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ABSTRACT

To realize a better automatic train driving operation control strategy for urban rail trains, an automatic train
driving method with improved DQN algorithm (classical deep reinforcement learning algorithm) is proposed as a
research object. Firstly, the train control model is established by considering the train operation requirements.
Secondly, the dueling network and DDQN ideas are introduced to prevent the value function overestimation
problem. Finally, the priority experience playback and “restricted speed arrival time” are used to reduce the useless
experience utilization. The experiments are carried out to verify the train operation strategy method by simulating
the actual line conditions. From the experimental results, the train operation meets the ATO requirements, the
energy consumption is 15.75% more energy-efficient than the actual operation, and the algorithm convergence
speed is improved by about 37%. The improved DQN method not only enhances the efficiency of the algorithm
but also forms a more effective operation strategy than the actual operation, thereby contributing meaningfully to
the advancement of automatic train operation intelligence.
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1 Introduction

Two components, designing the line running curve and tracking the running curve, make up
the traditional automatic train operation control method. This necessitates a precise analysis of the
train motion model; however, as the model becomes more accurate, its internal parameters become
more complex, resulting in significant challenges in solving these parameters during actual train
operations. Consequently, real-time performance cannot be guaranteed. With the rapid development
of artificial intelligence, AI technology has shown some advantages in perception, big data processing
and decision control in urban traffic, which provides a new way of thinking about the problem of
autonomous driving. In recent years, scholars at home and abroad have applied various methods
to study the automatic train driving operation strategies. He et al. [1,2] introduced a feedforward
control model and designed a nonparametric adaptive iterative learning control algorithm for high-
speed trains based on the superior processing capability of iterative learning control algorithms
for highly repetitive controlled systems. Yang et al. [3,4] proposed a train speed control algorithm
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based on self-anti-disturbance control for the train operation speed tracking control problem in
complex environment operation, compared with the traditional algorithm and verified the superiority.
Zhang et al. [5,6] established an expert system for train control to control trains with neural networks
and designed a strategy-based reinforcement learning algorithm to adapt to changing operation
scenarios. Wu et al. [7] designed a suitable objective function and developed a train operation strategy
to satisfy passenger comfort. Lai et al. [8] designed a platform framework for train comfort scenario
simulation based on digital twins to support ATO performance optimization. Zhang et al. [9,10]
considered line conditions, developed a train energy saving control model, and investigated energy
saving control strategies for urban rail trains using Q-learning algorithms. Su et al. [11,12] used a
time planning approach to plan train operation control in terms of train utilization and amount of
passenger time, and combined with other conditions to comprehensively evaluated methods to reduce
the energy consumption of the subway. In summary, the research of traditional control methods is
gradually being optimized and replaced by existing methods, and reinforcement learning has also
appeared in the research of train operation control. DQN algorithm in reinforcement learning is
able to deal with the autonomous driving problem through the framework of Markov Decision
Process (MDP) of reinforcement learning. Through the approximation of deep neural networks and
iterative optimization of reinforcement learning, driving strategies can be learned to adapt to different
driving environments and task requirements. It is able to extract valuable features from sensory
data and improve the performance and robustness of driving decisions through empirical playback
and stable learning process, while discrete control facilitates the action planning for automatic train
driving. Therefore, this study proposes train driving control based on DQN algorithm and introduces
some improvement methods for the shortcomings of traditional DQN algorithm. Additionally, it
integrates the specific operational scenarios of train operations, thereby enabling the analysis and
implementation of a superior strategy for automatic train driving operations.

