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ABSTRACT

k-means is a popular clustering algorithm because of its simplicity and scalability to handle large datasets. However,
one of its setbacks is the challenge of identifying the correct k-hyperparameter value. Tuning this value correctly is
critical for building effective k-means models. The use of the traditional elbow method to help identify this value
has a long-standing literature. However, when using this method with certain datasets, smooth curves may appear,
making it challenging to identify the k-value due to its unclear nature. On the other hand, various internal validation
indexes, which are proposed as a solution to this issue, may be inconsistent. Although various techniques for solving
smooth elbow challenges exist, k-hyperparameter tuning in high-dimensional spaces still remains intractable and
an open research issue. In this paper, we have first reviewed the existing techniques for solving smooth elbow
challenges. The identified research gaps are then utilized in the development of the new technique. The new
technique, referred to as the ensemble-based technique of a self-adapting autoencoder and internal validation
indexes, is then validated in high-dimensional space clustering. The optimal k-value, tuned by this technique using
a voting scheme, is a trade-off between the number of clusters visualized in the autoencoder’s latent space, k-value
from the ensemble internal validation index score and one that generates a value of 0 or close to 0 on the derivative
f ′′′(k)(1+f ′(k)2)−3 f ′′(k)2f ′′((k)2f ′(k), at the elbow. Experimental results based on the Cochran’s Q test, ANOVA,
and McNemar’s score indicate a relatively good performance of the newly developed technique in k-hyperparameter
tuning.
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1 Introduction

Cluster analysis is one of the data mining tasks in high-dimensional space [1]. Clustering
algorithms, which are used in cluster analysis, aim to group data points in a manner that ensures data
points within the same cluster are similar to each other and significantly different from data points
in other clusters [1,2]. k-means is one of the most popular partition-based clustering algorithms used
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in cluster analysis, known for its many advantages, such as scalability [3]. However, its performance
heavily depends on selecting the optimal number of k-clusters, which is typically referred to as the k-
hyperparameter value [4]. Defining this value in high-dimensional space clustering with the k-means
algorithm has been a long-standing challenge and remains an intractable and open research issue [5].
Although the use of the traditional elbow curve has a long-standing literature as one of the most
successful techniques applied to help identify the correct k-hyperparameter value, a smooth elbow
generated by some datasets is one of its major limitations [6]. The GLA-BRA-180 dataset is an example
of a dataset that produces a smooth elbow on the elbow curve. This makes it difficult to identify
the correct value of the k-hyperparameter from the unclear elbow [7,8]. Several techniques have been
developed to address the limitations of smooth elbow formations. The statistical metric-based new
elbow point discriminant technique is one such method [8]. In this technique, the mean distortion
degree returned by the elbow is standardized between zero and ten. Then, the standardized results are
used to calculate the cosine angles that intersect the points on the elbow. The calculated cosine angles
are then utilized to compute the intersection angles between these points. This is then used to find
the correct k-hyperparameter value. However, with this method, there are still some inconsistencies
in the generated k-hyperparameter values, especially with datasets of increased dimensionality [8].
Development of an improved k-hyperparameter tuning technique on a smooth elbow is therefore
crucial. This research therefore, aims to develop an improved technique for k-hyperparameter tuning
technique on a smooth elbow based on the analysis of these techniques. The new technique leverages
the ensemble of a self-adapting autoencoder and internal validation indexes to improve the traditional
elbow technique. The analysis of both the new and existing techniques is based on a similar set
of four high-dimensional datasets and five evaluation metrics. The four high-dimensional datasets
encompass various types, including text, images, video, and audio datasets. The five metrics include
the Silhouette index, Dunn index, Davies Bouldin index, Calinski Harabasz index, and the run times.
The newly developed technique complements the existing literature on k-hyperparameter tuning
techniques for addressing the challenges of smooth elbow. The improved technique demonstrates
superior performance across high-dimensional datasets, including text, audio, video, and image-
based data.

The organization of this paper is as follows: In the second section, the related works on the
existing k-hyperparameter tuning techniques for smooth elbow are discussed. The related works also
include the discussion of the traditional elbow methods, dimensionality reduction methods used with
high-dimensional k-means clustering, as well as popular evaluation metrics. In the third section,
experimental research design and implementation are discussed, with a focus on the methodology,
experimental design, hypothesis, and the new technique. The methodology is achieved through a pre-
study, experimental design, and finally a system development methodology for the new technique. In
the fourth section, the experimental results are analyzed and discussed. Finally, in section five, the
conclusions and recommendations for future research are stated.

2 Related Works

This section focuses on providing background information on the architecture of the k-means
algorithm, the traditional elbow method, dimensionality reduction methods, and evaluation metrics.
The challenge of using the elbow method to identify the correct value of the k-hyperparameter, as
well as its mathematical definition, is explored in the discussion of the traditional elbow method.
This section also focuses on reviewing the k-hyperparameter tuning techniques used to address the
challenges of smooth elbow detection. The structure of the high-dimensional datasets is also explored
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in further detail in this section. Lastly, this paper also discusses the popular metrics used to evaluate
k-hyperparameter tuning techniques for solving the smooth elbow challenges.

2.1 K-Means Architecture
K-means is an iterative algorithm that aims to partition a dataset into a set of k non-overlapping

groups of data points [9]. The k-hyperparameter is one of the most important hyperparameters to tune
in k-means [10,11]. Tuning a machine learning model’s hyperparameters has a significant effect on its
performance [12]. In this subsection, we explore k-clusters, k-hyperparameters, and the traditional
elbow method used to identify the optimal value for the k-hyperparameter.

2.1.1 K-Means Clusters

The k-means clusters are the resulting data sub-groups generated by the popular unsupervised
partitioning algorithm, known as the k-means clustering algorithm [13]. Cluster analysis using the
k-means algorithm is an example of a k-means-based model that has been successfully applied in
cluster analysis [14,15]. The k-clusters generated by these algorithms are usually composed of distinct
non-overlapping groups of data points, aggregated together because they share specific similarities
[16]. The data points within a particular cluster are similar, while the data points across different
clusters are different [17]. Both the intra-cluster and inter-cluster data points are measured using a
sum of squared distance-based metric [18,19]. For this reason, the original un-partitioned dataset is
standardized to have a mean of zero and a standard deviation of one [20]. The number of k-clusters
obtained is determined by the random initialization of centroids at the beginning of the k-means
clustering algorithm [21,22]. For this reason, it is important to run the algorithm using several centroid
initializations and then select the cluster result that has the lowest sum of squared distances [23–25].
The visualization of the k-means clusters is typically achieved using scatter plots [26,27].

2.1.2 K-Means Hyperparameters

Hyperparameters have a direct control over the behavior of a machine learning algorithm and
significantly impact the performance of the model [28,29]. Some of the commonly used k-means
hyperparameters include max_iter, init_method, n_int and n_clusters. The max_iter is the number of
iterations that a k-means algorithm runs before convergence. The init_method is the method through
which the algorithm selects its initial cluster centers. The n_int refers to the number of times the
algorithm will be initialized, while the n_clusters parameter refers to the number of clusters that
will be generated by the k-means algorithm [30,31]. The latter, n_clusters, also referred to as the k-
hyperparameter value, is considered the most important hyperparameter in high-dimensional k-means
clustering, with a relatively higher level of impact compared to the other hyperparameters [32]. The
algorithm for “learning hyperparameter optimization initializations” is an example of a k-means based
model that has shown that the hyperparameter k-value has a greater impact compared to other k-
means hyperparameters [32].

2.1.3 Elbow Method

The elbow method is a technique for assisting in the identification of the optimal value for the
k-hyperparameter from a given dataset, and it has been extensively discussed in the literature [33]. It
involves plotting the average dispersion on the Y-axis as a function of the number of clusters (k) on
the X-axis [33]. After plotting the curve, the elbow of the curve is identified as the optimal number
of clusters, which is the correct value for the k-hyperparameter to be used in a specific dataset [34].
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However, the elbow can either be distinct, with a clear elbow or non-distinct, without a clear elbow
[35]. Fig. 1 below shows a clear elbow, while Fig. 2 shows an indistinct elbow.
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Figure 1: Distinct elbow method for selecting the optimal k clusters [35]
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Figure 2: Example of non-distinct smooth elbow [36]

2.2 Mathematical Definition of Elbow
The reason for using a mathematical equation to define an elbow is because what may be

considered a good elbow point in one situation may not be equally good in another situation. For
this reason, authors have adopted the mathematical definition of curvature for a function as the basis
for the mathematical formulation of an elbow point in an elbow curve [37]. This is defined as follows:

L
F(K)= f ′′(k)

((1+f ′(k)2)3/2
(1)

The elbow point, also referred to as the optimal number of clusters (k), is the point of highest
curvature. It is a mathematical measure of the extent to which the function varies from a straight line.
The maximum curvature is calculated by taking the derivative of the equation above and is considered
the optimal value of k [37]. This derivative is stated as follows:

L′f (k) = f ′′′(k)(1 + f ′(k)2) − 3 f ′′(k)2f ′′((k)2f ′(k) = 0 (2)

2.3 High-Dimensional Datasets
The modern trends in technology have resulted in the generation of massive high-dimensional

datasets [38,39]. The study of high-dimensional statistics has attracted immense interest from scholars
and data scientists [40]. According to [41], a high-dimensional dataset is defined as a dataset where the
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number of features or attributes, P, is higher than or close to the number of instances or observations,
N. This is in contrast to the misconception that a high-dimensional dataset is synonymous with big
data, which consists of a large number of records [42,43]. For example, a dataset that has five features
(P = 5) and four instances/data points (N = 4) would be considered a high-dimensional dataset, while
a dataset with twenty thousand features (P = 20,000) and eighty thousand instances/data points (N =
80,000) would not be considered high-dimensional [44]. According to [45], it is most common to find
high-dimensional datasets in the field of medicine [44,45]. An example is when there are a high number
of attributes for a particular patient, such as body mass index, blood pressure values, diagnosis history,
family history of illnesses, height, weight, and immune system status [46]. Fig. 3 below is an example
of a high-dimensional dataset composed of several features for each patient.

