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ABSTRACT

The phenomenal increase in device connectivity is making the signaling and resource-based operational integrity
of networks at the node level increasingly prone to distributed denial of service (DDoS) attacks. The current
growth rate in the number of Internet of Things (IoT) attacks executed at the time of exchanging data over the
Internet represents massive security hazards to IoT devices. In this regard, the present study proposes a new hybrid
optimization technique that combines the firefly optimization algorithm with global searches for use in attack
detection on IoT devices. We preprocessed two datasets, CICIDS and UNSW-NB15, to remove noise and missing
values. The next step is to perform feature extraction using principal component analysis (PCA). Next, we utilize a
globalized firefly optimization algorithm (GFOA) to identify and select vectors that indicate low-rate attacks. We
finally switch to the Naïve Bayes (NB) classifier at the classification stage to compare it with the traditional extreme
gradient boosting classifier in this attack-dimension classifying scenario, demonstrating the superiority of GFOA.
The study concludes that the method by GFOA scored outstandingly, with accuracy, precision, and recall levels of
89.76%, 84.7%, and 90.83%, respectively, and an F-measure of 91.11% against the established method that had an
F-measure of 64.35%.
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1 Introduction

IoT is an emerging technology system of interrelated computing devices, mechanical and digital
machines, or objects with unique identifiers capable of transferring data over a network without
requiring human-to-human or human-to-computer interaction [1]. Its scope of application is wide,
ranging from smart home systems to intelligent transportation systems and urban intelligence projects,
and improving agriculture, logging, medical care, and even energy [2]. IoT is the interconnection of
several physical entities with electronic, software, and sensor communication technology interfaces, by
which data are collected and shared [3]. This web of connected data exchange enormously enhances
most of humanity’s IoT. However, a great difficulty is the question of IoT security, which limits the
potential scope of possible IoT innovations. Thus, IoT devices can easily fall victim to malicious actors
and become potential vectors for disruptions in various sectors of life, influencing the availability of
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these devices [4]. For a large part, such security vulnerabilities result from the limited computational
capability of IoT devices [5], which produces noticeable security deficits. This has consequently led to
an increase in DDoS attacks, the purpose of which is predominantly to undermine the availability of
certain nodes or networks, cause signal disruption, or battery drainage by multiplying IoT devices
quickly, in addition to a lack of security protocols [6]. DDoS attacks are broadly classified into
two types: those that debilitate the service and those that flood it [7]. However, these DDoS attack
methodologies, which have been recognized for over a decade, remain grave challenges. In such attacks,
access to legitimate services is blocked using different types of IoT devices to derail their intended
functions [8].

Under a DDoS attack, the network server becomes a virtual weapon that attacks the IoT, resulting
in colossal losses across industrial areas [9]. According to reports, different cases include attacks such
as Mirai, Hajime, Hide and Seek, Bashlite, Tsunami, Brickerbot, and Luabot against IoT devices.
Through such releases, these groups have precipitated a rise in the variants emanating from them,
particularly groups such as Mirai and Bashlite [10]. In this context, this study proposes a novel
technique for denial of service (DoS), web attacks, and port scan detection in contemporary security
threats. While the majority of the existing efforts on threat detection and response aim to enhance
single technologies, methodologies, or processes in the deployment of the proposed GFOA, we applied
both the CICIDS and UNSW-N15 datasets in the proposed method, where preprocessing removes the
noise and fills the missing information. This aids in extracting features using PCA and determining
low-rate attacks using the GFOA. After selecting the features, an NB classifier is implemented
to classify attacks. The remainder of this paper is organized as follows: Section 2 reviews current
methodologies in the field, whereas Section 3 elaborates on the proposed GFOA-based detection
framework; Section 5 reports the experimental results of the demonstration performed; and finally,
Section 7 concludes the study and offers perspectives for future research. An illustrative representation
of the research framework is provided in Fig. 1.

