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ABSTRACT

It has become an annual tradition for Convolutional Neural Networks (CNNs) to continuously improve their
performance in image classification and other applications. These advancements are often attributed to the adoption
of more intricate network architectures, such as modules and skip connections, as well as the practice of stacking
additional layers to create increasingly complex networks. However, the quest to identify the most optimized model
is a daunting task, given that state of the art Convolutional Neural Network (CNN) models are manually engineered.
In this research paper, we leveraged a conventional Genetic Algorithm (GA) to craft optimized Convolutional
Neural Network (CNN) architectures and pinpoint the ideal set of hyper parameters for image classification tasks
using the MNIST dataset. Our experimentation with the MNIST dataset yielded remarkable results. Compared
to earlier semi-automatic and automated approaches, our proposed GA demonstrated its efficiency by swiftly
identifying the perfect CNN design, accomplishing this feat in just 6 GPU days while achieving an outstanding
accuracy of 95.50%.
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1 Introduction

Deep Neural Networks (DNNs) have garnered substantial attention in recent years due to their
potential in various applications. The architecture and hyper parameter configuration of DNNs
play a pivotal role in their overall performance. Presently, DNN models are meticulously crafted by
experts from diverse domains in machine learning, tailored to address specific problem domains or
datasets. For instance, Convolutional Neural Networks (CNNs) find widespread use in a myriad of
computer vision applications, particularly those related to images [1]. While techniques like transfer
learning can be employed to adapt existing state-of-the-art DNNs to similar tasks as found in the
literature, it is crucial to acknowledge that a one-size-fits-all network architecture is seldom optimal
for all scenarios. Hence, the need arises to design DNNs that are custom-tailored to the specific
problem at hand to achieve optimal performance. Consequently, a growing number of researchers are
actively developing automated methods capable of identifying the most suitable DNN architecture and
hyper parameters for a given task. Evolutionary algorithms (EAs), a category of population-based
meta-heuristic optimization methods, are valuable tools for uncovering the optimal network design
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and hyper parameters [2]. Notably, there have been notable endeavors in the scientific literature to
address diverse optimization challenges by utilizing various evolutionary algorithm variants, such as
Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) [3]. Given the promise exhibited
by evolutionary algorithms and Artificial Neural Networks (ANNs) across a spectrum of machine
learning tasks, researchers have been diligently exploring effective approaches to amalgamate these
two methodologies. This exploration has led to the detailed examination of two fundamental combi-
nation techniques, namely supportive combinations and collaborative combinations [4]. Supportive
combinations employ genetic algorithms to facilitate the development of neural networks, allowing
the networks to dynamically adapt their parameters and acquire new rules. In contrast, collaborative
combinations employ genetic algorithms to determine the neural network’s topology, weights, or both.
In a supportive combination, Genetic Algorithms assist in selecting features for neural networks, while
in a collaborative combination, Genetic Algorithms are instrumental in crafting the architecture of
an ANN.

There is a growing interest in leveraging evolutionary algorithms (EAs) to construct and train
Deep Neural Networks (DNNs), which have emerged as highly effective tools for tackling a wide
array of challenges in machine learning. Historically, training DNNs using EAs has garnered relatively
less attention, partly due to the rapid advancement of gradient-based methods and the formidable
challenges posed by the vast search space. Research efforts have primarily concentrated on two core
areas: the creation of deep neural network (DNN) architectures and the identification of optimal hyper
parameter configurations for various regression and classification tasks [2].

While Genetic Algorithms (GA) have been employed for training DNNs in reinforcement
learning, such endeavors, although notable, have been somewhat overshadowed by the predominant
research focus on the aforementioned topics [5]. Convolutional Neural Networks (CNNs) stand out
as highly efficient deep architectures, demonstrated by their remarkable performance across numerous
practical applications. The development of modern CNN designs, exemplified by VGG-Net, Res-
Net, and Google-Net, represents a domain reserved for seasoned researchers with substantial subject
knowledge and neural network design expertise.

However, for novice researchers and application engineers, devising an appropriate architecture
tailored to the specific problem and dataset often proves to be a challenging endeavor, given these
prerequisites. As a response to these challenges, recent years have witnessed numerous endeavors that
employ evolutionary algorithms to autonomously generate CNN structures and optimize network
hyper parameters, making this powerful technology more accessible to a broader audience.

In this research, we designed and fine-tuned Convolutional Neural Network (CNN) architectures
using a conventional Genetic Algorithm (GA), aiming to identify the optimal combination of hyper
parameters for the task of image classification on the MNIST dataset. Our focus was on optimizing
the traditional CNN architecture, structured as a sequence of convolutional layers, and inspired by
VGG-like networks. The study involved the optimization of both the number of convolutional blocks
and the number of layers within each block through the proposed GA. We explored a flexible search
space for CNN architectures, allowing for a variable number of layers while employing a fixed-sized
chromosome representation. Furthermore, the algorithm systematically sought out the most suitable
set of hyper parameters for the network from predefined parameter ranges.

