3-V2 EfficientNet-elite-B3-V3

Figure 11: The accuracy of Adam and RSMprop optimizers for all proposed models of binary
classification

Regarding the use of data augmentation techniques, Fig. 12 proves that data augmentation
increased the accuracy of EfficientNet-elite-B9-V2 and EfficientNet-elite-B9-V3. On the other hand,
it reduced the performance of EfficientNet-lite-BO.

EfficientNet-lite-B0O and EfficientNet-elite-B9-V2 achieved higher accuracy when using a batch
of size 16 while EfficientNet-elite-B9-V3 achieved a higher accuracy when using a batch of size
64. Besides, L2 regularization was applied for all proposed models, and it improved the accuracy
of EfficientNet-lite-BO and EfficientNet-elite-B9-V3 from 98% to 99%, and from 89% to 93%,
respectively. At last, regarding the learning rate value, we initially set the learning rate to 0.0001,
and it we reduced it automatically when the loss function stops improving. As shown in Table 3, the
architecture of EfficientNet-elite-B9-V2 that yielded the best performance, does not associate a zero-
padding layer with the first sub-blocks of the main blocks and without Squeeze-and-Excite (SE) block.
Besides, a Relu6 is associated with the hidden layers.



178 JAI, 2022, vol.4, no.3

Accuracy (Validation Data)
100%
98%
96%
94%
92%
90%
88% 89% I
86% g
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82%
Image Augmentation without Image Augmentation

m EfficientNet-lite-B0  m EfficientNet-elite-B9-V2 EfficientNet-elite-BS-V3

Figure 12: The accuracy of applying image data augmentation for all proposed models of binary
classification

Table 3: Different settings for the architecture of EfficientNet-elite-B9-V2

Testing
Model Zero- Squeeze-  Activation Accuracy Precision  Sensitivity Fl-score
padding and-Excite functions
layer (SE) block
EfficientNet-  Yes No Relu6 84% 84% 84% 84%
lite-B9-V2
e Yes Yes Swish 86% 86% 86% 86%
No No Relu6 96% 96% 96% 96%

4.2 Multi-Class Classification Results

To further evaluate EfficientNet-lite-B0, we experimented it to address a multi-class classification
problem. Specifically, we considered two more classes: (i) Viral pneumonia, and (if) Lung opacity, in
addition to the typical classes: (iii) positive COVID-19, and (iv) negative COVID-19. Table 4 reports
the validation and the testing results obtained EfficientNet-lite-B0. As one can see, EfficientNet-lite-
BO reached the highest performance after 35 epochs with 138 steps in each epoch.

Table 4: Results of the EfficientNet-lite-BO of multi-class classification

Accuracy  Precision  Sensitivity Fl-score

Validation 95% 96% 96% 96%
Testing 94.9% 95% 95% 95%




JAI 2022, vol.4, no.3 179

4.3 Sample Results

In the following, we present samples classification results achieved using EfficientNet-lite-B0
and EfficientNet-elite-B9-V2. Fig. 13 reports sample images, correctly and incorrectly classified
by EfficientNet-lite-B0 in the context of binary classification. Similarly, Fig. 14 presents sample
cases classified using EfficientNet-elite-B9-V2 in the context of binary classification. Lastly, Fig. 15
shows sample classification cases obtained using EfficientNet-lite-BO in the context of multi-class
classification.

correctly incorrectly
Predict: Positive COVID Predict: Negative COVID Predict: Negative COVID Predict: Positive COVID
True: Positive COVID True: Negative COVID True: Positive COVID True: Negative COVID

AR

Figure 13: Sample images of the EfficientNet-lite-B0 predicted for binary classification

correctly incorrectly

Predict: Positive COVID Predict: Negative COVID Predict: Positive COVID Predict: Negative COVID
True: Positive COVID True: Negative COVID True: Negative COVID True: Positive COVID

e

Figure 14: Sample images of the EfficientNet-elite-B9-V2 predicted for binary classification

5 Discussion

As reported in Table 2 above, the results obtained using the considered models for the binary
classification proved that EfficientNet-lite-BO outperformed the other models in terms of accuracy,
precision, sensitivity, specificity, Fl-measure, and AUC. This can be attributed to the fact that
EfficientNet-lite-BO was pre-trained using ImageNet [40] dataset. On the other hand, EfficientNet-
elite-B9-V2 and EfficientNet-elite-B9-V3 were trained from scratch. Thus, for the latter models, one
can claim that more data may be required to achieve higher performance. Note that EfficientNet-elite-
B9-V2 yielded pretty high performance with less number of parameters compared to EfficientNet-
elite-B9-V3 which is deeper. Specifically, EfficientNet-elite-B9-V2 achieved an accuracy of 96% with
a total number of parameters equal to 751,938 while EfficientNet-elite-B9-V3 achieved an accuracy
of 92% with 1.2 M learnable parameters. besides, EfficientNet-lite-B0 attained its top performance
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after 49 epochs with 160 steps in each epoch. This took forty-two minutes for training, while
EfficientNet-elite-B9-V2 achieved its highest performance after 300 epochs with 160 steps in each
epoch, in two hours and forty-three minutes for training. On the other hand, EfficientNet-elite-
B9-V3 reached its highest performance after 350 epochs with 40 steps in each epoch. The recorded
training time was four hours and twenty-two minutes. Since we used a balanced dataset for the binary
classification problem, the values of the accuracy and Fl-score were also consistent as shown in
Table 2. In summary, EfficientNet-lite-B0O overtook EfficientNet-elite-B9-V2 and EfficientNet-elite-
B9-V3 in terms of typical performance measures and training time.
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True: Positive COVID True: Positive COVID
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Figure 15: Sample images of the EfficientNet-lite-B0O predicted for multi-class classification
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In this research, the problem consists in diagnosing COVID-19 patients. Therefore, the sensitivity
attainment is critical compared to the precision. Fig. 16 shows the confusion matrices obtained
using the proposed models during the testing phase of the binary classification. As it can be
seen, EfficientNet-lite-B0O outperformed EfficientNet-elite-B9-V2 in terms of sensitivity and preci-
sion. In particular, EfficientNet-lite-B0O misclassified five positive cases (FN =5) and three negative
cases (FP=3) while EfficientNet-elite-B9-V2 misclassified eighteen positive cases (FN=18) and
fourteen negative cases (FP=14) out of 800 testing instances. Further, EfficientNet-elite-B9-V2
overtook EfficientNet-elite-B9-V3 in terms of sensitivity and precision. In addition, the ROC curves