P

N

BP Height Weight Diagnosis … …

Patient 1

Patient 2

Patient 3

Figure 3: Example of a structure of high-dimensional dataset based on patients data [47]

In genomics and proteomic datasets, each sample can be defined by multiple measurements
of up to a thousand or more [47,48]. Computational molecular medicine, computational anatomy,
computational healthcare, computational neuroscience, and computational physiological medicine are
some of the areas that have shown extensive use of high-dimensional datasets in cluster analysis [49].
Computational molecular medicine aims to construct a comprehensive understanding of molecular
networks by gaining insights into the concentrations of biomolecules. Such assistance leads to more
informed clinical decisions [50]. Computational physiological medicine aims to create disease models
that integrate information from multiple levels of biological organization and apply these computa-
tional models to patient care. Such biological organizations include molecules, cells, tissues, and organ
systems [50–52]. Computational anatomy aims to utilize mathematical theories to model anatomical
structures and their variations in health and disease [53,54]. An example of computational anatomy
is the identification of changes in the shape and motion of a heart, and using this data to predict
specific cardiac diseases [55,56]. Computational healthcare integrates biomedical signal processing,
computational modeling, machine learning, and health informatics to develop new strategies in
personalized medicine. This is achieved through the analysis of e-health records, physiology-based
time series data, and genomics [57–59]. Both computational molecular medicine and computational
healthcare utilize a large number of high-dimensional datasets in their models [60–62]. The sparse and
redundant nature of high-dimensional datasets poses great challenges for data scientists in data mining
[63]. An “Enhanced Deterministic k-means Clustering Algorithm for Cancer Subtype Prediction from
Gene Expression Data”is an example of a k-means-based computational medicine model that has been
successfully applied in cluster analysis [64–67].

2.4 Dimensionality Reduction Methods Used in High-Dimensional K-Means
The dimensionality reduction methods are designed to transform data from a high-dimensional

space to a low-dimensional space. This transformation, however, must aim to minimize information
loss on the original high-dimensional dataset [68]. The methods for reducing data dimensionality are
critical for improving the performance of high-dimensional k-means algorithms. Data dimensionality
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methods are categorized into both linear and non-linear methods. The most commonly used linear
methods are Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Singular
Value Decomposition (SVD), and Factor Analysis (FA). On the other hand, the most commonly used
non-linear data dimensionality reduction methods include kernel PCA, t-distributed Stochastic Neigh-
boring Embedding (t-SNE), isomap embedding, multidimensional scaling (MDS), and Locally Linear
Embedding (LLE). Data dimensionality reduction methods are useful for reducing the dimensionality
of high-dimensional datasets, which present significant data mining challenges for data scientists [68].
In the following subsections, we will examine each of the unsupervised data dimensionality reduction
methods in detail.

2.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is a linear technique used to reduce the dimensionality of
data. It aims to identify the most important low-level dimensions from a high-dimensional dataset
while minimizing the loss of information from the original dataset [68]. It derives new linear variables
from the original uncorrelated variables. Principal Component Analysis is calculated through eigen
decomposition on the matrix of the data covariance. The obtained eigenvectors are similar to the
principal axes of the maximum variance subspace. The eigenvalues show the variance of the inputs
projected along principal axes. The number of significant eigenvalues indicates the approximate
dimensionality. The size of the covariance matrix is similar to the dimensionality of the data. The
Eigen decomposition strategy used by PCA can be computationally expensive, particularly in high-
dimensional space. However, this method of reducing data dimensionality is simple to calculate
and guarantees the generation of accurate representations of high-dimensional datasets in lower
dimensions. The following is the formula for Principal Component Analysis (PCA) [69].

Projected Data = X ∗ PC (3)

where: Projected data is the transformed lower-dimensional representation of the original data. X is
the standardized original data matrix, where each row corresponds to a data point, and each column
corresponds to a feature. PC is the matrix of selected principal components, where each column
represents a principal component (eigenvector).

2.4.2 Singular Value Decomposition

Singular Value Decomposition (SVD) is an unsupervised method used for reducing the dimen-
sionality of data. It is applied to significantly reduce a large matrix to a smaller one, which is generated
as the best rank k approximation. Singular value decomposition of matrix E is its factorization into
three matrices product, i.e., E = UDVT. The U and V are the orthonormal columns, and the matrix
D is diagonal with positive entries. The E data matrix is approximately a low-rank matrix. With the
Singular Value Decomposition of matrix E, it is possible to obtain a matrix of rank k that provides the
best approximation of E. Singular Value Decomposition is defined for both rectangular and square
matrices, unlike the usual spectral decomposition in linear algebra. The left singular vectors, i.e., the
columns of U, form an orthogonal set. The consequence of this orthogonality is that for a square and
invertible matrix E, its inverse is formulated as VD-1UT. Outputs generated from the Singular Value
Decomposition are usually dense, regardless of whether the supplied input is sparse or not [70]. The
following is a formula for the Singular Value Decomposition (SVD):

X = U ∗ � ∗ V ∧ T (4)
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where: U is an m × m matrix containing the left singular vectors (columns) that represent the
relationships between the observations and the latent features. These vectors are orthogonal to each
other and form an orthonormal basis for the row space of X. � is an m × n diagonal matrix containing
the singular values (non-negative) along its diagonal. The singular values are sorted in descending
order. They represent the importance of each latent feature (70). V∧T is an n × n matrix containing
the right singular vectors (rows) that represent the relationships between the features and the latent
features. These vectors are orthogonal to each other and form an orthonormal basis for the column
space of X [70].

2.4.3 Factor Analysis

Factor Analysis is a method for reducing data dimensionality that aims to reduce the original high-
dimensional space by representing the entire matrix as a product of two smaller matrices, including
random noise. Variables are modeled as linear combinations of the latent variables and the Gaussian
error. Features are represented as factors, where the number of factors equals the number of features.
When determining the number of factors (number of variables/features), a scree plot is generated with
the Eigen function. This plot displays the original Eigen values and the common factor Eigen factors.
The optimal number of factors, determined by analyzing the scree plot, is identified as the point where
the Eigen values begin to level off, forming a plateau. The factor loadings heat map is used to visualize
the most important variables/features from a high-dimensional dataset [70]. The formula for Factor
Analysis is represented as follows:

X = μ + LF + ε (5)

where: X is the data matrix of observed variables. μ is the vector of means for each observed variable.
LF is the matrix of factor loadings that represents the relationships between the observed variables
and the latent factors. ε is the matrix of unique error terms. Fig. 4 below shows a scree plot used to
identify the number of factors in the factor analysis data dimensionality reduction method.

Figure 4: Scree plot to identify the number of factors in factor analysis method [70]

2.4.4 Isomap

Isomap is a multi-dimensional scaling-based unsupervised data dimensionality reduction method
that estimates geodesic distances using shortest path distances. It then searches for the embedding
of these geodesic distances in the Euclidean space. It represents high-dimensional space in a low-
dimensional space by preserving the pairwise distances between points [71]. With data points,
n, and a distance matrix E, Isomap computes the low-dimensional representation through Eigen
decomposition of matrix E. Isomap aims to preserve the global structure and convert the original
high-dimensional space into new coordinates, determined by the most significant eigenvectors [72].
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2.4.5 Kernel PCA

Kernel PCA is an unsupervised data dimensionality reduction method and an extension of the
popular Principal Component Analysis. The non-linear feature space is transformed into a linear
feature space through the use of the kernel function. The inner product of the data points in the high-
dimensional space is equal to the kernel matrix created by the kernel function. Any definite matrix with
symmetric positive is said to be a kernel matrix [73]. Dimensionality reduction using kernel PCA is
achieved through the Eigen decomposition process on the kernel matrix. It selects the most significant
eigenvalues and eigenvectors of the kernel matrix to create a low-dimensional representation. Using
kernel PCA, the computation of the high-dimensional feature space using kernels is a more efficient
process than when using other methods for data dimensionality reduction [73,74]. The formula for
projecting the original data onto the selected principal components (PC) can be represented as follows:

Projected Data = Centered_Kernel_Matrix ∗ PC (6)

where: Projected data is the transformed lower-dimensional representation of the original data. The
Centered_Kernel_Matrix is the kernel matrix that has been centered to have a zero mean. PC is the
matrix of selected principal components, where each column represents an eigenvector [74].

2.4.6 T-Distributed Stochastic Neighborhood Embedding (T-SNE)

T-SNE is an unsupervised data dimensionality reduction method that calculates the similarity
between pairs of data points in both high-dimensional and low-dimensional spaces. Firstly, the
similarities between data points in the high-dimensional space are measured using a Gaussian
distribution. At this point, the first set of probabilities is generated. Secondly, the similarities between
data points in the high-dimensional space are measured using the Cauchy distribution with one degree
of freedom. At this point, the second set of probabilities in low-dimensional space is generated. Thirdly,
t-SNE aims to accurately represent the set of probabilities in the high-dimensional space, ensuring
that both mapping structures are as similar as possible. The difference between the two probability
distributions is measured using the Kullback-Leibler divergence, commonly referred to as the KL-
divergence. Finally, gradient descent is used to minimize the cost of the KL divergence [74].

2.4.7 Locally Linear Embedding

Locally Linear Embedding is an unsupervised nonlinear dimensionality reduction method
that generates a low-dimensional representation while preserving the local structure of the high-
dimensional space. This is achieved by exploiting the local symmetries of the linear reconstruction to
uncover the nonlinear structure of the high-dimensional dataset. The local linear embedding maps
its input into a single global coordinate system in the low-dimensional space, avoiding the need to
consider local minima. Considering that the input data consists of d-dimensional vectors, the locally
linear embedding (LLE) data dimensionality reduction method calculates the neighbors of each data
point. The assumption is that the data points along the neighborhood lie on a locally linear manifold
characterized by linear coefficients that have the capability to reconstruct each data point from the
neighbors [74]. This is achieved by solving a weighted least squares problem, as shown in the equation
below:

min
∑

(x_i −
∑

W_ij ∗ x_j) ∧ 2 (7)

W_ij
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where: x_i is the data point to be reconstructed. x_j are the neighboring data points. W_ij are the
weights that represent the linear combination coefficients.

