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ABSTRACT

This article presents a real-time localization method for Unmanned Aerial Vehicles (UAVs) based on continuous
image processing. The proposed method employs the Scale Invariant Feature Transform (SIFT) algorithm to iden-
tify key points in multi-scale space and generate descriptor vectors to match identical objects across multiple images.
These corresponding points in the image provide pixel positions, which can be combined with transformation
equations, allow for the calculation of the UAV’s actual ground position. Additionally, the physical coordinates
of matching points in the image can be obtained, corresponding to the UAV’s physical coordinates. The method
achieves real-time positioning and tracking during UAV flight, with experimental results demonstrating that within
an acceptable error range, the UAV coordinates calculated using the proposed algorithm are consistent with the
actual coordinates. The maximum error along the x-axis, y-axis, and z-axis is 4.501 cm, with the horizontal error
exhibiting high stationarity and the vertical error having a low average value of 0.041 cm. The real-time positioning
algorithm presented in this article possesses characteristics such as simplicity, ease of implementation, and low
error, making it suitable for UAVs with limited computational processing power.
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1 Introduction

Unmanned Aerial Vehicles (UAVs) are becoming increasingly popular in applications such as
surveillance, reconnaissance, mapping, and car-UAV collaborative driving. Unlike pilot-navigated
UAVs, autonomous control systems heavily rely on accurate feedback of the vehicle’s position. Current
common technologies for UAV localization include Global Positioning System (GPS) [1,2], laser
radar [3,4], ultrasound [5], Ultra-Wideband (UWB) [6], radio frequency [7,8], and visual methods
[9,10]. While GPS is commonly employed for obtaining location information in open areas, its
performance degrades when there is interference with GPS signals. Laser radar has limited range
and can be influenced by environmental factors [11]. Ultrasonic localization techniques advanced
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through systems relying on environmental and sensor detection [12], but these methods suffer from
slow processing speed and are not suitable for high-speed car-UAV collaborative driving scenarios.
UWB and RF localization methods are used only under specific environmental conditions.

In contrast, visual localization offers real-time and generalizable capabilities, making it useful
for both GPS-denied environments and tasks that do not require large datasets. The use of UAVs to
capture images and perform localization analysis belongs to the technical category of machine vision.
Firstly, the image signal is obtained through the built-in camera and other shooting equipment on the
UAV, and transmitted to the onboard image processing chip or program. After analysis, the color and
distribution information of the captured object can be obtained, and then converted into digital image
signals. Digital image processing programs can also be used to analyze the captured object images,
apply graphic knowledge to recognize and interact with the environment, and guide UAV localization.

This article utilizes multiple image processing methods for real-time localization of UAVs. Several
major aspects are studied in this article, as described below:

• Proposed a continuous method for real-time localization of UAVs utilizing visual sensors to
detect their location.

• Based on SIFT algorithm [13], the detection of key points in multi-scale space is achieved, and
the vector information of key points is obtained for matching the same objects in different
images.

• Corresponding points in the images provide pixel locations that, combined with a conversion
equation, allow calculation of the actual ground position of the UAV. Physical coordinates of
the matched points in the image relative to the UAV’s physical coordinates can also be obtained.
By utilizing the above methods, real-time positioning and tracking of UAVs during flight have
been achieved.

The rest of this article is organized as follows. The current state of research on real-time UAV
localization algorithm is presented in Section 2. Section 3 gives the implementation scheme. Section 4
carries out program testing and analysis. The summary of the article comes from Section 5.