Figure 1: Conceptual framework of IoT security enhancement through GFOA

2 Related Works

This section synthesizes ideas from a wide range of literature regarding the detection of DDoS
attacks in IoT networks and summarizes key ideas from selected seminal studies. This paper outlines
various methods and technologies intended to improve the security of IoT networks against DDoS
attacks. For instance, a semi-supervised machine learning (ML) algorithm was integrated into a
software-defined network (SDN)-cloud architecture derived from the base level of 96.28% IoT network
security detection in the learning-driven detection mitigation (LEDEM) initiative [11]. In addition,
they proposed a feature-selection-based approach with multi-objective optimization along with an
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extreme learning machine classifier, with promising improvements in the effectiveness of intrusion
detection systems for the IoT compared to traditional methodologies [12]. Snake optimizer with
an ensemble learning (SOEL) is a state-of-the-art (SOTA) method to classify and categorize DDoS
attacks automatically and has significantly advanced attack detection in IoT environments with scarce
resources [13]. For this purpose, in 5G networks, the modified equilibrium optimization algorithm
with deep learning (DL) uses evolutionary algorithms in conjunction with DL techniques to classify
various attacks, as mentioned and has registered success at an accuracy rate of up to 97.60% [14].
This study takes advantage of the fact that a strategy known as the double proportional threshold
classification model-k-nearest neighbors (DPTCM-KNN) classifier can improve the security of the
network in healthcare [15]. In the context of the software-defined Internet of Things, previous studies
have been able to guarantee a detection accuracy rate of 98% using a framework that combines an
enhanced firefly algorithm (FA) with convolutional neural networks (CNNs) to identify DDoS attacks
[16]. Hence, the fractional anti-corona optimization-based deep neuro-fuzzy network (FACVO-based
DNFN) algorithm efficiently combines feature fusion and data augmentation with DL to demonstrate
outstanding capability for detecting DDoS attacks at highly accurate and precise levels within cloud
computing [17]. A survey investigated the changing threat of DDoS attacks, particularly during the
coronavirus disease (COVID) pandemic, and exposed chinks in the armor of conventional security
measures. It also noted the importance of predicting such DDoS attacks by providing early warnings
and timely defenses. From the 2482 studies, critical 27 studies on DDoS attack prediction are presented
based on SOTA methods that identify research gaps. Thus, the survey calls for proactive defense
mechanisms with comprehensive classifications to guide future research topics [18]. Another study
considered securing IoT devices from DDoS attacks, owing to their limited resources and dynamic
communication. In this respect, a hybrid DL model using recurrent neural network (RNN), long
short-term memory (LSTM), and convolutional neural network (CNN) techniques was developed
to efficiently detect DDoS attacks. The results indicated that the model equipped with CNN-BiLSTM
had the best accuracy and precision compared with other individual models on the datasets for
CICIDS 2017. This study concludes that the CNN-BiLSTM model performs well in real-world
scenarios but highlights the vulnerabilities of IoT networks and resilience to DDoS attacks, which
is left as part of future work [19]. A detailed study was conducted to obtain enhanced insight into
the complexity of forecasting DDoS attacks, mechanisms of the prediction model, identification of
common challenges, and unveiling opportunities for progress.

3 Proposed Methodology

With the introduction of the GFOA, the course lays the groundwork for attack detection,
utilizing the holistic approach of the GFOA in a methodical manner to address this problem. This
study proposes a methodology for detecting the three most common types of attacks by considering
two major datasets. Two datasets, one from CICIDS and the other from UNSW-NB15, serve as
benchmarks for modern Internet traffic detection techniques. The first preprocessing step involves
processing the input data to remove unwanted noise and fill in missing values. The next step involves
an exhaustive process of cleaning, normalization, transformation, and data integration. Next, we apply
PCA as a preprocessing step to reduce the dimensionality of the most important features. The final step
in this process applies an NB classifier to the following categories of selected attacks: DoS, web attack,
and port scan. Fig. 2 presents a block diagram of the hybrid GFOA, which depicts this systematic
methodology.
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Figure 2: Schematic of the GFOA-based method for detecting attacks