A significant challenge encountered in the evolution of various Deep Neural Networks (DNNs) is
the substantial computational burden. The fitness evaluation of each individual within an evolutionary
algorithm necessitates the training of numerous deep neural networks, resulting in a considerable
computational load. Recent research has introduced the concept that only partial training is required
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to estimate the quality of a Convolutional Neural Network (CNN) architecture [6,7]. In this study,
we adopted this approach, implementing it by training the CNN architectures for a limited number
of epochs during the evolutionary phase. Subsequently, the most promising CNN model underwent
comprehensive training to assess its overall performance.

Our approach employed a Genetic Algorithm (GA) on a well-established dataset, and the
CNN model that emerged from this evolutionary process was compared against a range of other
autonomously generated models, highlighting its effectiveness.

The subsequent sections of this paper are organized as follows: In Section 2, an extensive review
of the pertinent literature is presented. Section 3 offers an in-depth exploration of the proposed
Genetic Algorithm. Section 4 outlines the details of the experimental setup. Section 5 delves into the
presentation of the experimental results. Section 6 provides a concise discussion of the results. Finally,
Section 7 brings the study to a conclusion.

2 Related Works

Convolutional Neural Networks (CNNs), inspired by the structural brotherhood of the bestial
layer [8], are typically employed for processing two dimensional inputs, such as images. Convolutional
Neural Networks (CNNs) consist of three primary types of coats: convolutional, pooling, and fully-
connected layers. These layers rely on three fundamental concepts—equivariant representations,
parameter-sharing, and sparse interactions—to drive their learning processes [9].

In traditional artificial neural networks (NNs), matrix multiplication determines the connections
between input and output components, incurring substantial computational costs. However, CNNs
drastically reduced this computational burden by utilizing sparse interactions, employing smaller
kernels compared to the input size, and applying them across the entire image. To enhance the
feature-capturing capabilities of convolutional layers, pooling layers are frequently incorporated to
reduce dimensionality. Parameter sharing further streamlines training by ensuring that a single set
of parameters is used across all locations, contributing to CNNs’ superior performance compared
to standard NNs. The core components of a multi-layer neural network, the CNN, predominantly
comprise convolutional and pooling layers. When designing a CNN architecture, various hyper
parameters must be considered, including the stride size of the pooling layer, kernel size, type of pooling
operation, number of layers in a convolutional block, the configuration of fully connected layers, the
size of the convolution layer channels, and more. In human-designed Convolutional Neural Networks,
these hyper parameters are typically determined through a process of trial and error, often guided by
existing literature and established practices in layer design.

The field of evolutionary computation has recently witnessed a surge in interest regarding the
evolution of Deep Neural Network (DNN) architectures and their associated hyper parameters. In a
notable contribution, David and Greental [10] introduced a straightforward genetic algorithm (GA)-
assisted approach for optimizing auto encoders on the MNIST dataset, resulting in the creation
of sparser networks and improved performance. In their method, multiple sets of weights (W) are
maintained for the layers. Each chromosome within the GA population represents a unique set of
weights for the auto encoder. The root mean squared error (RMSE), calculated as the difference
between input and output layer values for each training sample, serves as the fitness metric for each
chromosome. All chromosomes receive fitness scores, leading to their ranking from most fit to least fit.
Backpropagation is utilized to update the weights of the top-ranked chromosomes, while the lower-
ranked chromosomes are removed from the population. The elimination of low-ranking members is
solely determined by their fitness scores, and selection is carried out uniformly and consistently across
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all promising chromosomes. The authors demonstrated that this GA-assisted technique surpasses
conventional backpropagation in terms of both reconstruction error and network sparsity, thereby
enhancing the performance of auto encoders.

Suganuma et al. [6] presented a method for crafting Convolutional Neural Network (CNN)
architectures based on Cartesian Genetic Programming (CGP). In this approach, CNN architectures
are represented as directed acyclic graphs, with each node representing functional modules such as
convolutional blocks and tensor operations, and each edge denoting layer connections. An evolution-
ary process is employed to optimize the design, aiming to maximize classification accuracy using a
validation dataset. Their experiments on the CIFAR10 and CIFAR100 datasets illustrate that this
method can identify CNN architectures that compete effectively with state of the art approaches in
image classification.

In a separate contribution, Zhou et al. [11] proposed the utilization of the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES), renowned for its advanced performance in derivative-
free optimization—the method they advocate for. CMA-ES facilitates concurrent evaluations of
solutions and possesses valuable invariance properties. To demonstrate a comparison between CMA-
ES and contemporary Bayesian optimization techniques when fine-tuning hyper parameters for a
convolutional neural network using 30 GPUs concurrently, a toy example is provided.