The weights W_ij are constrained to satisfy certain conditions that ensure local linearity in the
reconstruction. Weight Matrix: The weight matrix, W, is where each row corresponds to a data point,
and each column contains the weights that represent the linear combination of its neighbors. The
low-dimensional embedding is computed by solving an optimization problem that preserves the local
relationships of the data points. This optimization aims to minimize the discrepancy between the
pairwise distances in the high-dimensional space and the pairwise distances in the low-dimensional
space for the neighboring data points using the formula below:

min
∑

(||z_i − z_j|| − ||x_i − x_j) ∧ 2 (8)

z_i, z_j

where: z_i and z_j are the low-dimensional embeddings of data points x_i and x_j, respectively.

2.4.8 Autoencoders

Autoencoders are a relatively new unsupervised method for reducing data dimensionality, based
on feedforward neural networks. Their inputs are similar to the output. They have the capability
to compress the input data into a lower-dimensional code and then recreate the output from this
model. The code section of the autoencoder is a densely packed “summary” or “compression” of the
input data. The close-packed summary is also referred to as the latent-space representation. Encoder,
code, and decoder are the three components of an autoencoder. Subsequently, when building an
autoencoder, three things are needed: a method for encoding, a method for decoding, and a loss
function that compares the autoencoder’s output with the target. Mainly, autoencoders are used for
dimensionality reduction. They have the capability to compress data effectively, in line with their
training. They differ from standard data compression algorithms because they acquire knowledge
from the specific attributes of the training data. The output of the autoencoder is not entirely identical
to the input. However, it is close to it with a degraded representation. The process of training the
autoencoder involves feeding the raw input data to it. Autoencoders do not require explicit labels
during the training process. Instead, they generate their own labels from the training data [75]. It is
represented by the following function:

z = f_encoder(x) (9)

where: X is the input data (e.g., a vector of features). Z is the encoding/representation of x in the latent
space. f_encoder represents the mapping performed by the encoder neural network.

On the other hand, the decoder part of the autoencoder takes the representation of the latent space
(encoding) and reconstructs the input data. It is represented by the following function:

x_hat = f_decoder(z) (10)

where: x_hat is the reconstructed data, which ideally matches the input data x. z is the representation
of x in the latent space (encoding). f_decoder represents the mapping performed by the decoder neural
network.

The autoencoder’s objective is to minimize the reconstruction error between the original input
data x and the reconstructed data x_hat. This is usually measured using a loss function such as Mean
Squared Error (MSE), shown below:

Loss = MSE(x, x_hat) (11)
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The loss function quantifies how well the autoencoder can reconstruct the input data. During
training, the autoencoder adjusts its parameters (weights and biases) using optimization techniques
such as gradient descent to minimize the reconstruction error [75].

2.5 K-Hyperparameter Tuning Techniques Used to Solve the Challenges of Smooth Elbow
There are several techniques that have been proposed in the literature to solve the challenges of

smooth elbows in the k-hyperparameter tuning process. The most popular ones include the L-method,
Dynamic First Derivative Thresholding technique, New Elbow Point Discriminant technique, the
Angle Based technique, and the Elbow Strength technique [76].

2.5.1 L-Method Technique

L-method places two straight lines on the elbow curve. One line extends from the head of the
curve to the candidate point on the curve, while the other line extends from the tail of the curve
to the candidate point on the same curve [77]. Using this technique, we first compute the Bayesian
Information Criterion (BIC) values, as well as the first-order differences. The cosine angles between
consecutive vectors formed by (k, BIC(k)) and (k+1, BIC(k+1)) are then computed. The point where
the cosine angle shows a significant change is then identified. This is often indicated by a sharp decrease
in the angle. The optimal value for the k-hyperparameter is determined by finding the intersection
point of the two lines formed by the vectors before and after the change in angle in a given high-
dimensional dataset. The pseudocode for this technique is represented as follows:

1. Initialize lists to store BIC, first-order difference and angles
i) bics = [ ]

ii) first_order_diff = [ ]
iii) angles = [ ]

2. Run the k-means algorithm for the current value of k
i) for k in range(1, max_k + 1):

ii) clusters, centroids = k_means(data, k, max_iterations)
3. Calculate the BIC for the current value of k

i) bic = compute_bic(data, clusters, centroids)
ii) bics.append(bic)

4. Calculate the first-order difference (except for the first element)
i) if k > 1:

ii) first_order_diff.append(bic - bics[−2])
5. Fit two straight lines to the head and tail of the curve

i) head_line = fit_straight_line(range(1, max_k + 1), bics, 0, max_k // 2)
ii) tail_line = fit_straight_line(range(1, max_k + 1), bics, max_k // 2, max_k)

6. Find the intersection point of the two lines
i) elbow_k = find_intersection(head_line, tail_line)

7. Plot the elbow curve, first-order difference and the fitted lines
i) plot_elbow_curve(range(1, max_k + 1), bics, first_order_diff, head_line, tail_line,

elbow_k)
ii) def fit_straight_line(x_values, y_values, start_index, end_index):

8. Fit a straight line to a segment of the curve defined by start_index and the end_index
i) slope, intercept = linregress(x_values[start_index:end_index+1], y_values[start_index:end_

index+1])
ii) return lambda x: slope ∗ x + intercept
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iii) def find_intersection(line1, line2):
9. Find the intersection point of the two straight lines

i) return (line2(0) - line1(0))/(line1(1) - line2(1))

However, with the L-method, long tails within the curve can influence the value of the optimal
number of clusters, k [77]. To minimize this effect, a proposed iterative method aims to gradually
decrease the tail while simultaneously refining the point of the elbow. The correct optimal cluster
number, i.e., the value of the k-hyperparameter, requires multiple iterations [77]. This can be quite
time-consuming and computationally expensive.

2.5.2 Angle Based Technique

The angle-based technique first calculates the measure of the Bayesian Information Criterion.
After this, it calculates the first-order difference of the Bayesian Information Criterion. In order to
determine the BIC values for various values of k (number of clusters) in the elbow curve, it is necessary
to calculate the first-order difference of the Bayesian Information Criterion (BIC) and the BIC angle
[78]. The Bayesian Information Criterion is given by the following formula:

BIC = log(n) ∗ k − 2 ∗ log(L) (12)

The “n”refers to the number of data points, “k”represents the number of clusters, and “L”denotes
the likelihood of the data given the clustering model. The first-order difference of the BIC is calculated
as the difference between consecutive BIC values for each k, and it is determined using the following
formula:

First Order Difference = BIC(k) − BIC(k − 1) (13)

The BIC angle is the angle between consecutive vectors formed by (k, BIC(k)) and (k+1,
BIC(k+1)) in the BIC curve plot. It can help determine the point at which the BIC curve significantly
changes its behavior, which may indicate the optimal number of clusters. The following is the
pseudocode of this technique:

1. Compute the_bic (data, clusters, centroids):
i) n = len(data)

ii) k = len (data)
2. Compute the likelihood of the data given the clustering model

i) L = calculate_likelihood(data, clusters, centroids)
3. Compute and return BIC

i) Bic = math.log(n) ∗ k − 2 ∗ L
ii) return bic

4. Compute the likelihood
i) likelihood = 0

ii) for point, cluster_index in clusters.items():
iii) centroid = centroids[cluster_index]

5. Compute the log-likelihood assuming Gaussian distribution,
i) log_likelihood = −0.5 ∗ sum((x - mu) ∗∗ 2 for x, mu in zip(point, centroid))

ii) likelihood += log_likelihood
iii) return likelihood

6. Initialize lists to store BIC, first-order difference, and angles
i) bics = [ ]
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ii) first_order_diff = [ ]
iii) angles = [ ]

7. Run the k-means algorithm for the current value of k
i) for k in range(1, max_k + 1):

ii) clusters, centroids = k_means(data, k, max_iterations)
8. Calculate the BIC for the current value of k

i) bic = compute_bic(data, clusters, centroids)
ii) bics.append(bic)

9. Calculate the first-order difference (except for the first element)
i) if k > 1:

ii) first_order_diff.append(bic - bics[−2])
10. Calculate the angle for the current k (except for the first element)

i) if k > 1:
ii) angle = calculate_angle(k, bics[−2], k + 1, bic)

iii) angles.append(angle)
11. Plot the elbow curve, first-order difference, and angles

i) plot_elbow_curve(range(1, max_k + 1), bics, first_order_diff, angles)
12. Calculate the angle between (k1, bic1) and (k2, bic2) vectors

i) calculate_angle(k1, bic1, k2, bic2):
ii) vector1 = np.array([k1, bic1])

iii) vector2 = np.array([k2, bic2])
iv) dot_product = np.dot(vector1, vector2)
v) magnitude1 = np.linalg.norm(vector1)

vi) magnitude2 = np.linalg.norm(vector2)
vii) angle_radians = math.acos(dot_product/(magnitude1 ∗ magnitude2))

viii) angle_degrees = math.degrees(angle_radians)
ix) return angle_degrees

The point with the biggest bayesian criterion angle is taken as the best approximate of the optimal
number of clusters k [78]. However, there may be no clear point where the BIC curve changes in its
behavior significantly. This technique, therefore, does not always guarantee the identification of the
correct k-hyperparameter value from any given high-dimensional dataset.