3.1 Dataset
The datasets used in this study include CICIDS [20] and UNSW-NB15 [21], which are the major

sources of data that point to the configurations and features intended for analysis directed toward
threats in attack detection. The CICIDS contains 85 attributes for each instance, focusing on the
78 features necessary for traffic characteristics. The other properties used help classify the traffic
as normal or another form of attack, and annotate it according to the level of severity or potential
impact. Moreover, the UNSW-NB15 dataset includes 49 attributes per instance, each providing a
broad description. While some of these attributes are consistent in their focus and analysis of input
traffic obligations, they also include fair markers to distinguish between normal activity and an attack,
as well as metadata to assess the severity of the findings. We discuss these datasets in relation to three
types of attacks: DoS, web attacks, and port scans. This is because every type of enumeration is critical
at the capability level for developing a full-scale framework for investigating vulnerabilities in network
security systems.

-DoS attacks orchestrate an excessive flow of traffic that disrupts the regular operation of
computer systems, networks, or services. This barrage of requests drains the resources of the targeted
entity, resulting in complete service outages or significant performance reductions. Given the profound
consequences of these attacks, it is imperative for organizations to develop and implement strong
defensive measures. Such strategies are essential not only for mitigating the damaging impact of DoS
attacks but also for ensuring the ongoing availability of services [22].

-Web application attacks are targeted at exploitable vulnerabilities in web applications and
services. An attacker can exploit some of these gaps to enter unauthorized systems, steal data, inject
additional code, and modify web content. These include structured query language (SQL) injection,
among other common attack paths that lead to web security compromises. SQL injection is an attack
in which an attacker modifies the SQL database queries on websites to extract data, a practice that
is clearly illegal. In contrast, cross-site scripting attacks (XSS) attacks compromise user data integrity
and webpage security by inserting a malicious script into web pages [23].
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-Port scanning is used by attackers as the first reconnaissance activity to identify open ports of the
target system. Open ports play a crucial role in the operation of network services, revealing the active
services in a system. Attackers frequently use tools such as Nmap, which may enable them to detect
and exploit vulnerabilities in the future. Given that this is the fundamental precursor to more complex
offensive methods, system administrators and attack detection experts must exercise great vigilance
and correct port scanning to enhance the defensive capabilities of networks.

3.2 Data Preprocessing
After collecting the data, we performed a crucial preprocessing phase to refine the dataset. This

entails eliminating noise and filling gaps in the data to maintain integrity for further examination.
This crucial stage comprises four fundamental procedures: data cleaning, which focuses on rectifying
or removing inaccurate records; normalization, which recalibrates the data scale for uniformity; data
transformation, which changes the format of the data into a more analytical structure; and data
integration, which combines data from different sources into a uniform dataset. These steps are
required to control accuracy, consistency, and data preparation.

3.3 Data Cleaning
Data cleaning is crucial in data preparation, because it removes damaged, inaccurate, duplicated,

or poorly structured data from datasets. The purpose of selecting data is to improve its quality,
standardize it for analysis, and make it approachable to the questions. This step is particularly impor-
tant for data collection because it helps reduce the number of irrelevant data points. Moreover, data
cleaning plays an important role in guaranteeing data compatibility with particular analytical models,
particularly in studies addressing specific threats. It also facilitates correction of inconsistencies in the
data structure that may occur during data transfer between different systems. The main data stripping
procedure involves distinguishing incomplete data by deleting entries that arrest handicap or absent
values.