2 Related Work

In recent years, real-time UAV localization algorithms based on continuous image processing
have made certain progress. The common method is to use the SIFT algorithm to detect key points.
The SIFT algorithm can find key points in multiple scale spaces and generate descriptor vectors
for matching the same objects in different images. By matching the position of key points in the
image, the actual ground position of the UAV can be calculated. In addition to the SIFT algorithm,
there are also other image processing algorithms used for UAV localization. For example, the ORB
(Oriented FAST and Rotated BRIEF) algorithm [14] is a fast feature detection and description
algorithm that can provide faster speed than the SIFT algorithm, but may sacrifice some accuracy
[15]. The SURF (Speeded Up Robust Features) algorithm [16] is also commonly used for UAV
localization, which combines the advantages of the SIFT algorithm with the speed advantage of the
FAST feature detection algorithm. However, the SURF algorithm consumes a lot of resources and
is more suitable for hardware systems with sufficient computing resources. For embedded systems or
real-time applications with limited resources, this is a limitation [17]. In addition, the increasingly
improved research on path planning [18] and tracking of UAVs [19], as well as UAV attitude and
altitude control, has also promoted the accuracy of positioning.
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Although real-time UAV localization algorithms based on continuous image processing have
achieved some success, they still face some challenges. Firstly, factors such as changes in lighting,
weather conditions, and flight altitude can affect the quality of images and the detection of feature
points [20]. Secondly, how to convert pixel coordinates to actual geographic coordinates is also a
problem that needs to be solved [10]. In addition, how to improve positioning accuracy and speed
is also an important direction for future research [21]. To overcome these challenges, researchers
are exploring various new methods and technologies. For example, some studies use deep learning
techniques to improve the detection and matching performance of feature points [22–24]. Some studies
also consider using multimodal sensor fusion to improve positioning accuracy and robustness [25–27].

Overall, real-time localization of UAVs based on continuous image processing is an active
research field, and there are many unresolved issues waiting for us to solve. This article systematically
implements real-time positioning of UAVs based on the SIFT algorithm, which has lower resource
consumption and higher real-time performance, making it more suitable for embedded UAV systems.
The experimental results show that within the allowable range of error, the UAV coordinates calculated
by this algorithm match the true coordinates.

3 Implementation Scheme

The proposed continuous-image-processing-based real-time localization algorithm for UAVs pro-
vides real-time positioning capabilities during flight, improving localization accuracy and enhancing
UAV control, which can lead to innovative applications such as autonomous interaction between UAVs
and cars, terrain recognition, and object tracking. The implementation scheme is shown in Fig. 1.
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Figure 1: System processing flowchart

To achieve the above scheme, the following steps are taken:

Step One: Utilize the onboard camera of the UAV to capture images and input the current image3
as well as the previous two images image1 and image2.

Step Two: Acquire matches between image1 and image2, and between image2 and image3 using
the Scale-Invariant Feature Transform (SIFT) algorithm. The detailed process involves the following
steps:

(1) Construct Gaussian Difference Pyramid:

• Downsample the input images (e.g., image1 and image2) to create a pyramid of images.
• Apply different-sized Gaussian filters (with varying σ ) at each scale in the pyramid to generate

Gaussian pyramids.
• Compute the difference between adjacent layers in the Gaussian pyramids to form Gaussian

difference pyramids.
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(2) Detect Keypoints:

• Search for extremal points in each layer of the Gaussian difference pyramid. These points are
stable in both scale space and orientation, making them suitable for use as feature points.

• Use a contrast thresholding method to filter out weak keypoint candidates.

(3) Precisely Locate Keypoints:

• For each detected candidate keypoint, fit a second-order polynomial to precisely calculate its
location.

(4) Assign Keypoint Orientation:

• Compute the gradient histogram in the neighborhood of each keypoint and assign the direction
with the highest gradient magnitude to the keypoint.

(5) Generate Descriptor Vectors:

• Based on the pixel values surrounding each keypoint, generate a unique 128-dimensional or
higher-dimensional descriptor vector for each keypoint.

(6) Match Descriptors:

• Use Euclidean [28] to compare the descriptors of all keypoints from the two images.
• Select the best matching pairs based on a predetermined threshold, using techniques like ratio

testing or cross-checking to eliminate false matches.

Repeat the above process and handle the matching between image2 and image3 separately. It
should be noted that the SIFT algorithm is independent in finding matching points between multiple
images, so each pair of images needs to perform the above process separately.