2.5.3 Elbow Strength Technique

The elbow strength algorithm identifies the optimal number of clusters, k, by calculating the
differences between the first and second order differences on the elbow curve. The concept of finite
differences is used to calculate the differences between the first and second-order differences on the
elbow curve. The first-order difference between consecutive points is calculated by subtracting the
value at index i from the value at index i+1. The second-order difference is computed by taking the
first-order difference between consecutive first-order differences. The point with the largest difference
is referred to as the elbow strength and is considered the best approximation of the optimal number
of clusters, the k-hyperparameter value [79]. The pseudocode for this technique is as follows:

1. Initialize empty list to store inertia for k’s
i) Inertias = [ ]

2. Run clustering for current k
i) For k in range(1, max_k + 1)
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3. Run k-means algorithm for the current k-value
i) clusters, centroids = k_means(data, k, max_iterations)

4. Compute inertia for the current k-value
i) inertia = compute_inertia(data, centroids, clusters)

5. Append inertia to the list
i) inertias.append(inertia)

6. Compute first difference
i) first_diff = calculate_first_difference(inertias)

7. Compute second difference
i) second_diff = calculate_second_difference(first_diff)

8. Plot elbow and differences
i) plot_elbow_curve(range(1, max_k + 1), inertias, first_diff, second_diff)

9. Compute and return first difference
i) calculate_first_difference(values):

ii) first_diff = []
iii) for i in range(len(values) - 1):
iv) diff = values[i + 1] - values[i]
v) first_diff.append(diff)

vi) return first_diff
10. Compute and return second difference

i) calculate_second_difference(values):
ii) second_diff = [ ]

iii) for i in range(len(values) - 1):
iv) diff = values[i + 1] - values[i]
v) second_diff.append(diff)

vi) return second_diff
11. Plot elbow and pick the optimal k-value
12. End

However, this technique does not always guarantee the identification of the correct k-
hyperparameter value from a given high-dimensional dataset.

2.5.4 New Elbow Point Discriminant Technique

The proposed technique is the New Elbow Point Discriminant, which is based on statistical
metrics. In this technique, the mean distortion degree returned by the elbow is standardized between
zero and ten. Then, the standardized results are used to calculate the cosine angles that intersect the
points on the elbow. The BIC values and first-order differences are computed first. The cosine angles
between consecutive vectors formed by (k, BIC(k)) and (k+1, BIC(k+1)) are then computed. The
point at which the cosine angle exhibits a significant change is often marked by a sharp decrease in
the angle. The point of intersection between the two lines formed by the vectors before and after the
change in angle represents the optimal value for the k-hyperparameter. When using the computed
cosine angles and their intersections to find the elbow point (optimal k-value), you are essentially
looking for the “elbow” or “knee” in the plot where the angle between consecutive vectors changes
significantly. The point where this change occurs represents the optimal k-value [80]. The pseudocode
for this technique is as follows:
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1. Calculate the BIC for the current value of k
i) bic = compute_bic(data, clusters, centroids)

ii) bics.append(bic)
2. Calculate the first-order difference (except for the first element)

i) if k > 1:
ii) first_order_diff.append(bic - bics[−2])

3. Calculate the angle for the current k (except for the first element)
i) if k > 1:

ii) angle = calculate_angle(k, bics[−2], k + 1, bic)
iii) angles.append(angle)

4. Find the elbow point using the cosine angles and their intersections
i) elbow_k = find_elbow_point(range(1, max_k + 1), angles)

5. Plot the elbow curve, first-order difference, and angles
i) plot_elbow_curve(range(1, max_k + 1), bics, first_order_diff, angles, elbow_k)

ii) find_elbow_point(k_values, angles):
6. Find the elbow point using the cosine angles and their intersections

i) max_angle_diff = 0
ii) elbow_k = 0

iii) for i in range(len(angles) - 1):
iv) angle_diff = angles[i] - angles[i + 1]
v) if angle_diff > max_angle_diff:

vi) max_angle_diff = angle_diff
vii) elbow_k = k_values[i + 1]

viii) return elbow_k

However, with this method, the computational cost is relatively higher. Moreover, this technique
does not always guarantee the identification of the correct k-hyperparameter value.

2.5.5 Dynamic First Derivative Thresholding Technique

The Dynamic First Derivative Thresholding k-hyperparameter tuning technique is a hybrid
technique composed of Menger curvature and L-method. The Dynamic First Derivative Thresholding
technique approximates the first derivative of the curve, which is a local criterion that resembles the
Menger curvature. The first derivative of the curve represents the gradient of the tangent line. Close to
the operation of the L-method, the Dynamic First Derivative Thresholding technique aims to identify
the region where the function has a sharp angle. The threshold algorithm is used to find the difference
between high and low values of the first derivative, instead of fitting two straight lines. This categorizes
the slopes into two groups: the head of the curve, which consists of high values, and the tail, which
consists of low values. The point closest to the threshold is considered the elbow point [81]. This k-
hyperparameter tuning technique on a smooth elbow can be represented with pseudo code as follows:

1. Function dfdt (a, b)
2. x ← f irstDerivative(a, b)
3. y ← Data(m)
4. tz ← 0
5. minDist ← ||x [0] − y||
6. for i ← 1;i < x.length;i + + do
7. if ||x [0] − y|| < minDist then
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8. minDist ← ||x [0] − y||
9. tz← i

10. end if
11. end for
12. return tz + 1
13. End function

2.6 Internal Validation Indexes for Evaluating Quality of Clusters in High-Dimensional K-Means
In clustering algorithms like k-means, there is no ground truth to accurately evaluate the model’s

performance, as is the case with supervised algorithms. At the same time, there is no prior knowledge
about the clustering dataset at hand. For this reason, it is important to use metrics that provide insight
into the best or optimal value of k when clustering high-dimensional datasets [82]. Such a standard
cluster validation process and set of internal validation metrics are highly critical for assessing the
quality of the k clusters generated as the output. The optimal value of the k-hyperparameter in k-
means determines the best clustering results. At this optimum, the variance within a cluster is normally
low, while the separation between clusters is high [82,83]. The choice of internal validation metrics, as
opposed to external and relative validation metrics, is based on the fact that internal validation metrics
rely solely on the information inherent in the data itself. It is not based on prior information about
the dataset [83]. The internal indexes are known to be better when applied in determining the quality
of clustering results because they are solely based on the intrinsic information of the data alone [84].
The most commonly used internal validity metrics in the clustering literature include:

2.6.1 Dunn Index

The Dunn index, which is an internal validity metric, measures the level of compactness among
objects within the same cluster and the level of separation between objects in different clusters [85].
The Dunn index is defined mathematically as follows:

DI
m= 1≤i≤j≤m

Minδ(Ci ,Cj )

max Δk
1≤k≤m

(14)

where distance between clusters i and j are denoted by δ (Ci, Cj) and the �k is the size of cluster [85].
Higher values of the Dunn index indicate both the minimum intra-cluster distances and the maximum
inter-cluster distance [85,86]. The k-means algorithm has successfully used the Dunn index to validate
the clustering results it generates [86].

2.6.2 Calinski Harabsz Index

The Calinski-Harabasz index (CH), an internal validity metric, is defined as the ratio between the
“sums of between-clusters dispersion” and “inter-cluster dispersion” for all clusters [87]. The Calinski-
Harabasz index is defined mathematically as follows:
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where k is the corresponding number of clusters, B(K) is the inter-cluster divergence, also called the
inter-cluster covariance, W(K) is the intra-cluster divergence, also called the intra-cluster covariance,
and N is the number of samples [87]. The larger the B(K) is, the higher the degree of dispersion
between clusters. The smaller the W(K) is, the closer the relationship between the clusters [88]. Higher
Calinski-Harabasz index values are better because they indicate good quality clustering performance
and results [89].

2.6.3 Davies Bouldin Index

The Davies-Bouldin index (DB), an internal validity metric, is used to identify cluster overlap by
measuring the ratio of the sum of the “within-cluster scatters” to the “between-cluster separations”
[90,91]. The Davies-Bouldin index is defined as follows:
1
k

∑k

i=1

max
j �= i

(
ci + cj

‖ wi − Wj ‖2

)
(18)

A DB index close to zero (0) indicates that the clusters are compact and far from each other [92].
The implementation of the K-Medoids algorithm with Davies-Bouldin Index evaluation for clustering
postoperative life expectancy in patients with lung cancer is an example of an algorithm that has
applied the Davies-Bouldin index in its evaluation process [93].

2.6.4 Silhouette Index

The silhouette index is an internal validity metric that represents the optimal clustering number. It
is calculated by taking the difference between the average distance within a cluster and the minimum
distance between clusters [94–97]. The silhouette index is defined mathematically as follows:

s = 1
n

∑n

i=1

(
b (i) − a(i)

max{a (i) , b (i)}
)

(19)

where a(i) represents the average distance of sample i to other samples in the cluster, b(i) represents
the minimum distance of the sample from the sample i to the other clusters [97]. The algorithm that
utilizes the silhouette index to determine the optimal k-means clustering on images in various color
models is an example of the use of Silhouette index to evaluate quality of clustering results [97,98].

2.6.5 Bayesian Information Criterion (BIC)

Bayesian information criterion (BIC), an internal validity metric, is referred to as a strategy
for model selection among a finite set of models. The model with the lowest BIC value is the most
preferred, as it indicates good clustering results [99]. The Bayesian Information Criterion (BIC) index
is calculated as follows:

BIC = 2log(L) + qlog(L) (20)

L is the maximum likelihood function of the model and N is the number of data points in a dataset
[99–101].

The inconsistent information provided by the various internal validation metrics/indexes is one
of the challenges that render them unsuitable solutions when the elbow method fails. The silhouette
index, for example, may generate the best score at a different optimal k-hyperparameter value than the
best score generated by the Davies Bouldin index [101]. The effectiveness of each internal validation
index/metric mentioned above is determined by the conditions present in a high-dimensional dataset.
Each internal validation metric focuses on different aspects of the quality of the generated clusters.



JAI, 2023, vol.5 91

Comparing the scores of the various pairs of internal validation metrics for a single dataset, as
well as assessing their consistency using Kendall’s index one at a time, would be computationally
expensive. It is for this reason that we propose adopting an ensemble-based internal validation index
in our approach to validate the quality of clusters from the high-dimensional k-means algorithm.
The components of the ensemble internal validation index exercise equally sensitive to the varied
conditions present in high-dimensional datasets. This type of ensemble could be based on either
bootstrap aggregating (bagging) or boosting [101].