3.4 Normalization
Normalization is a key step in the preparation phase of data analysis. This includes a classical

process for refining and transforming data from the pilot scope to a consistent scale. Such adjustments
play a crucial role in managing uncertainties and filling data gaps, ultimately ensuring overall data
integrity. At this stage, min-max normalization is an important technique for securing the consistency
of data values within a dataset, as it tramps from 0 to 1. This procedure is essential for consistently
analyzing datasets of varying sizes and importance, making it an integral part of predictive modelling
exercises. This standardization facilitates the comparison of data from different sources to attain more
accurate and dependable results during analysis.

3.5 Data Transformation
This process is crucial for converting the raw data into a restructured format. Data transforma-

tion repositions the challenges associated with the interpretation and management of cut data by
metamorphosing them into well-disposed formats. Smoothing strategies involve reducing noise in a
dataset, summarizing data points through aggregation, and generalizing information from specific
details to a broader level. Combining all these methods enhances the practicality and lucidity of the
data, simplifying the analyst’s task in terms of navigating and comprehending the data, and efficiently
extracting relevant information.
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3.6 Data Integration
It is a process of merging all the necessary information from various heterogeneously available

sources into one coherent database, providing a complete overview of the collected data. It involves
the aggregation of data in whatever format it existed initially–data cubes, database records, or flat
files–owing to cooperation among different stakeholders within an organization and outside the
organization. The objective is to consolidate several data segments into a unified location that
facilitates access and retrieval. Such consolidation is essential for optimizing research, analysis, and
decision-making processes and is a fundamental step toward holistic data management and utilization.

3.7 Feature Extraction with PCA and GFOA
After preprocessing the data, PCA was applied for feature extraction. PCA is a statistical method

that mathematically transforms a set of correlated variables into a set of linearly uncorrelated variables
known as principal components. The goal was to minimize the feature space while maintaining
maximum interpretability and minimal information loss. This was achieved by retaining the maximal
variation in the dataset. Generally, the PCA methodology operates on the principal components that
encompass the maximum variance in the data and aid in dimensionality reduction. The next step is
to apply the GFOA to optimize the selection of these principal components. Inspired by the flashing
behavior of fireflies, the GFOA optimizes toward brighter and more attractive solutions in the search
space to identify the optimal solution. The main aim of using the proposed GFOA with PCA is to
determine an optimal combination of principal components to maximize classification accuracy. This
algorithm further refines the solution by iterating the attraction and brightness, which are indicators
of the quality of the solution in relation to feature selection. We applied a learning algorithm to the
entire set of principal components, and tested each component for its contribution to the prediction of
the model. This improves the global search ability and moves toward the best-selected feature subset.

In the context of PCA and the GFOA, we generalize the mathematical expression that describes
the feature vectors and optimal hyperplanes as follows:

For a set of feature vectors αi and the corresponding outputs βi, where i denotes indexing the set’s
elements from 1 to m, they can be represented by Eq. (1):

αi, βi ε {1, . . . , m} (1)

The optimal hyperplane is given by Eq. (2):

h (x) = θTx + c (2)

In an ML model, the above equation is in the form of a hyperplane function h(x), where (x) denotes
the input feature vector, θ denotes the weight vector, θT defines the transpose of θ , allowing the dot
product with (x), and (c) denotes the bias term that shifts the hyperplane to optimally fit the data.
This equation is crucial for classification tasks and optimization problems because it defines a decision
boundary within the feature space. Eq. (3) provides the following conditions for class separation:

θTx + c = 0 (3)

We maximized the margin of the nearest training data points and hyperplane, as shown in Eq. (4):

Optimize (θ , c) = |x − αi| subject to θTx = c = 0, i ε {1, . . . , m} (4)

This implies that the GFOA checks the right weights (shown as θ ) and biases (shown as c) for the
strongest set of features to make the classification.
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3.8 Feature Selection
Following PCA, feature selection plays a crucial role in identifying features that aid in accurate

recognition decisions and discarding less significant features to enhance the performance of the model.
This results in the use of a refined model that employs the GFOA for feature selection, thereby
enhancing the model’s accuracy in identifying potential threats. This improves the efficiency of the
model by allowing it to focus on the most indicative attributes of potential attacks and, consequently,
follows a pointed and effective attack detection strategy.