In a separate study, Sun et al. [12] harnessed the power of a Genetic Algorithm to autonomously
craft Convolutional Neural Network (CNN) architectures for image categorization. Their approach
incorporated skip layers, enhancing the network structure, which featured two convolutional layers
and a skip connection inspired by Res-Net [13]. Moreover, they used their method to determine the
number of feature maps while maintaining consistent filter sizes and strides across convolutional layers.
In their model, they replaced fully connected layers with pooling layers. They gauged the effectiveness
of their methodology through extensive benchmarking, including well-known datasets like CIFAR-10
and CIFAR-100.

In a related work by Sun et al. [14], they leveraged Res-Net and Dense-Net blocks [15] to
autonomously evolve CNN designs. Their approach involved the synthesis of CNN architectures using
three distinct units: Res-Net block units, Dense-Net block units, and pooling layer units. Each Res-
Net or Dense-Net unit comprised numerous Res-Net and Dense-Net blocks, enabling adjustments
to the network’s depth and heuristic search efficiency by modifying its depth. By analyzing their
model’s performance against 18 state of the art algorithms on CIFAR10 and CIFAR100 datasets,
they showcased the superiority of their approach.

Another noteworthy contribution was made by Bakhshi et al. [16], who suggested a Genetic
Algorithm (GA) model for the automatic determination of optimal CNN architectures and the
corresponding hyper parameters, describing it as a deep evolutionary technique. They employed a
traditional genetic algorithm named fast-CNN to identify the optimal combination of CNN hyper
parameters, including the number of layers, feature maps, learning rate, weight decay factor, and
momentum. Although the CNN model was developed using the CIFAR10 dataset, its performance
was evaluated on both the CIFAR10 and CIFAR100 datasets. They conducted a comprehensive
comparison, pitting the performance of the developed fast-CNN model against 13 cutting-edge
algorithms, considering classification accuracy, GPU usage, and parameter setup techniques.

Furthermore, Sun et al. [7] employed an effective variable-length gene encoding strategy to
determine the optimal depth of the CNN. They presented a novel approach for initializing the
interconnection of weights of the Deep Neural Networks (DNNs) to mitigate issues with local minima,
a significant challenge in gradient-based training. Their work was subjected to rigorous evaluation
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on nine widely recognized image classification tasks, where they compared their results against 22
existing algorithms, utilizing cutting-edge models to demonstrate the effectiveness of their proposed
methodology.

3 The Suggested GA

In this research, we harnessed the power of a Genetic Algorithm (GA) to create an opti-
mal Convolutional Neural Network (CNN) architecture, fine-tuning hyper parameter settings for
maximum performance. Our approach assumed that the Convolutional Neural Network (CNN)
architecture consisted of various layers, including fully connected and normalization layers, and
effectively navigated within the realm of VGG-like structures. The Genetic Algorithm (GA) enhanced
the convolutional blocks, individual convolutional layers within every block, and a selection of hyper
parameters vital to CNN architecture. It is worth noting that our Genetic Algorithm (GA) was
designed with certain limitations in mind, restricting the scope of CNN architectures to standard
modules. More intricate elements like residual-blocks [17] or inception-modules [18] were not part
of the options due to these constraints. Nonetheless, our proposed Genetic Algorithm demonstrated
its ability to construct Convolutional Neural Networks (CNNs) that rival cutting-edge models, even
within this constrained search space.

The suggested algorithm for improving Convolutional Neural Network (CNN) architectures
operates within the broader Genetic Algorithm (GA) framework, following standard GA procedures,
as depicted in Fig. 1. To initiate the algorithm, an initial population is generated by randomly selecting
sets of genes for each individual. An individual’s chromosome uniquely defines the Convolutional
Neural Network (CNN) design and specific hyper parameters. After training and validating each
Convolutional Neural Network (CNN) model on the training dataset, we calculate an individual’s
fitness score based on the network’s average classification accuracy during the validation phase. The
individuals within the population are then sorted in descending order of their fitness scores. Subse-
quently, the next generation of the population is created through a sequence of genetic operations,
including elite selection, random selection, and the breeding of new members. This process continues
until the termination criterion is met. In Algorithm 1, the pseudocode for the evolutionary algorithm
dedicated to CNN architecture optimization is presented, with subsequent subsections providing
detailed information on each component.

Initial
Population

Fitness
Evaluation

Selection
the top

performing

Random
Selection

New
Offspring

No

Selection of the
Hyper-parameters

Yes

Criterion
Satisfied.