Step Three: Filter the matches between image1 and image2 using Euclidean distance. Due to the
potential for mismatches and excessive matches produced by the SIFT algorithm, a distance metric is
needed to identify the best keypoints. Distance metrics measure the distance between points in space;
larger values suggest greater differences between objects. The standard adopted here is Euclidean
distance, a commonly used distance measurement representing the absolute distance between objects
in multi-dimensional space. In three-dimensional space, the Euclidean distance between points a(x1,
y1, z1) and b(x2, y2, z2) is expressed by formula (1). In the localization algorithm, stronger matches
should be selected for coordinate calculations, i.e., those with the smallest Euclidean distance.

dab = √
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (1)

Note that since image1 and image2 contain all content that is repeated in image3, image2 and
image3 contain more object content than image1. As such, the matches between image2 and image3
may not necessarily exist in image1. In this case, the matches between image1 and image2 can be
filtered using Euclidean distance to ensure they exist in image3. Filtering cannot be performed based
on Euclidean distance between image2 and image3 as it would result in missing corresponding matches
in image1.

Step Four: Identify the two best common matches among image1, image2, and image3. Simple
Euclidean distance evaluation suffices to filter out the most similar matches between two images.
However, localization requires at least three consecutive images. The process follows these steps:

(1) Obtain the position L1(0, 0, h), where the UAV starts moving and record the corresponding
image as P1, where h denotes the vertical height between the UAV and ground plane, parallel to
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the UAV’s z-axis and treated as a known quantity. The UAV’s instantaneous horizontal movement
at start of motion defines the X direction, and the Y direction can be determined from the right-
handed coordinate system. This allows the computation of the real-time UAV position in the X-Y-Z
coordinate system.

(2) Capture the position L2 after a brief time t1, recording the corresponding image as P2. The
image collection interval t1 mustn’t be too large, considering factors such as the UAV’s flying speed to
ensure overlapping objects between P1 and P2, allowing the creation of matches between the images
and satisfying the conditions for coordinate transformation algorithm A1 (see Step Five for the specific
processing process). Substituting the two UAV positions L1 and L2, as well as the pixel coordinates
(obtained from SIFT) into the algorithm A1, then the ground coordinates D1 of the matched points
can be calculated.

(3) Only the first two positions need to be known, after which the UAV’s position can be calculated
by program. When the UAV moves to position L3 after a short time t2, capturing an image denoted
P3. The t2 must guarantee that the matching points between P3 and P2 can be found in P1, as only
two matching point ground coordinates can be obtained from P1 and P2. With the two matching point
ground coordinates, the ground coordinates of L3 can be obtained using coordinate transformation
algorithm A2 (see Step Six for the specific processing process).

(4) To find L4, L5, L6 . . . Ln, it is necessary to ensure that the image captured at location Li contains
part of Li−2 and Li−1.

As can be seen from the above, the matching points used for calculation must exist in all three
consecutive images. Therefore, Euclidean distance cannot be the only criterion for selecting suitable
matching points. Since the matching points are obtained by comparing two images, in order to
obtain a common matching point for the three images, the second image in the middle must be
used as the standard. After obtaining the matching points MatchPoints1 between image1 and image2
and MatchPoints2 between image2 and image3, if MatchPoints1 and MatchPoints2 have the same
coordinates on the second image, they are the common matching points of the three images. Combined
with the Euclidean distance of the matching points, the coordinates of the two matching points suitable
for calculation can be filtered out.

Step Five: Use coordinate transformation algorithm A1 to calculate the ground coordinates of the
matching point. Given the surface coordinates of the UAV at two locations

(
xc1, yc1, zc1

)
and

(
xc2, yc2,

zc2), calculate the surface coordinates of the matched pixel points. If there are m matching points, let
the nth matching point be qn. To calculate the ground coordinates

(
xq3, yq3, zq3

)
of one of the matching

points q3, the solution form is shown in formula (2).