3.9 Standard Firefly Algorithm (SFA)
Fireflies worldwide are known for their ability to display rhythmic and short light patterns, as

evidenced by approximately 2000 different firefly species. Therefore, this indicates that bioluminescent
displays are important behaviors in mating, prey attraction, and a defense mechanism for fireflies
to enhance their survival. Visibility was determined by two factors. The first influence is based on
the inverse square law, which determines the intensity of light L ∝ 1

(s2)
and (s) is the distance

from the source of light. The second influence is atmospheric absorption, which further reduces
visibility because of the glow of fireflies over longer distances [24,25]. This research is based solely on
metaheuristics; the FA arises from the imitation of fireflies’ natural behaviors. Yang et al. [25] proposed
FA, which is now one of the best metaheuristic methods for improving the ability to detect IoT attacks
using biologically based stochastic global optimization. Among the swarm intelligence methods, the
FA uniquely navigates multimodal problems independently, a trait that is not readily available in
similar strategies. It operates on the principle that attraction and attractiveness decrease with distance,
thereby allowing effective population clustering. This structured approach aids in optimizing various
solutions, particularly for large-scale problems. Equation (L ∝ 1

(s2)
) underlies the clustering dynamics

in FA, facilitating the analysis of interactions within proximate clusters. FA incorporates these elements
into its algorithm by mimicking the communication and mating behaviors of fireflies. According to
the guidelines in [25], artificial fireflies adhere to three basic rules:

-Fireflies are naturally attracted to each other regardless of gender, as they are considered gender
neutral in this context.

-A firefly’s attractiveness is directly tied to its brightness, drawing less luminous fireflies toward
brighter fireflies. The attractiveness decreases with distance, resulting in random movements when
brighter fireflies are present.

-A firefly’s brightness is equivalent to the fitness function in the optimization landscape, reflecting
the optimization goal in maximization problems, where brightness is proportional to the value of the
firefly function.

The trajectory equation for firefly i moving toward firefly j is given by Eq. (5), illustrates the role
of relative attractiveness in dictating movement.

yi = yi + β0e−γ r2 (
yi − yj

) + θ (rand − 0.5) (5)

where (θ) denotes the randomness factor, with (rand) being a random variable uniformly distributed
between [0, 1], and (β0) is set to 1 for consistency. Parameter (θ) also encompasses environmental noise
and the diffusion of light, diminishing linearly with (δ), thus (θ = θ × δ). The stochastic component
follows a normal distribution (N (0, 1)) to adjust for noise. Parameter (γ) serves to modulate the rate
of attractiveness decay, influencing the convergence dynamics of the FA, with its values spanning from
0.01 to 100, as noted in [26,27]. The distance between fireflies (i) and (j) is determined using Eq. (6):
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dij = ∣∣∣∣yi − yj

∣∣∣∣ , (6)

where (yi) denotes the spatial position of firefly (yi). The attractiveness update mechanism, which
accounts for the light intensity decay with distance, integrates the atmospheric and dust effects via the
stochastic term in the formula, providing an estimation for light attenuation.

3.9.1 Attractiveness in Standard Firefly Algorithm (SFA)

In the framework of the standard firefly algorithm (SFA), the attractiveness factor (β) is computed
as depicted in Eq. (7):

β = (β0 + βmin) × e−γ r2
(7)

Here, (β0) is consistently set to 1, representing the base attractiveness level, and (γ), the light
absorption coefficient, is typically set to 1, adjusting the rate at which attractiveness decreases with
distance. The distance between fireflies (dij), is determined by Eq. (8):

dij = ∣∣∣∣fi − fj

∣∣∣∣ =
√∑n

k=1

(
Yik − Yjk

)2
(8)

In this formula, (Yik) and (Yjk) denote the kth spatial coordinates of fireflies (i) and (j), respec-
tively, providing a measure of the spatial separation between them within an n-dimensional space.