2.7 Ensemble Learning Techniques in Machine Learning
Ensemble techniques that train multiple base learners and then aggregate them, using methods

such as bagging, stacking, and boosting, are considered state-of-the-art. It is widely recognized
that ensembles have higher accuracy and performance compared to individual learners. Ensemble
techniques are capable of enhancing weak learners into strong learners. Ensemble techniques have
achieved significant success in various real-world tasks. Researchers from the fields of machine
learning, data mining, and statistics have been extensively studying ensemble techniques from various
perspectives, particularly in recent years. A number of ensemble techniques apply a single algorithm
to generate homogeneous base learners, while other ensemble techniques apply several algorithms to
generate heterogeneous base learners. Base learners can be created either in parallel or in a sequential
manner. These base learners are then aggregated using a voting scheme for classification problems
or using weighted averaging for regression problems [102]. The ensemble has been utilized in the
development of the new k-hyperparameter tuning method for addressing the challenges posed by the
smooth elbow.

3 Experimental Research Design and Implementation

This section describes the methodology utilized in the systematic review process, conducting main
experiments as well as during the data analysis in this research. The main objective of this research work
was to develop and validate an improved k-hyperparameter tuning technique for solving the challenges
of smooth elbow in high-dimensional space clustering. The rest of this section is organized as follows:
methodology, description of the high-dimensional datasets used in this experiment, experimental
design, tools and data visualization, research objectives, hypothesis, and the metrics for evaluating
the k-hyperparameter tuning techniques used to address the challenges of smooth elbows in high-
dimensional space clustering. The proposed ensemble-based k-hyperparameter tuning technique using
a self-adapting autoencoder and internal validation index is also discussed in this section.

3.1 Methodology for Review
A mixed methods research design was adopted in this paper, with a general focus on the positivist

research philosophy. Qualitative research design entailed conducting a literature review on the existing
k-hyperparameter tuning techniques for a smooth elbow. This qualitative research design also involved
the utilization of design science methodology. Using the design science methodology, this research
aimed to solve the problem of k-hyperparameter tuning on a smooth elbow through the design of a
new technique. Quantitative research design, on the other hand, involves collecting and analyzing the
results from the main experiments using an experimental design methodology. A similar set of high-
dimensional datasets and evaluation metrics was used in the validation process. The high-dimensional
datasets included a variety of data types, such as text, images, video, and audio. The process of
developing a new technique adopted a multi-methodological design approach. The experimental
design in this work demonstrates how all the experiments in this empirical study are carried out.
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The systematic review process of the k-hyperparameter tuning techniques used to solve the
challenges of smooth elbows in high-dimensional k-means clustering algorithms followed the five-
step methodology as proposed by Khan, Kunz, Kleijnen, and Antes. This five-step methodology is
applied when conducting a critical review of the existing literature [103]. The five-step methodology
involves framing the questions for the review, identifying relevant literature, assessing the quality of
articles, and reviewing the relevant literature. The meta-search-based strategy for identifying relevant
literature focuses on k-hyperparameter tuning techniques to address the challenges of smooth elbows
in high-dimensional k-means clustering algorithms.

3.2 Description of the High-Dimensional Datasets
Based on a purposive sampling strategy, the high-dimensional datasets used in this research

study include the GLA-BRA-180 dataset, the Lung Cancer dataset, the YouCook dataset, and the
COVID-19 coughs dataset. These datasets cover the four main categories of data: text, image, video,
and audio. The GLA-BRA-180 dataset is text-based, the Lung Cancer dataset is image-based, the
YouCook dataset is video-based, while the COVID-19 coughs dataset is an audio-based dataset. The
GLA-BRA-180 dataset comprises 180 instances, 4,915 attributes/features, and 4 optimal clusters. This
dataset involves the analysis of gliomas of different grades in computational medicine. The dataset is an
expression profile of stem cell factors that are important in determining tumor angiogenesis. Glioma is
the growth of cells from the brain or spinal cord. Glioma cells are similar in appearance to healthy glial
cells. Glial cells surround the nerve cells and assist in their functioning [104]. When the glioma grows,
it forms a mass of cells. Several types of gliomas can cause varying symptoms in different individuals,
such as headaches, seizures, irritability, vomiting, visual difficulties, weakness, and numbness [104].
The GLA-BRA-180 dataset was initially downloaded as a .mat file but was later converted to a .csv
file using both the scipy and pandas Python libraries.

The YouCook video-based dataset is a well-known benchmark dataset in computer vision.
YouCook dataset focuses on the role of action recognition and anticipation in videos that involves
cooking. The dataset has a huge database of instructional cooking videos together with their associated
annotations. The YouCook dataset comprises 2,000 cooking videos, with each video demonstrating
a step-by-step process of making a recipe. These videos are created from YouTube and cover a great
variety of recipes and styles of cooking these recipes. The dataset comprises of different ingredients,
cooking techniques, and culinary actions. Action labels have each action within the video labeled with
a descriptive action name. These labels specify the type of action being performed in the corresponding
video segment [105]. COVID-19 coughs datasets is an audio data, including cough sounds, to aid in the
detection and diagnosis of COVID-19. Also referred to as COUGHVID, this dataset consists of more
than 25,000 cough recordings from patients of different age-groups, gender and geographical locations.
This dataset has been successfully used in clustering patients as either COVID-19 positive or negative
[106]. Lung cancer dataset is a computational medicine dataset based on images and comprises of
clinical attributes, i.e., patient age, history of smoking, and tumor characteristics. This also comprises
of the target variable showing whether the patient suffers from lung cancer or not. Lung cancer dataset
consists of 12,533 features, 181 instances and 2 clusters. It consists of radiological imaging features
extracted from Computed Tomography scans and genetic mutation data. This dataset also comprises
of clinical information on patient demographics, tumor characteristics, genetic markers, and treatment
outcomes. Researchers use this dataset to investigate risk factors, create diagnostic models, predict the
response of a particular treatment, and identify biomarkers associated with lung cancer [107].
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3.3 Experimental Design, Tools and Data Visualization
According to [108], a proper design of experiments goes a long way in obtaining measurements

that answer research objectives and/or hypotheses in a valid and efficient manner. The four high-
dimensional datasets were each subjected to k-hyperparameter tuning techniques on a smooth elbow.
The performance and statistical metrics were recorded for each run. An improved autoencoder was
employed as the method for reducing data dimensionality, along with the existing k-hyperparameter
tuning techniques. The scores of the metrics after each run are recorded and documented in a
results table. The analysis of these results was followed by the formulation of conclusions and
recommendations based on the hypothesis.

3.3.1 Research Objectives

In this paper, the research objectives were formulated as follows:

• Evaluate the current k-hyperparameter tuning techniques used to address the challenges of
smooth elbow.

• Develop a new k-hyperparameter tuning technique to address the challenges of smooth elbow
detection, utilizing an ensemble-based approach, combining a self-adapting autoencoder with
internal validation indexes.

• Validate the newly developed technique.

3.3.2 Research Hypothesis

In this paper, both the null hypothesis (H0) and the alternate hypothesis (H1) have been formulated
in the subsequent sections as follows:

H0: There is no statistically significant difference between the performance of the newly developed
k-hyperparameter tuning technique and the existing techniques used to address the challenges of a
smooth elbow in high-dimensional space clustering.

H1: There is a statistically significant difference between the performance of the newly developed
k-hyperparameter tuning technique and the existing techniques used to address the challenges of a
smooth elbow in high-dimensional space clustering.

3.3.3 Tools of Experiment and Visualization

The Jupyter Notebook, Python’s IDE, was used to implement the new k-hyperparameter tuning
technique proposed in this paper. TensorFlow, Keras Tuner, and Random Search were the main
autoencoder libraries used with the new technique. The Matplotlib library was used for visualization,
while the R software was used for computing the statistical scores. Spreadsheets were used to create
charts.

3.3.4 Evaluation Metrics

Different performance and statistical metrics have been applied to compare various k-
hyperparameter tuning techniques for addressing the challenges of smooth elbows in high-dimensional
space clustering [109]. These metrics include the silhouette index, Calinski-Harabasz index, Dunn
index, Davies-Bouldin index, as well as the run-time. The four internal validation indexes are
commonly used metrics for evaluating the quality of clusters in high-dimensional space clustering
[110]. Clustering accuracy is not a reliable metric for evaluating unsupervised learning tasks in machine
learning. This is because there are no ground truth labels available to directly calculate accuracy.
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Moreover, the decision to use internal validation indexes instead of external cluster validation indexes
is based on the fact that internal metrics for validating clusters rely solely on the inherent information
within the data [111]. On the other hand, the decision to use the ensemble internal validation metric
is based on the fact that all components of the ensemble validation index are equally sensitive to
the diverse conditions present in a high-dimensional dataset. On the other hand, Cochran’s Q-
score, McNemar’s score, and ANOVA were the statistical metrics applied in testing the hypothesis.
Several statistical metrics exist in the literature on the hypothesis testing process of machine learning
algorithms [112]. In this research, Cochran’s Q test [113] was used to determine whether there is a
statistically significant difference in the optimal k hyperparameter values generated across the different
k-hyperparameter tuning techniques on the GLA-BRA-180 dataset. MC Nemar’s score [114] was used
to determine if there was a statistically significant difference in the k-hyperparameter value before and
after the autoencoder compression process on any high-dimensional dataset, specifically the GLA-
BRA-180 dataset. Anova [115] was used to investigate whether there was a statistically significant
difference between the performance of the existing techniques and the new technique in solving the
challenges of a smooth elbow.