2 Train Operation Model and Algorithm Analysis
2.1 Train Model

The analysis of the physical model of the train is one of the main components of the algorithmic
environment construction. The train makes a movement and the train state changes after real-time
calculations based on this model to get the feedback given by the environment. The train is subjected
to complex forces during actual operation, and the single mass point model is a common simplification
method, and the train motion conforms to Newton’s laws of mechanics. The forces can be divided into
four categories as shown in Fig. 1, and the kinetic equations of the train operation are as follows:⎧⎪⎪⎨
⎪⎪⎩

dv(x)

dt
= F(x) − B(x) − W(x)

m

dx
dt

= v

(1)

W = (w0 + w1) × mg ÷ 1000⎧⎨
⎩

w0 = a + bv + cv2

w1 = c
r

+ sin(θ) ≈ c
r

+ θ

(2)

where w0 is the Davis equation, which represents the basic train resistance, where a, b, c are the
characteristic parameters determined by the vehicle. w1 is the content of the additional resistance of the
line, generally including ramp additional resistance and curve additional resistance, ramp additional
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resistance is formed by the gravity of the train, expressed by the sine of the slope, generally θ for
thousands of grades. In the urban rail line, the line conditions are designed simply and the curve
additional resistance is neglected in this study. The units of w0 and w1 for calculating the train resistance
are N/kN, which indicates the unit basic resistance.

Braking force B

Way Forward
Other resistance W

Motive force F

Gravity G

�

Figure 1: Force diagram of single mass train

2.2 Deep Q-Network (DQN) Algorithm
The purpose of deep reinforcement learning is to learn how to control the agent so that the agent

makes the appropriate action a based on the current state s, aiming to get as much reward as possible in
the future. The classical deep Q-learning method, a value learning approach, combines neural networks
with Q-Learning. As in Fig. 2, the neural network structure of DQN is shown.

State st

Deep Q Network

Weights
...

Q (st ,a1)

Q (st ,a2)

Q (st ,ai)

Action Value Rating

Figure 2: Structure of DQN neural network

The training of DQN adopts Temporal Difference (TD) Learning. TD algorithms are commonly
known as Q learning and SARSA, and Q learning algorithm is chosen in this study, and its core idea
can be expressed by Eq. (3).

Q(st, at; ω) = rt + γ · Q(st+1, at+1; ω) (3)

where rt is the known true reward, and the presence of partially true values makes the method more
feasible and logical. ω is the network parameter. γ is the discount factor, which indicates the magnitude
of the influence of future rewards on the current action.

The training of DQN can be split into two separate parts, collecting the training data and updating
the parameters ω. The more common strategy for selecting actions when collecting training data is
generally the ε-greedy strategy. The formula is expressed as follows:

at

{
arg maxaQ(st, a; ω), with the probability (1 − ε);
Uniform extraction of one actionin A, with the probability ε. (4)

The main procedure of doing gradient descent to update the parameters ω in a DQN network is
as follows:
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Calculating the TD target,

yt = rt + γ · Q(st+1, at+1; ω)

= rt + γ · maxaQ(st+1, at; ω) (5)

Calculating the loss,

Lt = 1
2

[Q(st, at; ω) − yt]
2 (6)

The gradient descent update parameter,

ωt+1 = ωt − α · ∂L
∂ω

∣∣∣∣
ω=ωt

(7)

where α is the learning rate parameter, and the value determines the degree of retention of the previous
training effect. The parameter ω, after the update is complete, determines the specific value of the
amount of traction or braking force that the train will output depending on the current state.

3 Algorithm Improvement and Application

The DQN trained by the original Q-learning algorithm is very unsatisfactory. This article
introduces several references to advanced techniques that are highly effective for enhancing DQN.
Importantly, these techniques are compatible and can be used in conjunction with one another.

3.1 Over-Estimation
Trains ensure their operation stays safe and stable by selecting appropriate actions. However, if

the value of an action is overestimated during the training process, it can compromise the reliability
and safety of the action selection. Overestimation is a critical issue that needs to be addressed in train
autopilot to ensure a more stable and dependable training process.

The maximization in calculating the TD target causes overestimation of the Q value [13], so the
following improvements are made to the DQN algorithm using the Double DQN idea. The assessment
of the action is transferred from the initial calculation done by the Q network to the calculation
performed by the target network, while the decision-making for selecting the action remains with the
Q network. The details are as follows:{

yt = rt + γ Qt(st+1, at+1; ω−)

at+1 = arg maxaQ(st+1, a; ω)
(8)

ω- and ω are the weight parameters of the target network and Q-network, respectively.