Update
Populations

Evaluation
of the new
Offspring

Figure 1: The genetic algorithm flowchart for the evolutionary development of a Convolutional Neural
Network (CNN) model
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Algorithm 1: GA framework for developing models for CNN
Input: Maximum of generations (Gmax), Population size (NP), the RGB images of the training dataset,
the range of values for the chosen hyper-parameters (LH),
Output: The best CNN architecture with its hyper-parameters
1. Create a random hyper-parameter initialization for the population. [Algo 2]
2. For each member of the population, train the CNN model and determine its appropriate

efficiency score [Algo 3].
3. Create a list called P and keep it updated with the population and their fitness ratings.
4. NG ← 0
5. while NG < Gmax do
6. Choose the next generation Pnew made out of elite, random individuals, and individuals who

are the offspring of P [Algo 4]
7. Calculate Individuals in Pnew

8. Set NG ← NG + 1
9. P ← Pnew

10. end
11. Return the optimal Convolution Neural Network architecture in P and its hyper-parameters

3.1 The Initialization of the Population
As previously mentioned, the proposed Genetic Algorithm (GA) is employed to navigate the

landscape of conventional Convolutional Neural Network (CNN) architectures in search of the
optimal Convolutional Neural Network (CNN) model. We have constrained the Convolutional Neural
Network (CNN) design to comprise a maximum of 20 convolutional layers, organized into no more
than five distinct blocks, labeled as Block 1, Block 2, Block 3, Block 4, and Block 5. Each of these
blocks may contain any number of layers ranging from 0 to 4. The GA is tasked with optimizing the
number of filters (NF) for each block, with available options of 32, 64, 128, 256, or 512.

Furthermore, our GA is responsible for optimizing several critical hyper parameters, including
weight decay (WD), dropout rate (DR), momentum (M), and learning rate (LR). The chromosome
structures are detailed in Table 1, illustrating the genetic encoding used in our approach.

Table 1: An individual’s chromosome displaying various CNN model hyper-parameters

Learning
rate
(LR)

Weight
decay
(WD)

Momentum
(M)

Dropout
rate
(DR)

Block
1

Block
2

Block
3

Block
4

Block
5

NF1 NF2 NF3 NF4 NF5

0.01 0.001 0.8 0.25 2 0 3 2 4 256 128 32 512 256

The structure of the chromosomes employed in our approach highlights the utilization of fixed-
size chromosomes within the proposed Genetic Algorithm (GA). This GA has the capacity to discover
diverse Convolutional Neural Network (CNN) models with varying lengths, encompassing multiple
blocks, and accommodating any number of layers ranging from 0 to 20, even permitting a block size
of zero.

To illustrate, Table 1 showcases an example of a Convolutional Neural Network (CNN) archi-
tecture with 11 layers. In this example, the initial block comprises two convolutional layers with 256
feature maps, while there is no second block. Subsequently, the third, fourth, and fifth blocks contain
three, two, and four layers, respectively, each characterized by feature map sizes of 32, 512, and 256.
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This demonstrates the flexibility of our approach in creating CNN architectures tailored to specific
requirements.

Additional layers have been integrated into each Convolutional Neural Network (CNN) model
to facilitate the mapping from genotype to phenotype. Following each convolutional block within the
network, we have introduced an average-pooling layer with a kernel size of 2 and a stride size of 1,
a max-pooling layer with a kernel size of 2 and a stride size of 2, and a linear fully connected layer.
Furthermore, within each convolutional block, we have included a dropout layer, while after each
convolutional layer, a sequence of layers follows, comprising batch normalization [19] and a ReLU
layer [20]. These architectural elements enhance the overall capabilities of the CNN models.

Algorithm 2 provides an overview of the population initialization process within the Genetic
Algorithm (GA). Each chromosome contains multiple genes, each of which can take on various
alternative values. The proposed GA employs the evolutionary process to determine the perfect
sequence of these gene values. The interval values amount to every gene, as reported in Table 2, were
chosen based on past successes in using Convolutional Neural Networks (CNN) for classifying diverse
scenarios.

Table 2: GA’s expected range/set of values for various hyper-parameters

Hyper-parameter Values

Weight decay (WD) 0.00001, 0.0001, 0.001, 0.01, 0.1
Dropout rate (DR) 0.75, 0.5, 0.25
Momentum (M) 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5
Dropout rate (DR) 0.75, 0.5, 0.25
Learning rate (LR) 0.0001, 0.001, 0.01, 0.1
Feature map size (NF) in F1–F5 32, 64, 128, 256, 512
Block size (NL) in B1–B5 0–4

In the construction of the CNN architecture, the hyper parameters are chosen randomly, and there
are no constraints on the number or arrangement of feature maps or convolutional layers. In contrast,
when designing Convolutional Neural Network (CNN) structures manually, a common approach
is to add more feature mappings to subsequent convolutional blocks, illustrating the flexibility and
adaptability of the evolutionary approach.

Algorithm 2: The creation of the first-generation
Input: The size of the population N
Output: The initialized population P0

Data: The ranges of values for several hyper-parameters named LH

1. P0 ← ∅

2. while |P0 | < N do
3. Choose at random the momentum (m) from the LH [M]
4. Choose at random the dropout (D) from the LH [DR]
5. Choose at random the learning rate (LR) from the LH [LR]
6. Choose at random the decay factor (WD) from the LH [WD]
7. Choose at random the number of convolutional layers in each block from the LH [NL].