3.9.2 Movement Dynamics in SFA

The movement dynamics of fireflies within the SFA are influenced by the relative brightness
between them, formulated in Eq. (9):

f new
i = f old

i + β
(
fi − fj

) + θ (rand − 0.5) (9)

In this equation, (fi) and (fj) denote the spatial positions of fireflies (i) and (j), respectively.
Each firefly in this position is enunciated by a vector of n coordinates, showing its position within
an n-dimensional space. This space can be assumed to be a few concepts: physical, abstract, or
computational domains, for the purpose of applying the algorithm.

4 Proposed Globalized Firefly Algorithm (GFOA)

The GFOA is considered an improvement over the conventional FA: the local search of the deepest
point, the global search throughout the search domain, and features that have been hailed as richly
applicable to other swarm-based optimization techniques. This latter version of the FA can be used
to remediate specific drawbacks of the previous version, such as low convergence speeds and being
prone to becoming stuck by local optima, which were observed within the original FA framework. The
evolution of the FA has resulted in different variants, each crafted to solve the intricate nature of the
nonlinear optimization problem with a marked improvement over older classical algorithms in solving
NP (Non-deterministic Polynomial)-hard problems. Major developments include its use in Yang’s
improved FA [25,28], which diverges from the standard Gaussian distribution random walk model.
In general, the performance levels indicated that the levy-flight firefly algorithm (LFA) surpassed
particle swarm optimization (PSO) in most benchmark tests. Furthermore, the FA with neighborhood
attraction (NaFA) variant mixes a randomly selected population with a Cauchy distribution to increase
the exploration of the algorithm, primarily in neighboring population operations [29]. The other
approach is to again fit the classical “beauty model” based on distance and brightness with an equation
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for the tidal forces, dispensing this time with the absorption coefficients of FA. This achieves a better
reach of the global minima, avoiding premature convergence using a simplified tidal force equation
that adapts better to the behavioral patterns of the fireflies. Considering these features, the proposed
GFOA, inspired by SOTA works [30,31], was designed to address the most prevalent problem of
early convergence observed in standard FA implementations. Similar to PSO, the GFOA merges the
harmony between exploration and exploitation through local and global search mechanisms, that is,
avoiding getting stuck at a local optimum early is by far a great breakthrough from previous models.
In addition, unlike the model of particle velocity, which is guided by its motion, the GFOA directs
fireflies toward optimal solutions without any relation to velocity. This underscores the key operational
divergence between the GFOA and PSO in the pursuit of global optima.

4.1 Attractiveness Calculation in GFOA
This study suggests a new way to compute attractiveness (λ) in the GFOA, where much emphasis

is placed on fireflies and their spatial interactions. This is a deviation from the normal FA, where
the attractiveness (β) depends on relative brightness or light intensity amongst fireflies (fi < fj). To
increase the convergence speed of the GFOA and make the model suitable for solution landscape
traversal, the brightest or optimal firefly in the GFOA is evolved

(
f g

)
. Eq. (10) quantifies the

attractiveness between the best firefly (f g) and any other firefly (f i) with respect to it, representing how
these dynamics can guide the positional interplay of the swarm in the search for optimal solutions.

λfg = λmin + (λ0 − λmin) × e−ξd2
ig (10)

This equation points to the inverse relationship of distance and attractiveness, hence governing
the movement of firefly (f i) to newer exploration zones under the influence of (λfg). By adopting this
principle, the algorithm increases its potential for exploration to ensure that fireflies are more attractive
to localization with higher chances of finding optimal light. This is because attractiveness decreases
with an increase in distance, thereby increasing the potential for the algorithm to probe more within
the solution space. This attractiveness to less explored locations, relative to the level of exploitation
by the swarm’s current positions, is a good opportunity for superior solutions that will enhance the
efficiency of the explorative ability of the GFOA.