3.3.5 Improved K-Hyperparameter Tuning Technique on a Smooth Elbow

The new and improved k-hyperparameter tuning technique on a smooth elbow is based on an
ensemble-based self-adapting autoencoder. In this technique, a high-dimensional dataset first under-
goes a compression process using a self-adapting autoencoder to generate a set of the most important
features. The process of compressing data using an autoencoder is known as the encoding process.
The architecture of the flexible autoencoder adapts itself in response to the type of high-dimensional
data input. The engine’s ability to adapt itself based on the characteristics of the high-dimensional
dataset input requires adjustments to several crucial hyperparameters. These hyperparameters include
the number of hidden layers, the number of nodes, the choice of activation function, the choice of loss
function, the learning rate and optimization method, regularization, batch size, number of epochs, ini-
tializer, learning rate schedule, dimensionality’s bottleneck dimensions, batch normalization, and early
stopping. The new k-hyperparameter tuning technique aims to improve the autoencoder by combining
the best set of hyperparameter settings based on the nature of the high-dimensional input dataset. The
new k-hyperparameter tuning technique was implemented using Python version 3.6 and TensorFlow
version 2.0. The autoencoder technique consists of three main libraries: TensorFlow, Keras Tuner,
and Random Search. Keras Tuner was installed using the pip command, while the TensorFlow library
was installed using the import function. TensorFlow library provides an application interface for
the improved autoencoder, which incorporates the new k-hyperparameter tuning technique. Keras
Tuner library automates the process of selecting the best combinations of hyperparameter settings
to a great extent. Random search assists in sorting the different combinations of hyperparameter
settings. These hyperparameter settings are defined in various function models. After importing the
high-dimensional dataset input into the improved autoencoder, several model building functions are
created. Different model building functions consist of a different set of hyperparameter settings. The
best set of hyperparameter settings from these model functions is selected using Random Search.
During the tuning process, both the maximum number of trials and the number of executions per
trial are determined. Once the optimal combinations of hyperparameter settings are identified, the
technique utilizes these settings to project a high-dimensional dataset into the latent space. This
information is part of the decision that the technique uses to identify the correct k-hyperparameter
value for a specific dataset. The validation score of the ensemble from the clustering result determines
whether the autoencoder will make further internal adjustments or if the algorithm will stop if the
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scores are relatively the best. In clustering different high-dimensional datasets, the careful design of an
architecture that can effectively learn and represent the underlying structure of a particular dataset is
critical to the success of developing the new k-hyperparameter tuning technique. The carefulness in the
design also incorporated the use of experimentation to find the optimal architecture and parameters
for high-dimensional space clustering on a specific dataset.

In designing the image dataset handling system, the image data is normalized to a common scale
during the data preprocessing stage. At the same time, the images are flattened or reshaped into a vector
that is suitable for inputting into the autoencoder. The architecture’s depth was set to strike a balance
between capturing more complex features from an image dataset and minding the computational
constraints. Convolutional layers are used for both the encoder and the autoencoder because of their
ability to capture spatial hierarchies. The hyperparameter settings were experimented with the RELU,
Leaky RELU, and Swish activation functions. The incorporation of batch normalization layers was
done to stabilize training and enhance convergence. The Kullback-Leibler Divergence was adopted
as the loss function because it encourages the encoder to generate embeddings that are suitable for
clustering. A regularization term was also added to enforce a compact clustering-friendly space. The
combined reconstruction and clustering losses were minimized, while the learning rate and early
stopping were used to improve training stability and convergence. During training, both the loss and
the internal validation index scores were monitored to prevent over fitting.

In designing the text dataset handling process, the numerical features were standardized to ensure
that they have similar scales. This can improve the training and clustering process during data pre-
processing. The data pre-processing also involved appropriately handling any missing values, either by
imputing them or encoding them as a separate category. The architecture consists of multiple encoding
and decoding layers, utilizing fully connected components for both the encoder and the decoder.
Dropout and L1 and L2 regularization techniques were used to prevent over fitting. The architecture
design also experimented with three activation functions: ReLU, Leaky ReLU, and Scaled Exponential
Linear Units (SELU). Mean Squared Error (MSE) was used for the reconstruction loss due to
its popularity in such applications. Experiments were conducted to explore various regularization
techniques aimed at incorporating a regularization term that promotes the suitability of the learned
embeddings for clustering. The autoencoder was trained to minimize the reconstruction loss while
also regularizing the embeddings. In order to improve training performance, learning rate scheduling
and early stopping techniques were used. Depending on the complexity of the dataset, the changes
in architectural designs and other hyperparameter settings were made based on the evaluation of
the internal validation index scores of the clustering results. They were also based on different layer
configurations, loss functions, and regularization techniques. Random search was used to find the
optimal hyperparameters.

In developing the design for handling audio datasets, the motivation was to create an architecture
that can efficiently capture the distinct patterns and characteristics present in audio data, thereby
improving clustering performance. During the pre-processing stage, audio files were converted into
spectrograms or other suitable representations that capture the frequency and time-domain charac-
teristics of the audio signals. The spectrograms were also normalized to a standardized scale. In order
to enhance the diversity of the training data, data augmentation techniques were implemented. The
architectural design was tailored for audio data. Convolutional layers were used to capture local
patterns and hierarchical features in the spectrogram data. Pooling convolutions were included to
reduce the spatial dimensions while preserving important features. The experiment process utilized
skip connections and the U-Net architectures to enhance feature preservation. The Mean Squared
Error (MSE) between the input spectrogram and the reconstructed spectrogram was used as the
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reconstruction loss. Kullback-Leibler Divergence was used as the loss function as it encourages
the encoder to produce embeddings that are friendly to clustering. The training strategy combined
loss focuses on minimizing the reconstruction error and encouraging clustering-friendly embeddings.
During training, the use of audio-specific data augmentation was considered the best option as it
increased the robustness of the model. The fine-tuning strategy involved the experimentation process
with various audio preprocessing techniques, architectures, and loss combinations. The specific audio
pre-processing steps incorporated the application of Mel-frequency Cepstral coefficients (MFCCs) to
enhance the quality of the input data.

In designing the architecture for handling video datasets, the goal was to create a system that can
effectively capture both the temporal and spatial features present in video data. This would enable
improved capturing of motion information and enhance clustering performance. The video frames
were converted into suitable representations such as image frames, optical flow, or spatiotemporal
volumes. The data preprocessing involved normalizing the pixel values to a common scale. Both
random cropping and flipping were used as data augmentation techniques to increase the diversity of
the training data. A 3D architecture, consisting of a convolutional autoencoder, was used to capture
both the spatial and temporal features of video data. The convolutional layers were incorporated for
spatial processing, while the recurrent layers were incorporated for temporal processing. Kullback-
Leibler Divergence was used as the loss function because it encourages the encoder to generate
embeddings that are conducive to clustering. The training strategy incorporated frame skipping and
temporal jittering techniques to enhance temporal diversity. Fine-tuning was accomplished through
iterations on the various hyperparameters, as well as an experimentation process involving different
video pre-processing techniques. It also involved an evaluation process against the internal validation
scores of the clustering results. In order to improve the quality of input data, the optical flow estimation
technique was incorporated.

Using this technique, the optimal number of clusters, k, is determined through the bagging
ensemble’s voting scheme. It is a trade-off between the number of clusters visualized in the autoen-
coder’s latent space and a k-value that has a relatively good score on the internal validation metric.
Additionally, the k-value should generate a value of 0 or close to 0 on the derivative f ′′′(k)(1+ f ′(k)2)−
3 f ′′(k)2f ′′((k)2f ′(k). The ensemble validation metric discussed in the last paragraph of Section II was
used to validate clusters in this technique. The discovery of the intrinsic structure of high-dimensional
data, achieved through the adjustment of the flexible architecture of the autoencoder, is critical to the
performance of the new k-hyperparameter tuning technique. Fig. 5 below shows the architecture of
the newly developed k-hyperparameter tuning technique.

The following pseudo code represents the functionality of the newly developed k-hyperparameter
tuning technique on a smooth elbow in high-dimensional space clustering:

1. KHT ← [HD] # Input high-dimensional dataset into the technique

2. A ← [E] # Initialize autoencoder ensemble

3. HDNature ← HD #Check for the nature of the high-dimensional dataset

4. If HD = = Text of dimensionality X then

5. A ← [K∗,HSTX] #Activate the best set of hyperparameter settings for text of X dimensions
(K)

6. Else if

7. If HD = = Image of dimensionality X then
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8. A ← [K∗,HSIX] #Activate the best set of hyperparameter settings for image of X dimensions
(K)

9. Else if

10. If HD = = Audio of dimensionality X then

11. A ← [K∗,HSAX] # Activate the best set of hyperparameter settings for Audio of X dimensions
(K)

12. Else if

13. If HD = = Videos of dimensionality X then

14. A ← [K∗,HSVX] #Activate the best set of hyperparameter settings for Video of X dimensions
(K)

15. End if

16. End if

17. End if

18. End if

19. HD ← LD # Map the high-dimensional features into low dimensional

20. C ← [ ] # Initialize the elbow curve as empty

21. C∗ ← [K-values, inertia] # Generate the elbow curve based on LD

22. If

23. K∗←[k1] #optimal k is f ′′′(k)(1 + f ′(k)2) − 3 f ′′(k)2f ′′((k)2f ′(k) ≈0 at elbow

24. AND

25. K∗ ← [k2]optimal k aligning to best scores of the validation indexes

26. AND

27. K∗ ← [k3] optimal k aligning to autoencoder’s latent space visualization

28. Then

29. CI,DI,DB,SI ← [ ] #Initialize all internal validation indexes as empty

30. [Clusters] ← K-means(HD,K∗) # Do k-means clustering based on K∗
31. [SI, CI,DBn,DI] ← Clusters # Compute internal index scores for clusters

32. If SI,CI,DBn, DI �= SI∗,CI∗,DBn∗,DI∗ # Check if the index scores are best

33. Then

34. Go to step 5

35. Else

36. EI [SI, CI,DBn,DI] ← EI # Compute the ensemble index based on the four internal indexes

37. End
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Figure 5: Ensemble based k-hyperparameter optimization technique on a smooth elbow using a self-
adapting autoencoder and internal validation index

4 Experimental Results and Discussions

Here, the results of the experiments were analyzed and discussed before reaching the conclusion
and making recommendations for future research on the k-hyperparameter tuning problem.