(Continued)
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Algorithm 2 (continued)
8. Choose at random from LH [NF] the feature maps corresponding to every block.
9. Create an individual (Ind) with the selected hyper-parameters
10. P0 ← P0 ∪ Ind
11. end
12. Return P0

The chromosomal structure and the associated algorithm demonstrate a high degree of flexibility,
enabling the optimization of additional hyper parameters like the choice of activation functions and
the use of distinct kernel sizes for individual convolutional blocks. This adaptability aims to make the
approach more versatile and applicable across a broader spectrum of tasks. However, it is important
to note that extending the search space to include these additional hyper parameters will necessitate
more comprehensive exploration and increase computational demands.

To mitigate the computational burden, we initially conducted preliminary research using various
types of chromosomes but subsequently fixed certain hyper parameter values. For example, we set
the kernel size for convolutional layers to a fixed value of 3. This approach strikes a balance between
flexibility and computational efficiency, ensuring that the optimization process remains manageable.

3.2 Fitness Evaluation
To evaluate the model’s quality, we undertake the training and assessment of a Convolutional

Neural Network (CNN) model created from an individual’s chromosomes, particularly focusing on
its classification performance. Notably, the most resource-intensive phase in any deep neuro-evolution
method is the training and evaluation of deep neural networks. Recent research has unveiled the
possibility of roughly gauging the architectural quality of a Convolutional Neural Network (CNN)
model based on its performance following partial training [6,7]. In light of this insight, we opted to
assess the performance of CNN networks during the evolutionary process after subjecting them to
just Nepoch = 15 of partial training, significantly expediting the evolution of our algorithm.

Algorithm 3: Fitness evaluation of an individual
Input: Training data (Dtrain), validation data (Dvalid), the number of epochs in the training phase (Nepoch),
and the individual (Ind).
Output: The fitness evaluation of an individual
1. Create the CNN model (m) from the hyper-parameters of Ind augmented with dropout layers,

ReLU, pooling, and batch-normalization, fully connected.
2. Accuracy ← ∅

3. epoch ← 0
4. Accuracyavg ← 0
5. while epoch < Nepoch do
6. Used the Dtrain to train the model m
7. Used the Dvalid to get the classification accuracy (acc)
8. Accuracy ← Accuracy ∪ acc
9. epoch ← epoch + 1
10. end
11. Accuracyavg ← Average of accuracies in Accuracy
12. Return Accuracyavg
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The fitness score for the respective individual is determined based on the typical accuracy of
validation achieved by the evolved Convolutional Neural Network (CNN) model. During the training
phase, 90% of the training data is utilized, with the remaining 10% reserved for validation purposes.
After the Convolutional Neural Network (CNN) models, generated by the individual, have undergone
training using the SGD method [21] for a fixed number of epochs (Nepoch = 15), the individual’s fitness
score is computed by assessing the typical accuracy of classification during the time of validation.

Throughout each experiment, the cross-entropy loss function is applied during the training phase.
Additionally, the LR is systematically shortened by a factorization of 15 in every 15 epochs after the
evolutionary phase. For a comprehensive understanding of how an individual’s fitness is evaluated,
please refer to the details provided in Algorithm 3.

3.3 Creation of a New Generation
In our proposed Genetic Algorithm, we employ a combination of random selection, offspring

generation, and elite selection to generate the subsequent generation of the population from the
existing one. Initially, the members of the current generation are sorted based on their fitness levels. The
elite individuals, typically representing the top e% of the population, are chosen amount the present
population and carried over to the later procreation. In addition to these elite individuals, random
individuals are introduced into the later procreation for maintaining population diversification and
limiting incomplete merging, a strategy supported by research [22,23].

These randomly chosen individuals are selected from the remainder of the current population
with a probability of pr and are integrated into the succeeding generations. The parent pool is the
combination of random individuals and elite, from which the offspring are generated. This approach
ensures that the genetic diversity of the population is sustained and that potential variations are
explored for evolutionary progress.

Algorithm 4: For creating a new generation of individuals
Input: The current population of individuals with their fitness scores (P), the proportion of the
population that has been preserved as elite (e), the likelihood that a person from the current
population’s non-elite segment will be preserved (pr), the likelihood that a mutation will occur (pm),
and the size of the population (Np)
Output: The new populations (Pn)
1. Pn ← ∅

2. In P, rank the individuals according to their fitness ratings in descending order.
3. To the new population Pn, add the top e% of P’s population.
4. Choose the individuals from the bottom (1 − e)% of P with probability pr and add them to Pn

5. Pparent ← Pn

6. while |Pn | < Np do
7. P ar2 ← From Pparent a randomly selected individual
8. P ar2 ← From Pparent a randomly selected individual
9. if P ar1 �= P ar2 then
10. Utilizing the uniform crossover process, produce two children from the chosen parents,

and save them in the Children.
11. for each Child in Children do
12. r ← From the range (0,1), randomly generate a number.
13. if Pm > r then
14.