4.2 Distance Calculation between Fireflies
Accurate distance calculation of fireflies is important within the search space of the GFOA. The

distance between the optimal firefly (f g) and another firefly (f i) is calculated using Eq. (11). This is
important for directing fireflies toward promising solutions.

dgi =
√∑D

n=1

(
Zgn − Zin

)2
(11)

Here, (dgi) measures the distance between (fg) and (fi), with (Zgn) and (Zin) representing their
respective (nth) dimensional positions, and (D) denotes the dimensionality of the problem.

4.3 Strategic Movement in GFOA
The strategic realignment of the firefly (fi) toward (fg), based on the principle of superior

luminosity, is captured by Eq. (12):

f new
i = f old

i + λfg

(
fg − fi

) + θζ (12)



310 JAI, 2024, vol.6

In instances where (fi) finds itself at the same location as (fg) within the same generation, (fg)

undertakes exploratory actions facilitated by incremental adjustments through a chaotic map, thereby
enhancing adaptability beyond the SFA. The integration of randomness through (ζ ), moving away
from the reliance on attractiveness parameters, is presented in Eq. (13):

f new
g = f old

g + θζ (13)

This method introduces a level of randomness, ensuring that the algorithm can venture beyond its
current position even when converging to a singular point, thereby diversifying the search and reducing
the likelihood of premature convergence.

The operational framework of GFOA is distinguished by its nuanced decision-making process
in which the fitness scores of newly generated fireflies inform their spatial positioning and steer the
algorithm’s overarching search strategy. Comparing the fitness from f new

g against f old
g to this evaluative

process is the updating of the standard of excellence, performed on f new
g if it exhibits a higher fitness or

maintains f old
g as the performance pinnacle if it does not. Such dynamics not only amplify the efficiency

of the GFOA by leveraging better existing solutions but also stimulate wide exploration in the solution
space. This encourages fireflies to search for and explore new regions that may be potentially better.
This basic aspect emphasizes the efficiency of the GFOA, particularly for the purpose of improving
the power of local search and indicating an innovative strategy for the GFOA. Improvement by an
extensive margin of attack detection in a systematic manner within IoT networks by this algorithm,
which will be presented in Algorithm 1 and explained in Fig. 3, represents a major improvement for
swarm-based optimization methodologies.

Algorithm 1: Proposed GFOA
1: Begin
2: Randomly initialize the population of fireflies.
3: Set the iteration counter.
4: while Iter < Max Iter do
5: Calculate the intensity of light I from each firefly.
6: Evaluate the value of the fitness function of each firefly by Eq. (4).
7: for each firefly f i of the population do
8: for each firefly f j in the population do
9: if fitness of f i < fitness of f j then

10: if distance dij between f i and f j < swarm size then
11: Transfer f i to f j as per Eq. (12).
12: else
13: Move f i towards a random position as per Eq. (13).
14: end if
15: end if
16: end for
17: end for
18: Perform boundary checks and enforce boundary limits for the positions of fireflies.
19: Recompute the fitness value of each firefly f i according to Eq. (4).
20: Retain the maximum of f new

g and f old
g with respect to light intensity.

21: Arrange the fireflies in order of their light intensity and identify the brightest firefly.
(Continued)
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Algorithm 1 (continued)
22: Increment the iteration counter, Iter.
23: end while
24: End

Initialize the population of fireflies 

Calculate fitness value 

Select best fireflies on light intensity and attractiveness 

Divided rest of the population in to prides 

Check boundary limits 

Adjustment 

Update the fitness value 

Rank the swarm and get the best firefly 

Feature selection 

Figure 3: Conceptual diagram of the proposed GFOA framework

4.4 Classification Methodology
This study assessed the effectiveness of the NB classifier [32] for certain attribute relevance and

data class classification tasks. The novel contribution of this approach is that it embeds decision trees
at the core of the classification strategy. The data were used several times during training, further
enabling data accuracy polishing when classifying attacks. This further enhances the efficacy and
reliability of the NB classifier by utilizing a more diverse dataset, resulting in a more precise and
accurate categorization of attacks. What distinguishes this classifier from the others is its architecture,
which is typified by the voting of multiple classifiers over the classification of the input vectors.