in Fig. 17 show clearly that EfficientNet-lite-BO performed better than EfficientNet-elite-B9-V2 and
EfficientNet-elite-B9-V3.
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Figure 16: Confusion matrices of the binary classification (a) The EfficientNet-lite-BO. (b) The
EfficientNet-elite-B9-V2. (¢) The EfficientNet-elite-B9-V3
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Figure 17: ROC curves for all proposed models

For the multi-class classification problem, Fig. 18 presents the confusion matrix obtained using
EfficientNet-lite-B0. As one can see in Fig. 19, the positive COVID-19 class has the highest precision,
sensitivity, and F1-score. Whereas for binary classification the positive COVID-19 and the negative
COVID-19 classes achieved the same precision, sensitivity, and F1-score (99%) as shown in Fig. 20.

Lung Opacity

Negative COVID -

Tue label

Positive COVID 1

Viral Pneumonia 1

Lung Negative Positive Viral
Opacity  COVID COVID Pneumonia
Predicted label

Figure 18: The EfficientNet-lite-B0 confusion matrix of the multi-class classification

One can conclude based on Fig. 20 that the performance of EfficientNet-lite-B0O in addressing
the binary classification problem is better than its performance when dealing with multi-class
classification. Note that both models took approximately 40 min for training.

Additionally, as reported in Table 5, we compared the performance of best proposed model with
relevant existing works in addressing the binary classification problem. As it can be seen, the proposed
model yielded a better performance than the works in [22,26].
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Figure 19: Precision, sensitivity, and F1-score for each class of multi-class classification
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Figure 20: Comparison between the performance of binary and multi-class classification of
EfficientNet-lite-B0O

Table 5: Comparison of the state-of-art models for binary classification

Ref. Model Dataset Accuracy Precision Sensitivity Fl-score
[26] DarkNet-19 COVID-19=127 98.08% 98.3% 95.13% 96.51%
Normal = 500
Total =627
[22] ResNet101 ~ COVID-19=200 98.75% 96.43% 100% 98.18%
Healthy =200
Total =400

(Continued)
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Table 5: Continued

Ref. Model Dataset Accuracy Precision Sensitivity Fl-score
Proposed EfficientNet- Positive COVID-19=2000 99% 99% 99% 99%
lite-BO Negative COVID-19 =
2000
Total =4000

Table 6 depicts a comparison of the state-of-art models regarding the multi-class classification.
As it can be seen, the proposed model outperformed the works in [22,26].

Table 6: Comparison of the state-of-art models for multi-class classification

Ref. Model Dataset Accuracy Precision Sensitivity Fl-score
[26] DarkNet-19 COVID-19=127 87.02% 89.96% 85.35% 87.37%
Normal = 500
Pneumonia = 500
Total =1127
27] MobileNet  COVID-19 =200 80.9% 82.52% 82% 82.23%

Healthy =200
Bacterial pneumonia = 200
Viral pneumonia =200

Total =800
Proposed EfficientNet- Positive COVID-19 =2000 95% 95% 95% 95%
lite-BO Negative

COVID-19 =2000

Viral pneumonia = 1345
Lung opacity = 2000
Total =7,345

6 Conclusions

Unfortunately, the world is still struggling with COVID-19 pandemic. Many countries have made
their utmost efforts to combat the spread of COVID-19. Early diagnosis is one of the ways to limit the
spread of the COVID-19. The current diagnostic tools cannot detect disease in the early stages and
requires a manual process in the laboratory. This also carries the risk of contamination and infection of
medical staff. Therefore, medical imaging has been used as an alternative method to the early diagnosis
of COVID-19. However, all previous approaches that used medical imaging to detect COVID-19 have
limitations that are complex and heavy due to having a high computational cost, which causes it to be
difficult to embedded in the medical devices.

Therefore, in this work, we built lightweight EfficientNet models using chest X-ray images divided
into four classes positive COVID-19, negative COVID-19, viral pneumonia, and lung opacity. The
proposed models are characterized by small number of parameters and high accuracy. Particularly,
EfficientNet-lite-B0O contains 3.5 M learnable parameters and achieved an accuracy of 99% and 95%
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for binary and multi-class classification, respectively. Moreover, in binary classification, EfficientNet-
elite-B9-V2, with a total of 751,938 parameters, yielded an accuracy of 96%. As for EfficientNet-elite-
B9-V3 which requires 1.2 M learnable parameters achieved an accuracy of 92%.

As future works, we plan to collect a larger dataset in order to ensure a better generalization of
EfficientNet-elite-B9-V2 model. Also, another research direction consists in designing a model able to
localizing the regions of the lungs affected by COVID-19, in addition to the classification task.
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