(Continued)
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Algorithm 4 (continued)
15. With the randomly selected value, randomly replace a gene in the Child
16.
17. end
18. end
19. Pn ← Pn ∪ Children
20. end
21. end
22. Return Pn

4 Experimental Setup
4.1 Dataset

The MNIST database encompasses an extensive collection of handwritten numerical characters
[24]. This database comprises a training set, consisting of 60,000 examples, and a test set, comprising
10,000 examples. It is derived from two larger datasets known as NIST Special Databases 1 and 3,
featuring handwritten digits created by employees of the US Census Bureau and high school students,
respectively. These numerical characters have undergone a standardization process, where they are
centered within a fixed-size image and size-normalized.

To achieve this standardization, the original NIST images, which were initially 20 × 20 pixels
in size, were resized while preserving their aspect ratio. The normalization procedure employed an
anti-aliasing technique, resulting in images with varying shades of gray. Furthermore, the images were
centered by calculating the center of mass of the pixels and subsequently translating the image to
position this center point at the center of a 28 × 28 field, ensuring uniformity and consistency in their
presentation.

4.2 Experimental Environment
Throughout this research, all experiments and tests were carried out using Python programming

language version 3.7. The execution of the algorithms was performed on both the DGX station
machine and High-Performance Computing (HPC) facilities. At each stage of the study, which
encompassed the development of diverse Convolutional Neural Network (CNN) architectures, com-
prehensive training of the selected model over an extended number of epochs, and the evaluation
of the most promising models, all scripts were executed on a computing environment equipped with
two GPUs.

4.3 The Selection of Parameters
As previously highlighted, our proposed framework offers a high degree of flexibility for extending

the search space. In essence, the suggested Genetic Algorithm framework can be configured to optimize
a wide range of hyper parameters. However, due to computational resource limitations, we have
focused on a specific subset of hyper parameters in our development.

Furthermore, informed by the findings from our previous experiments, it is notable that the
Genetic Algorithm consistently selects particular values for the activation function and optimizer
hyper parameters. Consequently, we have maintained the use of the SGD optimizer and the ReLU
activation function for all our testing.
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In the specific context of our convolutional layers, we have adjusted the kernel sizes to range from
1 to 3, while the convolutional layers’ stride size and the max pooling layer have been uniformly fixed
to 2. This approach helps strike a balance between versatility and efficient resource utilization.

We configured the parameters of the Genetic Algorithm with the following values: a population
size of NP = 30, an elite retention rate of e = 40%, a maximum number of generations set to Gmax = 40,
a mutation probability of Pm = 0.2, and an individual retention probability for non-elite members of
Pr = 0.1. These parameter values were chosen based on references in the literature and our own
expertise with evolutionary algorithms. To streamline computation and expedite the process, the
training of the networks during the evolutionary phase was performed over a reduced number of
epochs (Nepoch = 15).

Upon the completion of the mutative period, the top-performing Convolutional Neural Network
(CNN) model was fully trained, and used the test dataset for rigorous testing. Furthermore, the
top performance generated by the Genetic Algorithm undergoes specialized training using the entire
training set, over a more extensive number of epochs (Nepoch = 350), to further enhance its performance.

5 Experimental Results

In this research, the proposed Genetic Algorithm has been applied to evolve CNN architectures
specifically for a single dataset. Given the theoretical description of the approach, each experiment
was conducted five times. Subsequently, after every experiment the obtained top-performance model
underwent comprehensive training on the relevant dataset and was subjected to evaluation. The
outcomes pertaining to the evolving model’s performance on the dataset, including average accuracy,
worst accuracy, best accuracy, and standard deviation, are presented in Table 3.

Table 3: The average, greatest, worst accuracies, and the standard deviation of the top Convolutional
Neural Network model produced by many Genetic Algorithm runs

Dataset Average accuracy STD Best accuracy Worst accuracy

MNIST 95.05 0.45 95.50 92.80

It is noteworthy that the CNN model created by the Genetic Algorithm displayed outstanding
performance on the dataset. The values in Table 3, including average, best, and worst accuracies
and the standard deviations, collectively demonstrate that the evolutionary technique consistently
identified CNN models of comparable quality across multiple trial runs.

The network underwent an extensive training phase spanning 350 epochs.

Fig. 2 illustrates the successful improvement of the overall fitness level within the population by the
proposed algorithm. Initially, over the first nine generations, there was a rapid increase in population
fitness. Subsequently, this rate of improvement gradually slowed down. This deceleration in fitness
growth can be anticipated due to the significant selection pressure introduced by the elitism strategy
and the contribution of elite individuals in the procreation of offspring.