4.1 Elbow Visualization of the GLA-BRA-180 High-Dimensional Dataset before and after
Compression by the Self-Adapting Autoencoder Ensemble
The main objective of this experiment was to investigate the effect of the autoencoder compression

process on the visualization of a high-dimensional dataset using an elbow curve. In Fig. 6, we
visualize the GLA-BRA-180 high-dimensional dataset on an elbow, before and after the autoencoder
compression process. Before the autoencoder compression process, experimental results show that the
elbow curve is smooth and ambiguous, making it difficult to identify a clear elbow. On the other
hand, there is evidence of improved visualization of the elbow curve after compressing the high-
dimensional dataset with the autoencoder. This compression generated an approximately accurate
k-hyperparameter value of 4, compared to the visualization of the original uncompressed data. This
demonstrates the ability of the self-adapting autoencoder ensemble to forcefully compress low-level
representations of deeply correlated data points from a high-dimensional space, and generate distinct
clusters with low intra-cluster variations in an unsupervised manner.
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Figure 6: Visualization of the elbow on GLA-BRA-180 dataset before and after autoencoder
compression

4.2 Total Intra-Cluster Variations on the GLA-BRA-180 Dataset before and after the Autoencoder
Compression
In Fig. 7, we compare the intra-cluster variations of the GLA-BRA-180 high-dimensional dataset

before and after the autoencoder encoding process. Intra-cluster variation is a concept in clustering
that states that objects within the same cluster should have minimal distances. The results indicate that
the total intra-cluster variations on the GLA-BRA-180 dataset are relatively higher between k = 1 and
k = 5 before the autoencoder compression process, compared to the total intra-cluster variations after
the autoencoder compression process for the same k values. This demonstrates the importance of the
autoencoder compression process in reducing intra-cluster variations and, consequently, improving
the k-hyperparameter tuning processes and the quality of clustering results, as stated by [115].
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Figure 7: Comparison of the intra-cluster variations on GLA-BRA-180 dataset before and after
autoencoder compression

4.3 Cochran’s Q Score Test for Determining if There Is a Statistically Significant Difference in the
Optimal K Values Generated across the Different K-Hyperparameter Tuning Techniques on
GLA-BRA-180 Dataset
Computed using the R software, the calculated critical Q value has been identified as greater than

the critical chi-squared value. For this reason, the null hypothesis has been rejected, and the alternative
hypothesis has been retained. We therefore conclude that there is a statistically significant difference in
the optimal k-hyperparameter values generated by the ensemble-based technique using a self-adapting
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autoencoder and internal validation index, compared to the k-hyperparameter values generated by
other k-hyperparameter optimization techniques.

4.4 MC Nemar’s Test for Determining if There Is a Statistically Significant Difference in the
K-Hyperparameter Value before and after the Autoencoder Compression Process on the
GLA-BRA-180 Dataset
The MC Nemar’s score of 19.25, which is greater than the value of 4.6178, provides strong evidence

to retain the alternative hypothesis and reject the null hypothesis. Based on this, we can confirm that
the compression process of the ensemble-based technique using a self-adapting autoencoder has a
significant impact on the k-hyperparameter optimization process for a smooth elbow. Data scientists
should therefore adopt this technique as one of the methods for analyzing the high-dimensional
datasets that are prevalent in everyday life.

4.5 Comparison of the Identification of the Optimal K-Hyperparameter among the Four Internal
Validation Metrics Values on the Self-Adapting Autoencoder Ensemble Based Technique on
GLA-BRA-180 Dataset
We further compare the values of the four commonly used internal validation metrics with the

ensemble-based k-hyperparameter tuning technique using a self-adapting autoencoder on the GLA-
BRA-180 dataset. These four commonly used internal validation metrics include the Davies Bouldin
index (DB), Calinski Harabsz index (CH), silhouette index (SI), and Dunn index (DI). A score of
one (1) indicates the best performance of the internal validation metric and determines the optimal
k-value, while a score of zero (0) indicates that the optimal k-value has not yet been reached. For
example, when k =1, the values for all four internal validation metrics are zero because their scores
are not the highest. In this case, k = 1 is not considered the optimal value for k on this dataset. This
trend is consistent when k = 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20. However, when
k = 3, we obtain the Dunn index score that produces the optimal value for the number of clusters,
which is three. Moreover, when k = 5, we obtain the Davies Bouldin index, which yields the highest
score when the number of clusters is five. Based on the ensemble voting scheme of the autoencoder,
the value of k is taken as four. This is because it is the optimal number of clusters at which both the
silhouette index and Calinski-Harabasz index produce their highest scores. These results are in Table 1
below.

Table 1: Comparison of the optimal k-hyperparameter values among the four internal validation
indexes on the self-adapting autoencoder ensemble based technique on GLA-BRA-180 dataset

k-value DI SI CH DB

1 0 0 0 0
2 0 0 0 0
3 1 0 0 0
4 0 1 1 0
5 0 0 0 1
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0

(Continued)
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Table 1 (continued)

k-value DI SI CH DB

10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0

In the table above, the Dunn index and Davies Bouldin index provided inconsistent informa-
tion regarding the GLA-BRA-180 dataset. Based on the ensemble voting scheme of the proposed
technique, the optimal value for the k-hyperparameter is determined to be four (4). This value
aligns with the trade-off of the autoencoder’s latent space and the ensemble internal validation index
score. Additionally, it generates a value of 0 or close to 0 on the derivative f ′′′(k)(1 + f ′(k)2) −
3 f ′′(k)2f ′′((k)2f ′(k) at the elbow. Table 2 below presents a comparison of the performance of the new
technique against existing ones on various high-dimensional datasets.

Table 2: Comparison of the performance of the new technique against the existing techniques on a
variety of high-dimensional datasets

Technique for solving the challenges of smooth elbow in
high-dimensional space clustering

Dataset Evaluation metrics
SI DI CI DB Run-time

New elbow point discriminant technique (KHT1) GLA-BRA-180 0.76 175 225 0.27 6.93
Elbow strength algorithm (KHT2) GLA-BRA-180 0.77 188 241 0.18 6.68
Dynamic first derivative thresholding (KHT3) GLA-BRA-180 0.76 187 248 0.29 6.92
Ensemble based technique using self-adapting autoencoder
and internal validation index (KHT4)

GLA-BRA-180 0.97 232 290 0.05 13.0

New elbow point discriminant technique (KHT1) Lung Cancer 0.82 192 243 0.27 7.23
Elbow strength algorithm (KHT2) Lung Cancer 0.75 185 237 0.18 7.51
Dynamic first derivative thresholding (KHT3) Lung Cancer 0.9 196 246 0.29 8.43
Ensemble based technique using self-adapting autoencoder
and internal validation index (KHT4)

Lung Cancer 0.87 194 243 0.05 14.87

New elbow point discriminant technique (KHT1) You-Cook 0.67 168 225 0.15 8.54
Elbow strength algorithm (KHT2) You-Cook 0.87 190 244 0.28 7.89
Dynamic first derivative thresholding (KHT3) You-Cook 0.79 182 227 0.11 8.34
Ensemble based technique using self-adapting autoencoder
and internal validation index (KHT4)

You-Cook 0.91 198 248 0.14 17.87

New elbow point discriminant technique (KHT1) Cough-Vid 0.79 183 235 0.25 9.03
Elbow strength algorithm (KHT2) Cough-Vid 0.82 191 241 0.13 10.23

(Continued)
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Table 2 (continued)
Technique for solving the challenges of smooth elbow in
high-dimensional space clustering

Dataset Evaluation metrics
SI DI CI DB Run-time

Dynamic first derivative thresholding (KHT3) Cough-Vid 0.81 190 244 0.22 9.09
Ensemble based technique using self-adapting autoencoder
and internal validation index (KHT4)

Cough-Vid 0.83 193 242 0.08 15.43

Based on the table above, we conducted an ANOVA analysis to examine the significant differences
between the existing techniques and the newly developed technique used to address the challenges
of smooth elbow in high-dimensional space clustering. This ANOVA analysis was conducted on the
silhouette index, Dunn index, Calinski-Harabasz index, Davies-Bouldin index, and runtime scores.
In the first three internal validation indexes, higher values indicate better clustering. In the Davies-
Bouldin index, higher values indicate poorer clustering, while lower values indicate better clustering.
Higher run times, on the other hand, indicate a lower quality clustering technique. For this reason, we
have used DB_N to represent the Davies Bouldin index scores and Time_N to represent the runtime
scores. This standardization allows for consistent interpretation of the results across all evaluation
metrics. Both standardization and normalization were applied to these variables. The normalization
process was performed to standardize the scale without distorting the differences in the values. On
the other hand, the standardization process was done in order to ensure that the variables contribute
equally to the data analysis process. The following formulas were used for standardization and
normalization, respectively.

Xnormalized = (X − Xmin)/(Xmax − Xmin) (21)

Xstandardized = (X − Mean)/Standard deviation (22)

In the following tables (Tables 3–11), we conducted ANOVA analysis on the Silhouette index,
Dunn index, Calinski Harabsz index, Davies Bouldin index, and run times. Table 3 presents the
ANOVA analysis of the Silhouette index for different techniques used to address the challenges of
smooth elbow detection on various high-dimensional datasets. Table 5 presents the ANOVA analysis
of the Dunn index for the various techniques employed to address the smooth elbow challenges on
a range of high-dimensional datasets. Table 7 presents the ANOVA analysis of the Calinski Harabsz
index for the various techniques employed to address the smooth elbow challenges on a range of
high-dimensional datasets. Table 9 presents the ANOVA analysis of the Davies Bouldin index for the
various techniques employed to address the smooth elbow challenges on a range of high-dimensional
datasets. Table 11 presents the ANOVA analysis of the run times for various techniques used to solve
the smooth elbow challenges on a range of high-dimensional datasets.