⎡
⎢⎢⎢⎣

(u1q3 − u0)r31 − fxr11 (u1q3 − u0)r33 − fxr12

(v1q3 − v0)r31 − fyr21 (v1q3 − v0)r32 − fyr22

(u1q3 − u0)r33 − fxr13

(v1q3 − v0)r33 − fyr23

(u2q3 − u0)r
′
31 − fxr

′
11 (u2q3 − u0)r

′
32 − fxr′

12

(v2q3 − v0)r
′
31 − fyr

′
21 (v2q3 − v0)r

′
32 − fyr

′
22

(u2q3 − u0)r
′
33 − fxr

′
13

(v2q3 − v0)r
′
33 − fyr

′
23

⎤
⎥⎥⎥⎦

⎡
⎢⎣

xq3

yq3

zq3

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

fxxc1 − (u1q3 − u0)zc1

fyyc1 − (v1q3 − v0)zc1

fxxc2 − (u2q3 − u0)zc2

fyyc2 − (v2q3 − v0)zc2

⎤
⎥⎥⎥⎦

(2)

which
(
u1q3, v1q3

)
and

(
u2q3, v2q3

)
are the pixel coordinates of q3 in the two images captured by the

UAV at ground coordinates
(
xc1, yc1, zc1

)
and

(
xc2, yc2, zc2

)
, respectively. By solving with formula (2),

the ground coordinates of q3

(
xq3, yq3, zq3

)
can be obtained.
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Step Six: Calculate the ground coordinates of the UAV using the coordinate transformation
algorithm A2. Given that the ground coordinates of two different matching points in the image
captured by the UAV at a certain location are

(
xq1, yq1, zq1

)
and

(
xq2, yq2, zq2

)
, calculate the ground

coordinates of the UAV at that point. The calculation method is shown in formula (3).
⎡
⎢⎢⎢⎣

fx 0

0 fy

−(uq1 − u0)

−(vq1 − v0)

fx 0

0 fy

−(uq2 − u0)

−(vq2 − u0)

⎤
⎥⎥⎥⎦

⎡
⎢⎣

xc

yc

zc

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

[(
uq1 − u0

)
r31 − fxr11

]
xq1 + [(

uq1 − u0

)
r32 − fxr12

]
yq1 + [(

uq1 − u0

)
r33 − fxr13

]
zq1[(

vq1 − v0

)
r31 − fyr21

]
xq1 + [(

vq1 − v0

)
r32 − fyr22

]
yq1 + [(

vq1 − v0

)
r33 − fyr23

]
zq1[(

uq2 − u0

)
r31 − fxr11

]
xq2 + [(

uq2 − u0

)
r32 − fxr12

]
yq2 + [(

uq2 − u0

)
r33 − fxr13

]
zq2[(

vq2 − v0

)
r31 − fyr21

]
xq2 + [(

vq2 − v0

)
r32 − fyr22

]
yq2 + [(

vq2 − v0

)
r33 − fyr23

]
zq2

⎤
⎥⎥⎥⎥⎦

(3)

which (uq1, vq1) and (uq2, vq2) are the coordinates of two matched feature points in the image. The
coefficients in the formula have been specified, and the ground coordinates of the UAV can be obtained
by solving this matrix equation using the cramer rule.

Step Seven: If the UAV receives the stop positioning information, it will end and return. Otherwise,
new images will be collected and proceed to Step one.

4 Program Testing and Analysis

Set the initial coordinate position of the UAV in the air to (0, 0, 90) (unit: Centimeters). The
program first performs image matching based on the first group of images (image1, image2, and
image3), filters two common matching points, and calculates the coordinates of the matching points.
The results are shown in Table 1.

Table 1: Calculation results statistics of the first group of data (unit: pixels)

The first group image1 image2 image3

Matching point 1 pixel coordinates (x, y) (624.154, 561.924) (394.512, 561.194) (175.452, 565.304)
Matching point 2 pixel coordinates (x, y) (535.882, 559.277) (309.636, 560.158) (90.3245, 563.052)

Since the relative position between matching points remains constant within each group, their
pixel coordinates in image3 will be relatively fixed. From Table 1, there is approximately an 86-pixel
difference along the x-axis (calculated by subtracting the x-coordinate column entries) and 1.8-pixel
difference along the y-axis (calculated by subtracting the y-coordinate column entries). Despite minor
discrepancies along the y-axis, these differences cause minimal deviation in the display.

After computing the data for the first group, take image2 as the beginning of the next group,
forming the group of image2, image3, and image4. The results are presented in Table 2.