Dueling network [14] makes improvements to the neural network structure of DQN to also
alleviate overestimation and increase the stability of the network structure, which is shown in Fig. 3.
The basic idea is to decompose the optimal action value Q∗ into the optimal state value V∗ plus the
optimal advantage D∗. The training of the network is the same as that of the deep Q network.

The definition of the optimal advantage function is

D ∗ (s, a) � Q ∗ (s, a) − V ∗ (s). (9)

By mathematical derivation, the optimal action value function Q∗ is then approximated as the
following neural network (duel network).
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Q(s, a; w) � V(s; wV) + D(s, a; wD) − meanaD(s, a; wD) (10)

where wV and wD denote the neural network parameters of the advantage head and status value head,
respectively.

State
s

Convolutional 
Network

Eigen
-vector

Fully 
Connected 
Network

Fully 
Connected 
Network

D (s , a ; wD)

Advantage Head

Status value Head

V (s , a ; wV)

Q (s , a ; w)

Figure 3: Dueling network structure diagram

3.2 Priority Experience Replay
Not all experience samples in the DQN algorithm contribute equally to the learning process.

In train autopilot, experience samples obtained prior to stopping are given high rewards as they
are crucial for achieving timely and on-schedule stops. However, if these significant experiences are
sparsely sampled, they would be slow to learn. To enhance learning efficiency, optimize strategy with
limited experience, and improve algorithm performance, implementing a prioritized experience replay
mechanism would be a beneficial choice.

Introducing prioritized experience replay involves departing from the average sampling approach
and assigning larger sampling weights to samples with higher learning efficiency [15]. Using the time
difference error as a priority indicator, the larger the error, the greater the impact on learning, so
priority sampling should be given. This allows for both faster convergence and a higher average return
at convergence. Prioritized experience playback gives each experience group a weight, and then non-
uniform random sampling is done based on the weights.

The sampling weights (TD error) are defined as

δj � Q(sj, aj; wnow) −
[
rt + γ · max

a
Q(sj+1, a; wnow)

]
(11)

Sampling probability is

pj ∝ ∣∣δj

∣∣ + l (12)

where l is a very small number that prevents the sampling probability from approaching zero and is
used to ensure that all samples are drawn with a non-zero probability.

Due to non-uniform sampling, the sampling probabilities of all samples will be different, which
will lead to biased predictions of the DQN, so the learning rate should be adjusted accordingly to
offset the bias. Set the learning rate as

αj = α

(b · pj)β
(13)

where b is the total number of samples in the empirical playback array, and β ∈ (0, 1) is a
hyperparameter to be tuned. At first β is relatively small and eventually grows to 1.
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3.3 Train Operation Model
The mathematical basis and modeling tool for reinforcement learning is Markov decision process

(MDP). How to combine the decision process with the actual train operation condition is the key to
the design of this algorithm.

3.3.1 Train State Space

At each moment, the environment has a state, the state space is the set of all possible
states, noted as S. The train position, speed and running time are defined as the state elements,
there are S = [x, v, t]. Here, sk is defined as the state at the end of the kth step, sk =
{[xk, vk, tk] |xk ∈ [0, X ], vk ∈ [0, v (xk)lim], tk ∈ [0, T ]}. xk indicates the location of the train at this time,
and the interval is the error range from the initial position of the train to the specified stopping
position. vk indicates the speed of the train at this time, and the interval is the speed limit from 0 to
this position of the train. tk indicates the total running time of the train at this time, and the interval
is the error range from the starting time to the specified stopping time of the train.