Table 4 provides an overview of the architectures for the top-performing networks that were
generated through multiple runs of the Genetic Algorithm for the given dataset. The Convolutional
Neural Network (CNN) architectures are presented in each row of Table 4, specifying the number of
blocks, convolutional layers within each block, and the number of feature maps (NF) for those blocks.
Additionally, the number of layers (NL) and the NF for layers within each block are listed, with the
values separated by commas.
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Figure 2: The average convergence graph for the GA population from the MNIST dataset

Table 4: Different GA runs resulted in the finest topologies evolving

Dataset Networks ID No. parameters Evolved architectures

MNIST Network 1 1.7 M [3 × (512), 4 × (512), 4 × (256)]
MNIST Network 2 25.4 M [3 × (512), 3 × (512), 4 × (256), 2 × (32), 2 × (32)]
MNIST Network 3 17.1 M [3 × (32), 3 × (512), 4 × (512)]
MNIST Network 4 7.8 M [4 × (128), 2 × (512), 4 × (256)]
MNIST Network 5 11.9 M [3 × (32), 3 × (256), 4 × (512), 2 × (512)]

For instance, consider the first convolutional block of the Convolutional Neural Network (CNN)
in the initial row of the table, which is represented as “3 (512)”—indicating that it comprises three
convolutional layers, the first two each have 512 feature maps (NFs) and 256 for the last convolutional
layer.

To assemble the complete CNN model, we incorporated BN (Batch Normalization), an average
pooling layer, ReLU activation, dropout, and fully connected layers. Additionally, Table 5 provides
information about the number of trainable parameters for the various models that were developed.
Furthermore, Table 5 presents details regarding the additional hyper parameters for each of the
evolved networks designed for the MNIST dataset.

Table 5: The hyper parameters for the leading five CNN models, generated by different runs of the
Genetic Algorithm, designed for the MNIST dataset

Hyper-parameters MNIST
accuracy

Network name LR WD M DR Number of layers Number of blocks

Network 1 0.01 0.01 0.65 0.5 11 3 92.80
Network 2 0.01 0.01 0.9 0.5 14 5 95.40
Network 3 0.01 0.001 0.7 0.5 10 3 95.34
Network 4 0.01 0.001 0.7 0.5 10 3 95.50
Network 5 0.1 0.0001 0.8 0.25 12 4 95.40
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For a visual representation of the top-performing Convolutional Neural Network (CNN) models
developed through the Genetic Algorithm across five iterations, please refer to Fig. 3.

Figure 3: The top CNN model architectures created through the Genetic Algorithm (MNIST dataset)

Table 4 vividly illustrates that multiple runs of the evolutionary process yielded CNN architectures
that displayed significant diversity concerning the number of layers, trainable parameters, and the



176 JAI, 2023, vol.5

number of blocks. An intriguing observation made by the Genetic Algorithm is the variation in feature
map magnitudes within different blocks of evolving architectures. This feature map progression, as
typically observed in many VGG models and human-designed architectures, often sees an increase in
feature map size across successive convolutional blocks. While certain evolved models maintain this
trend (e.g., Network 5), the order is not consistently upheld in the designed models. In some instances,
architectures exhibit a descending order (e.g., Network 2), while others do not adhere to a specific
pattern (e.g., Network 4). This finding leads us to the conclusion that the inclusion of larger feature
maps in later convolutional blocks is not an absolute requirement for an effective Convolutional
Neural Network architecture.

To assess the models’ quality, we employed the MNIST dataset for training each evolving model
and evaluating its accuracy. Table 5 provides a detailed breakdown of the best-evolved models specific
to this dataset.

To reduce computational demands, some of the models underwent partial training, involving a
limited number of epochs, during the evolutionary phase. Previous researches [6,7] and [16] have shown
that minimal training may be sufficient for evaluating network architectures in image categorization. In
our study, we opted to train the network for a mere 15 epochs, seeking to explore this concept further.
This approach significantly accelerated the evolutionary process, resulting in an average evolution time
of just 6 GPU days.

Finally, we conducted a comparative analysis to determine the performance of the evolved
model against some state of the art Convolutional Neural Network (CNN) models, as presented in
Table 6 (Bold highlights indicate the top results). Our evaluation encompassed three different classes
of neural networks, namely humanly designed, semi-automatic generated, and fully mechanically
constructed networks [12]. Within the manually designed category, models such as Maxout [25],
Dense-Net [15], VGG19 [13], Res-Net101 [17], and VGG16 [13] were considered. Semi-automatically
constructed networks included Genetic CNN, Hierarchical Evolution, and Block-QNN-S, while fully
automatically designed networks consisted of Large-scale Evolution, CGP-CNN, NAS, Meta-QNN,
CNN-GA, and Fast-CNN [16].