Once the second group computations are complete, proceed with image3, image4, and image5
as the third group. Continuing similarly, the nth group consists of images image(n), image(n+1), and
image(n+2). Ultimately, the UAV’s ground coordinates can be determined, displayed for the first seven
groups in Table 3.
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Table 2: Calculation results statistics of the second group of data (unit: pixels)

The second group image2 image3 image4

Matching point 1 pixel coordinates (x, y) (604.383, 528.514) (382.632, 534.861) (147.076, 544.74)
Matching point 2 pixel coordinates (x, y) (542.326, 522.109) (322.673, 528.059) (87.3395, 538.94)

Table 3: Positional coordinates of the first seven groups of the UAV (unit: cm)

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7

x 0 34.176 48.916 62.801 72.775 86.545 98.754
y 0 0.405 0.513 2.0315 3.692 2.746 3.612
z 90 90.0111 90.032 90.049 90.068 90.073 90.012

Ground-truth UAV position data is obtained via measurement, compared to calculated coordi-
nates from the localization algorithm, listed in Table 4. The comparison between the actual coordinates
and calculated coordinates of the UAV on the x, y and z axes are shown in Figs. 2–4, respectively.

Table 4: Comparison of computed vs. actual coordinates (unit: cm)

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7
Actual
coordinates

(0, 0, 0) (30.2, 0, 90) (46.6, 0.1, 90) (58.3, 1.7, 90) (68.8, 2.1, 90) (83.5, 1.9, 90) (96.2, 2.8, 90)

Calculated
coordinates

(0, 0, 0) (34.176, 0,
90.011)

(48.916, 0.513,
90.032)

(62.801, 2.032,
90.049)

(72.775, 3.692,
90.068)

(86.545, 2.746,
90.073)

(98.754,
3.612, 90.012)

Error 0, 0, 0 3.976, 0, 0.011 2.316, 0.413,
0.032

4.501, 0.268,
0.049

3.975, 1.592,
0.068

3.045, 0.846,
0.073

2.554, 0.812,
0.012

Fig. 2 represents the geographic coordinate deviation of UAV on the x-axis. It can be seen that the
error amplitude is relatively balanced at each test point, which means it is easier to perform parameter
calibration in the later stage. Fig. 3 represents the geographic coordinate deviation of UAV on the y-
axis. Contrary to the characteristics on the x-axis, its error amplitude is not stable, indicating that the
algorithm needs to be optimized in this regard. Fig. 4 represents the geographic coordinate deviation of
UAV on the z-axis. It can be seen that the difference between the first and sixth points steadily increases,
and by the seventh point, the error value regresses to a lower range, proving that the algorithm has a
certain degree of error correction.

Specifically, observations from the experiment reveal maximum errors of 4.501 cm along the x, y
and z axes. Horizontal (x & y-axis) errors exhibit higher variability with an average error of 2.4298 cm.
Vertical direction error (z-axis) exhibits lower average error of 0.041 cm. Contributing factors include
camera parameter errors, errors associated with the UAV’s velocity during imaging (movement between
image captures), rounding errors during computation and measurement errors. Overall, this approach
demonstrates promising localization accuracy.
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Figure 2: Comparison of actual coordinates and calculated coordinates on the x-axis

Figure 3: Comparison of actual coordinates and calculated coordinates on the y-axis

Figure 4: The difference between the actual and calculated coordinates on the z-axis

Overall, the UAV real-time positioning algorithm proposed in this article for continuous image
acquisition and processing has the characteristics of simplicity, ease of implementation, and low error,
making it suitable for UAVs with low computational processing capabilities. However, it should be
noted that due to limitations, this experiment only collected images of stationary objects, and the
recognition and localization of moving objects are still under study. In addition, comparisons with
other algorithms will be reflected in subsequent research.

5 Conclusion

This article uses visual sensors to detect the position of unmanned aerial vehicles. A real-time
localization algorithm for unmanned aerial vehicles using continuous image acquisition and process-
ing has been proposed. This algorithm can achieve accurate and stable positioning of unmanned aerial
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vehicles in urban environments or with severe signal interference. Real-time positioning and tracking
functions can help UAVs better perceive the surrounding environment, and improve the accuracy and
safety of flight control. It can be applied to the cooperative driving scene of UAVs and autonomous
vehicles, expanding the application scene of UAVs.
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