3.3.2 Train Action Space

The action space during train operation is the set of all possible actions, which is the actual
tractive force or braking force output by the train, which is written as A. The urban rail train utilizes
a continuous traction mode, wherein the actual tractive force and braking force of the train can be
categorized into various levels. The level is 0 in idle state, thus the action selection space corresponds
to the number of levels. A k-state action can be represented as follows:

ak = f , (Bmax ≤ f ≤ Fmax) . (14)

3.3.3 Optimizing the Reward Function

The criteria for a better train operation strategy are generally a combination of safety, on-time
performance, energy efficiency, comfort and stopping accuracy. Safety is the responsibility of the
train’s ATP system, so reward setting is mainly based on the latter four elements.

Timing bonus. A positive reward is given when a train arrives within the error range of the specified
time, and a larger negative reward is given when it is outside the error range. The timing bonus is
expressed as Rtime and the formula is expressed as follows:

Rtime =
{

C |T − tn| ≤ tmin

−C |T − tn| > tmin
(15)

where C is the reward constant, T indicates the specified running time of the train, and tn indicates the
running time of the train at the end of the last state. tmin indicates the error range.

Energy consumption bonus. The actual operating energy consumption magnitude of the train is
used as the standard, and the energy consumption within the state transition duration is directly used
as the negative reward in each state transition. The energy consumption bonus is expressed in Re, and
the formula is expressed as follows:

Re = −μEtn , Exi = |ai × (xi − xi−1)| (16)

where μ is the incentive discount parameter, and the adjustment of this value is a change in the
importance given to energy consumption.

The endpoint stopping bonus, with the same design principle as the timing bonus, is expressed as
Rstop. The parking error is specified as 0.3 m, K is a constant, and the formula is expressed as follows:
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Rstop =
{

K |s − sn| ≤ 0.3
−K |s − sn| > 0.3 (17)

“Comfort” is a very broad and difficult to measure concept [16], narrowly defined as the impact on
passengers of vibrations and shocks generated by the train during operation. The speed of change in
acceleration, i.e., the magnitude of the impact rate, is a visual representation of the measure of comfort.
However, in the DQN algorithm, it is not feasible to use the impact rate as the criterion, for reasons
that will be explained in the next sub-section. Therefore, the comfort reward is specified in this study
in terms of the magnitude of the actual acceleration, and a negative reward is given when it is greater
than a certain measure, and a positive reward is given when it is less than or equal to that measure.
At the same time, in order to prevent the sudden change of acceleration from affecting the comfort of
passengers, if the acceleration av

k+1 after the train state transfer is greater than 0.4 compared with av
k

before the transfer, a large negative reward is given to the train to ensure the comfort level. Finally, the
reward content of “comfort” is expressed by Rs, P and L are constants, and the formula is expressed
as follows:

Rs =
⎧⎨
⎩

P + av |av| ≤ alim

−P |av| > alim

L av
k+1 − av

k > 0.4
(18)

In summary, the optimal reward function related to the performance evaluation criteria of
automatic train driving during the solution of the operation strategy can then be determined as

Rtrain = Rtime + Re + Rstop + Rs (19)

3.3.4 Other Elements

The fundamental requirement while the train is in operation is to reach the final destination in a
safe and stable manner. During the model training process, the selected actions may lead to illogical
states such as train reversals, overspeed, or inadequate speed to reach the destination. If the algorithm
can incorporate the train’s operational logic and include appropriate constraints, it can help reduce
the occurrence of illogical experience arrays. This, in turn, facilitates faster convergence and allows for
the training of a more effective operational strategy. Therefore, the following two algorithm settings
and improvements are induced:

(1) If the speed of the train at the end of a state is greater than zero, a very small reward value rv is
given. This encourages the train to move forward and does not affect the main optimization content,
at which point the total reward R can be expressed as

R = Rtrain + Rv. (20)

(2) The restricted speed arrival time tilim is calculated based on the train’s current state si+1. If the
train’s remaining running time T−tk is less than tilim, then the action ai made by the train before the
state transition must have prevented the train from arriving at the station, resulting in a state that is
not in the state space. In order to reduce the number of such empirical arrays, it can be determined
that the remaining running time is not enough to return to the action selection to reselect the action.
The procedure for calculating the arrival time at the restricted speed is as follows:

a. Obtain the current state sk of the train and get the current running time tk, speed vk and position
xk of the train.

b. Accelerate to the limiting speed with the maximum acceleration at the current speed vk and
position xk. After that, the train is driven at the restricted speed to the intersection of the acceleration
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curve and the restricted speed where the train stops with the maximum braking force, and finally
stops with the maximum braking force. These three driving states are added together to calculate the
restricted speed arrival time tilim. The process is shown in Fig. 4, and the value of t1 + t2 + t3 is the tilim.