Table 6: Comparative analysis of the classification accuracy (%) of the GA-evolved CNN model versus
the latest CNN algorithms

Algorithm name Accuracy CIFAR10 Accuracy CIFAR100 GPU days Parameter settings

ResNet101 94.08 75.39 – Manual
DenseNet 94.52 76.61 – Manual
VGG16 93.05 74.94 – Manual
VGG19 92.59 74.04 – Manual
Maxouta 90.70 61.40 – Manual
Large-scale Evol.a 94.60 77 2750 Auto
Block-QNN-Sa 95.62 79.35 90 Semi-auto
Hierarchical Evol.a 96.37 – 300 Semi-auto
Genetic CNNa 92.90 70.97 17 Semi-auto
NASa 93.99 – 22,400 Auto
Fast-CNN [16] 94.70 75.63 14 Auto
CGP-CNNa 94.02 – 27 Auto

(Continued)
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Table 6 (continued)

Algorithm name Accuracy CIFAR10 Accuracy CIFAR100 GPU days Parameter settings

CNN-GAa 95.22 77.97 35 Auto
Meta-QNNa 93.08 72.86 100 Auto
This work (MNIST) 95.50 – 6 Auto

For the MNIST dataset, we correlated the top-performing model generated by the suggested
Genetic Algorithm. In addition to assessing the accuracy of autonomously generated networks, we
also compared these models in terms of the number of GPU days required to generate them. GPU
days provide a rough estimate of the algorithm’s efficiency, although it is important to note that this
metric does not apply to manually created models.

It is worth emphasizing that while some results were independently replicated by us, others were
obtained from [12].

Table 6 clearly demonstrates that the Convolutional Neural Network model, crafted by our pro-
posed Genetic Algorithm, outperformed VGG models and various human-designed Convolutional
Neural Network models when evaluated on the CIFAR10 dataset. Notably, it even outperformed
every other automatically generated model, securing a place within the top three performers on
the CIFAR10 dataset. The model resulting from hierarchical evolution, which was created semi-
automatically, exhibited the highest performance in this dataset.

For the CIFAR-100 dataset, the evolving model utilized in this study surpassed every other’s
Convolutional Neural Network (CNN) models, regardless of even if they were human designed, semi-
automatic designed, or mechanically designed. Last but not least, the suggested Genetic Algorithm
proved to be remarkably efficient in terms of computational speed, demanding only 6 GPU days to
produce the optimal Convolutional Neural Network. While it is true that the Hierarchical Evolution-
ary model outperformed the GA-evolved model in classification accuracy, the latter’s computational
requirements were just a fraction, being 50 times less.

6 Discussion

This study primarily delves into the viability of evolving an optimized Convolutional Neural
Network (CNN) model, inspired by the VGG architecture, for image classification using a Genetic
Algorithm (GA). Our proposed GA scrutinizes CNN designs employing a fixed-length chromosome
while accommodating a variable number of layers distributed across multiple blocks. The innovative
aspect of our GA lies in its capacity to generate CNN models optimized not only in terms of their
structural layout but also their hyper parameters. The CNN model born from our GA outperformed
both conventional VGG models and a diverse spectrum of human-engineered CNN architectures.
Notably, the GA-crafted model demonstrated competitiveness against cutting-edge CNN models
developed using semi-automatic and automatic methodologies, despite adhering to a VGG-like
architecture. It is noteworthy that the CNN model synthesized by the GA occasionally exhibited
distinctive structural characteristics compared to human-designed models. The superior performance
of these GA-optimized architectures is vividly illustrated by the high-quality results achieved by the
models. These findings strongly suggest that our proposed GA has the potential to significantly
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enhance the performance of conventional CNN models, paving the way for more efficient image
classification.

7 Conclusion

In this research, we present an innovative approach to the automatic discovery of optimized
Convolutional Neural Network (CNN) models, employing a straightforward genetic algorithm (GA).
The core focus of our work revolves around optimizing critical training-related hyper parameters,
including the LR, WD, M, and DR. To achieve this, our proposed GA meticulously navigates the
search space encompassing conventional CNN models, adjusting parameters such as the number
of convolutional blocks, the number of layers (NLs) within each block, and the number of filters
(NFs) for each block. We introduce an efficient strategy of partially training the models during the
evolutionary process, a practice aimed at alleviating the computational demands typically associated
with deep neuro-evolutionary algorithms. Our GA demonstrates its prowess through a series of
iterations, culminating in the development of highly superior CNN models. To assess the performance
of these enhanced CNN models, we rigorously evaluate them in terms of classification accuracy and
computational resource expenditure, specifically GPU days. In this comparative analysis, our best-
performing CNN model, boasting an impressive accuracy of 95.50%, emerges as a standout achiever.
Notably, it outperforms 14 state of the art models selected amount various classes. Equally remarkable
is the efficiency of our approach; the optimal CNN model was evolved within a mere 6 GPU days, a
result that positions it as a strong contender against manually or automatically generated CNN models.
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