Table 3: An ANOVA analysis on the silhouette index scores of various techniques used to address
smooth elbow challenges in a variety of high-dimensional datasets

Sum of squares Df Mean square F p

KHT 0.0535 3 0.01784 5.75 0.011
Residuals 0.0372 12 0.00310
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The low p-value of 0.011 indicates that there is a statistically significant variation among the
different k-hyperparameter tuning techniques. Based on this evidence, we conducted further post-hoc
analysis to investigate the specific differences of the ANOVA test on the Silhouette index scores using
different k-hyperparameter tuning techniques. These posthoc results are included in Table 4.

Table 4: Post-hoc analysis on the specific variations of the ANOVA test on the silhouette index scores
across the different techniques in a variety of high-dimensional datasets

Comparison

KHT KHT Mean difference SE df t ptukey

KHT1 – KHT2 −0.0425 0.0394 12.0 −1.079 0.708
– KHT3 −0.0550 0.0394 12.0 −1.396 0.525
– KHT4 −0.1575 0.0394 12.0 −3.998 0.008

KHT2 – KHT3 −0.0125 0.0394 12.0 −0.317 0.988
– KHT4 −0.1150 0.0394 12.0 −2.919 0.054

KHT3 – KHT4 −0.1025 0.0394 12.0 −2.602 0.093

From the above table, it is evident that the significant effect of the different k-hyperparameter
tuning techniques was driven by the differences between techniques KHT1 and KHT4 (the new
technique). There was mainly no statistically significant difference in the performance of the other
techniques.

Table 5: An ANOVA analysis on the Dunn index scores of the different techniques used to address
smooth elbow challenges on a variety of high-dimensional datasets

ANOVA–DI

Sum of squares Df Mean square F p

KHT 754 3 251.2 6.05 0.009
Residuals 499 12 41.5

The low p-value of 0.009 indicates that there is a statistically significant variation among the
different k-hyperparameter tuning techniques. Based on this evidence, we conducted further post-hoc
analysis to investigate the specific differences of the ANOVA test on the Dunn index scores for the
different k-hyperparameter tuning techniques. These post-hoc results are included in Table 6.

Table 6: Post-hoc analysis on the specific variations of the ANOVA test on the Dunn index across the
different techniques in a variety of high-dimensional datasets

Post-Hoc Comparisons–KHT
Comparison

KHT KHT Mean difference SE df t ptukey

KHT1 – KHT2 −7.750 4.56 12.0 −1.7005 0.365
– KHT3 −8.000 4.56 12.0 −1.7553 0.340

(Continued)
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Table 6 (continued)

Post-Hoc Comparisons–KHT
Comparison

KHT KHT Mean difference SE df t ptukey

– KHT4 −19.250 4.56 12.0 −4.2238 0.006
KHT2 – KHT3 −0.250 4.56 12.0 −0.0549 1.000

– KHT4 −11.500 4.56 12.0 −2.5233 0.106
KHT3 – KHT4 −11.250 4.56 12.0 −2.4685 0.116

Table 7: ANOVA analysis on the Calinski Harabsz index scores of the different techniques used to
address smooth elbow challenges on a variety of high-dimensional datasets

ANOVA–CI

Sum of squares Df Mean square F p

KHT 666 3 221.9 4.69 0.022
Residuals 568 12 47.3

From the above table, it is evident that the significant effect of the different k-hyperparameter
tuning techniques was driven by the differences between techniques KHT1 and KHT4 (the new
technique). There was mainly no statistically significant difference in the performance of the other
techniques.

The low p-value of 0.022 indicates that there is a statistically significant variation among the
different k-hyperparameter tuning techniques. Based on this evidence, we conducted further post-hoc
analysis to investigate the specific differences of the ANOVA test on the Calinski Harabsz index scores
for the different k-hyperparameter tuning techniques. These post-hoc results are included in Table 8.

Table 8: Post-hoc analysis on the specific variations of the anova test on the Calinski Harabsz index
scores across the different techniques in a variety of high-dimensional datasets

Post-Hoc Comparisons–KHT
Comparison

KHT KHT Mean difference SE df t ptukey

KHT1 – KHT2 −8.75 4.86 12.0 −1.799 0.320
– KHT3 −6.50 4.86 12.0 −1.336 0.559
– KHT4 −18.00 4.86 12.0 −3.701 0.014

KHT2 – KHT3 2.25 4.86 12.0 0.463 0.966
– KHT4 −9.25 4.86 12.0 −1.902 0.278

KHT3 – KHT4 −11.50 4.86 12.0 −2.364 0.138
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Table 9: Anova analysis on the Davies Bouldin index of the different techniques used to address smooth
elbow challenges on a variety of high-dimensional datasets

ANOVA - DB_N

Sum of squares Df Mean square F p

KHT 0.0487 3 0.01622 3.86 0.038
Residuals 0.0504 12 0.00420

From the above table, it is evident that the significant effect of the different k-hyperparameter
tuning techniques was driven by the differences between techniques KHT1 and KHT4 (new technique)
only. There was, mainly, no statistical significant difference in the performance of the other techniques.

The low p-value of 0.038 indicates that there is a statistically significant variation among the
different k-hyperparameter tuning techniques. Based on this evidence, we conducted further post-hoc
analysis to investigate the specific differences of the ANOVA test on the Davies Bouldin index scores
using different k-hyperparameter tuning techniques. These post-hoc results are included in Table 10.

Table 10: Post-hoc analysis on the specific variations of the ANOVA test on the Davies Bouldin index
scores across the different techniques in a variety of high-dimensional datasets

Comparison

KHT KHT Mean difference SE df t ptukey

KHT1 – KHT2 −0.04250 0.0458 12.0 −0.928 0.791
– KHT3 −0.04750 0.0458 12.0 −1.037 0.732
– KHT4 −0.15000 0.0458 12.0 −3.275 0.029

KHT2 – KHT3 −0.00500 0.0458 12.0 −0.109 1.000
– KHT4 −0.10750 0.0458 12.0 −2.347 0.142

KHT3 – KHT4 −0.10250 0.0458 12.0 −2.238 0.168

Table 11: ANOVA analysis on the run times of the different techniques used to address smooth elbow
challenges on a variety of high-dimensional datasets

ANOVA-Time_R

Sum of squares Df Mean square F p

KHT 0.01073 3 0.00358 13.9 <0.001
Residuals 0.00308 12 2.56e-4

The low p-value of less than 0.01 indicates that the observed difference is unlikely to have occurred
by chance alone. This supports the conclusion that there are significant variations in run times across
the different k-hyperparameter tuning techniques. Based on this evidence, we conducted further post-
hoc analysis to investigate the specific differences of the ANOVA test on the run time scores of the
different k-hyperparameter tuning techniques. These post-hoc results are included in Table 12.
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Table 12: Post-hoc analysis on the specific variations of the ANOVA test on the Davies Bouldin index
scores across the different techniques in a variety of high-dimensional datasets

KHT KHT Mean difference SE df t ptukey

KHT1 – KHT2 7.50e-4 0.0113 12.0 0.0662 1.000
– KHT3 0.00435 0.0113 12.0 0.3842 0.980
– KHT4 0.06137 0.0113 12.0 5.4204 < 0.001

KHT2 – KHT3 0.00360 0.0113 12.0 0.3179 0.988
– KHT4 0.06062 0.0113 12.0 5.3541 < 0.001

KHT3 – KHT4 0.05702 0.0113 12.0 5.0362 0.001

From the above table, it is evident that the significant effect of the different k-hyperparameter
tuning techniques was driven by the differences between techniques KHT1 and KHT4 (the new
technique), KHT3 and KHT4, as well as between techniques KHT2 and KHT4. This demonstrates
that there are clear-cut differences in the run times between technique KHT4 and the other techniques.
Although the scores of the internal validation indexes for the new technique are relatively good across
all four high-dimensional datasets, the run time, on the other hand, is relatively higher. This is a
challenge for the newly developed technique.

5 Conclusions and Recommendations

This research has reviewed the existing k-hyperparameter tuning techniques used to address the
challenges of smooth elbows in high-dimensional space clustering. The research gaps identified during
the review process served as the foundation for developing the new technique. During the evaluation
process, both the existing techniques and the new one were validated using a similar set of high-
dimensional input datasets and evaluation metrics. The experimental results, based on the ANOVA,
Cochran’s Q test, and McNemar’s score, indicate a significant difference in the performance of the
ensemble-based self-adapting autoencoder in the k-hyperparameter tuning process compared to other
techniques. Specifically, the results show a clearer elbow. The relatively low total intra-cluster variations
on the GLA-BRA-180 dataset after the autoencoder compression process demonstrate the importance
of the autoencoder compression process in reducing intra-cluster variations. This, in turn, improves
the k-hyperparameter tuning process on a high-dimensional dataset. In order to visualize the number
of clusters in the latent space, the autoencoder aims to combine the optimal set of hyperparameter
settings based on the characteristics of the high-dimensional input dataset. The contribution of this
research work was the development of a new technique for k-hyperparameter tuning. This technique
is based on an ensemble of a self-adapting autoencoder and internal validation indexes in the k-
hyperparameter tuning process. This study contributes to the existing literature on the process of k-
hyperparameter tuning for clustering in high-dimensional space, specifically focusing on identifying
a smooth elbow. We have also been able to prove that various internal validation metrics may not
always provide consistent information about the quality of clusters. Different internal metrics yield
different k-hyperparameter values at their best scores. This nullifies the use of internal validation
indexes as the primary solution for addressing the challenges of determining the optimal elbow point
when the elbow method fails. The adoption of the ensemble validation metric in this paper allows its
components to equally respond to the diverse conditions found in a specific high-dimensional dataset.
This ensemble validation metric is based on the voting scheme of the bagging ensemble technique.
Future research should focus on investigating the performance of the self-adapting autoencoder-based
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ensemble technique with high-dimensional datasets of varying dimensionality and different data
dimensionality reduction methods.
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