Distance

Speed
ATP speed limit

xk

vk t1

t2

t3

Figure 4: Speed limit arrival time

c. Compare the magnitude of the values of T−tk and tilim. If T−tk < tilim, the train must not arrive
at the station on time according to the trip planning, and the action needs to be reselected.

There is a logical flaw in “limiting the speed to the station time” though. The train cannot
change its speed suddenly while moving, and the basic resistance of the train is not considered in the
calculation. However, the restricted speed of urban rail trains is generally limited to the whole section
between stations, and rarely appears in the sub-section speed limit. And this method is introduced
mainly to reduce the number of useless empirical arrays and to ensure that trains can arrive at stations
within the specified time intervals. Using it for collecting training data is a better improvement of the
DQN algorithm to combine with the actual situation of trains. The improved training data collection
process is shown in Fig. 5.

Based on the current 
state sk, the action 

value score is output by 
the neural network

Greedy strategy 
selection action, acting 
on the train operation 

simulation environment

Get new state 

sk+1

Put (sk,ak,rk,sk+1) into the
experience pool

Determine whether the 
"limited speed arrival time" 

calculated in this state is 
greater than the remaining 

planned running time, and if 
so, reselect the action

Figure 5: Training data collection process

Regarding the impulse of “comfort”, the output of DQN is not continuous control, but discrete
control, and the control force is discrete and constant, so it is not realistic to talk about the derivative of
acceleration vs. time. In the ISO2631 standard, the effective value of acceleration is used as an indicator
of comfort [17], and the comfort of passengers changes when the acceleration is at different values, as
shown in Table 1.
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Table 1: Relationship between acceleration magnitude and ride comfort [18]

Acceleration value
(m/s2)

Riding comfort

Less than 0.315 Not uncomfortable
0.315∼0.63 Slightly uncomfortable
0.5∼1.0 Somewhat uncomfortable
0.8∼1.6 Uncomfortable
1.25∼2.5 Very uncomfortable
More than 2 Extremely uncomfortable

Therefore, the maximum acceleration of the train operation can be controlled by controlling the
traction and braking forces to achieve improved passenger ride comfort [19].

3.4 Algorithm Description
Treating the train as an intelligent body, the train chooses the next action based on the evaluation

of the value of the current operating state when it is necessary to change the train’s operating speed.
The train position changes and goes to the next state, and the parameters of the neural network are
continuously updated by training. The algorithm consists of the construction of the neural network
(the train state is a three-dimensional vector and no convolutional layer is needed, so the neural
network consists of only fully connected layers), the writing of the train operating environment and
the iterative learning code. The complete flow of the algorithm is as follows.

Algorithm: Improved DQN algorithm for automatic train driving operation control.
• For each episode, the environment is first initialized to get the initial state s.
• For each step in the episode a greedy strategy is used to select the action.
• Perform the calculation, the episode ends when v < 0 and the state transition when v > 0. Calculate

the bonus and TD error.
• To determine whether to reach the end, to the end of the end that is the end of the episode. If it is

not reached and the remaining time is greater than 0, the “limited speed arrival time” is calculated
and the action is judged to be reselected.

• The training is started after the experience pool is deposited with a certain experience array. A
certain amount of training data is drawn from the experience pool by prioritizing the empirical
sampling, i.e., by the magnitude of the value of δ marked by the TD error.

• Input the training data into the two neural networks. Calculate the current Q value and the target
Q value, and calculate the loss. Gradient descent updates the parameters and trains the Q network.

• After every few training steps, the weight parameters of the Q network are copied to the target
network.

• After each episode, the value of ε is reduced accordingly until the action is selected by the trained
neural network.
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4 Experimental Simulation
4.1 Experimental Platform

To verify the effectiveness of the improved DQN algorithm proposed in this study for real
train operation control, simulations are performed in the PyTorch framework using Python version
software. The experiments were conducted on the Beijing Metro Yizhuang Line from Yizhuang
Culture Park Station to Wanyuan Street Station. The information of the inter-station line is shown
in Table 2. The information of the train part is shown in Table 3. The information of the parameters
of the experimental part is shown in Table 4.

Table 2: Partial information of the line between experimental stations

Line condition Zone/m Numerical value

Gradient (�)

0∼120,1380∼1538 0
120∼567 −2
567∼892 5
892∼1380 3

Speed limit (km/h)
0∼180, 1370∼1538 55
180∼1370 80

Table 3: Partial parameter information of the experimental train

Train parameters Parameter value

Vehicle type Model B
Experimental weight of train (ton) 194.3
Max. running speed (km/h) 80
Resistance parameter a, b, c 2.031, 0.0622, 0.001807
Max. acceleration (m/s2) 1
Max. traction force (kN) 203
Max. braking force (kN) 166
Traction output 1–6 levels (kN) (34,68,102,136,170,180)
Braking force output 1–6 level (kN) (0,−33,−66,−99,−132,−149)

Table 4: Partial parameter information of the experimental algorithm

Algorithm parameters Parameter value

Parking position error 0.3 m
Parking time error 3 s
Learning rate 0.00001
Discount factor 0.98
Energy consumption discount factor μ 0.00001

(Continued)
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Table 4 (continued)

Algorithm parameters Parameter value

Punctuality parameters C, K 1000
ε initial value 0.8
Number of hidden layers of neural network 2
Number of hidden layer neurons 128, 256
Activation function RELU
State transfer conditions dt > 0.2 s and dx > 0.1 m

4.2 Simulation Results
The algorithm improves on the traditional DQN. As shown in Fig. 6, the reward function curves

of the conventional DQN are compared with those of the introduced priority experience playback and
dueling networks for the same training scenario at the train running time of 120 s. It can be seen that the
latter already converges when the training episodes reach about 800 episodes, while the former starts
to converge only when it reaches about 1100 episodes. The efficiency of the algorithm is improved by
about 37%. Therefore, the learning ability of the improved algorithm is significantly stronger than that
before the improvement.

Figure 6: Running 120 s reward curve comparison

As shown in Fig. 7, the reward function curves are compared for the train running time of 130 s.
At this time, some parameters of the algorithm are adjusted, the learning rate α is changed from 0.0001
to 0.00001, and the state transfer condition is changed from dt > 0.3 and dx > 0.5 to dt > 0.2 and dx
> 0.1. It can be seen that the improved curve starts to converge around 2100 episodes, and the reward
value is larger when it converges, and the traditional DQN does not converge. The reasons for this
may be that the convergence becomes slower due to the smaller learning rate and the increase in the
number of state transfer steps leads to an increase in the reward within episode.

In the actual train operation, the train inter-station operation duration and inter-station waiting
time are adjusted in real time according to different passenger flow and operation demand. In order
to verify the robustness of the algorithm, different inter-station running durations of 120, 130 and
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140 s are chosen. 120 s running duration is added to the speed limit section, and the speed limit is
55 km/h at 600–930 m. The speed distance curves and running strategy sequences under four different
trip planning are shown in Fig. 8, where the speed unit is m/s.

Figure 7: Running 130 s reward curve comparison

Figure 8: (Continued)
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Figure 8: Speed-distance curves and running strategy sequences for different running times

For the four different train operation modes, the algorithm was able to achieve operational results
on demand, and its robustness was still good. The train runs without over speeding and meets the ATP
protection criteria. Since the control strategy is discrete and constant, it can be seen that there is no
cruising process due to the train running resistance, and the whole driving process is controlled by only
three ways: traction, idling and braking. This is unavoidable when the DQN method is controlled, but
the train operation is in compliance with the standard, and this situation belongs to the characteristics
of constant discrete control. From the observation of the control sequence, the train operation meets
the requirements of the comfort level specified in the experiment, and the train acceleration does not
exceed 0.8, while the change of acceleration during the state transition is not very large. However, there
is a change greater than 0.4, which should be due to the control action made by the train in order to
stop on time.

In order to more obviously compare the differences between the control situation of this algorithm
and the traditional method. Here, the 130 s control curve of the DQN algorithm is directly used as the
target curve, and the controller of the PID method is used for tracking. The following tracking curves
are obtained, and the control conditions of some sections are intercepted, as shown in Fig. 9.
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Figure 9: 130 s PID speed-distance curve and some control conditions

From the analysis of the graph, we can observe that the traditional PID control method exhibits
noticeable speed tracking errors while controlling the train’s travel. Additionally, there is a certain time
delay in adjusting the train’s speed, necessitating frequent changes in the control method to track the
curve accurately. This often leads to the scenario depicted on the right side of Fig. 9. Here, 1 represents
positive traction, 0 indicates the train is not applying force, and −1 signifies negative traction. During
such instances, the train’s speed is high, and within a distance of 500 m, we can see that the train
undergoes 13 control condition changes. This frequent switching of conditions within a short period
of time places a significant burden on the train’s traction system. It also greatly diminishes passenger
comfort. However, with the real-time output control mode employed in this paper, such issues do not
arise.

According to the acceleration control sequence, the train travel energy consumption is calculated,
and combined with the final state of the train, the train arrival information under the five modes is
obtained as shown in the Table 5.

Table 5: Experimental train arrival information

Operating model Stop distance error Stop time error Total energy consumption in the
section

120 s 0.27 m 1.3 s 17.054 kW·h
120 s with speed limit 0.1 m 1.2 s 25.68 kW·h
130 s 0.1 m 0.6 s 14.802 kW·h
130 s (PID) 0.21 m 4.1 s 15.12 kW·h
140 s 0.16 m 0.9 s 12.89 kW·h

The train stopping data were all in accordance with the design criteria. When the train travels
in the selected section, according to the line data statistics, the actual operation of the unoptimized
train between stations consumes 15.3 kW·h [20] and the station running time is 144 s. Compared by
similar time intervals, the design algorithm in this study consumes 12.89 kW·h at 140 s, which is a good
energy saving rate of 15.75%. Compared to 130 s, the energy saving rate is only 3.25%, but the time
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consumption is reduced by 14.6 s. 120 s consumes more energy due to the shorter operation time, and
more energy if the speed limit interval is added. In the PID method, the time error is large due to the
more pronounced tracking error. And the energy saving aspect still produces more energy consumption
when directly tracking the curve generated by the DQN due to the switching of operating conditions.

According to previous studies, the higher the initial acceleration of the train for the same amount
of time, followed by cruising and idling, and the higher the deceleration at stopping, the less energy
will be consumed in the train section [5]. In this experiment, since the effect of acceleration magnitude
on comfort is considered, the inevitable energy consumption increases compared to what it would be
if comfort were not considered.

5 Conclusion

In this study, we have enhanced the traditional DQN algorithm to develop an energy-saving,
precise, on-time operation strategy with a certain level of comfort through experimental simulations.
This strategy can be applied to various line conditions and operational requirements. The algorithm
demonstrates robustness and practicality. In comparison to real-world operations, the experiment
shows desirable energy consumption and improved algorithm efficiency.

Currently, the method still allows for potential modifications in the selection of experimental
parameters to achieve an optimal parameter configuration. Additionally, due to the discrete action
space, there may be deviations in meeting the comfort performance requirements and the optimal
utilization and categorization of train traction. In future studies, a continuous control method will be
explored, and the reward function will be adjusted accordingly, aiming to discover a more ideal control
method for train operation strategy.
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