Such collective voting adds complexity and variation, thereby enhancing the classifier’s ability to
accommodate the various data subsets developed during feature selection in the ensemble method.
Thus, the NB classifier’s performance will, to some extent, establish important parameters that guide
the model’s predictive process. Their results are used to determine the classification of each data
instance, making the NB classifier a robust tool with a smaller tendency to classify errors than
conventional classification methods. This improves the performance of the classifier by accounting
for factors such as several trees, minimum node dimensions, and the number of functions at each split.
This provides a detailed setup for the classifier, making it powerful for classifying different types of
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attacks such as DoS, web attacks, and port scans in their respective clusters. This enhanced the ability
of the classifier to perform composite classification tasks.

5 Experimental Results and Discussion

In this section, we evaluate the performance of the proposed GFOA in the detection of DoS, web,
and port scan attacks. Our results demonstrate that the GFOA achieves a performance comparable
to those of SOTA classifiers, such as extreme gradient boosting [33], discrete AdaBoost [34], and
SFA when evaluated on the CICIDS and UNSW-NB15 datasets. The experimental configuration
comprised a computer with 16 GB of RAM and a 1.80 GHz processor, and the experiments were
performed using MATLAB R2013a.

5.1 Performance Metrics
The performance comparison of the GFOA with traditional methods was evaluated using multiple

metrics: accuracy, precision, recall, F-measure, error rate, false positive percentage, false negative
percentage, and area under the curve (AUC). These metrics provide a holistic evaluation of the ability
of the GFOA to accurately observe attack detection threats and provide nuanced insights into usable
effectiveness.

5.2 Performance Analysis
The performance of the GFOA was compared with those of extreme gradient boosting and

discrete AdaBoost classifiers based on the CICIDS dataset. As summarized in Table 1, the success of
the GFOA in comparison with the other two classifiers lags behind that of the GFOA across several
important metrics. The GFOA performed significantly better than the extreme gradient boosting
classifier, which had lower scores for accuracy (44.32%), precision (48.21%), recall (63.71%), and F-
measure (55.32%). The accuracy, precision, recall, and F-measure values were 89.76%, 84.7%, 90.83%,
and 91.11%, respectively. The discrete AdaBoost classifier performs better than extreme gradient
boosting, but not as well as the GFOA. It had 67.51% accuracy, 71.4% precision, 74.67% recall, and
72.36% F-measure, whereas SFA had 53.1% accuracy, 57.21% precision, 60.89% recall, and 54.73%
F-measure.

Table 1: Comparative binary classification outcomes on the CICIDS dataset

Performance (%) Accuracy (%) Precision (%) Recall (%) F-measure (%)

Extreme gradient boosting classifier 44.32 48.21 63.71 55.32
Discrete AdaBoost classifier 67.51 71.4 74.67 72.36
SFA 53.1 57.21 60.89 54.73
Proposed method 89.76 84.7 90.83 91.11

Further insights, listed in Table 2, concentrate on the AUC score and error rate, highlighting the
ability of the GFOA to detect threats with an AUC of 81.33% and a minimal error rate of 10.29. The
extreme gradient boosting classifier’s AUC score of 32.11%, the discrete AdaBoost classifier’s score of
54.6%, and the SFA score of 64.81 were all better than those of the GFOA at finding and categorizing
attack detection threats. Figs. 4 and 5 show how well the GFOA performed binary classification on
the CICIDS dataset and a comparison of the AUC scores. These results demonstrate that the GFOA
is the best at detecting threats.
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Table 2: AUC scores and error rates from binary classification of the CICIDS experiment

Methods AUC Error rate

Extreme gradient boosting classifier 32.11 55.68
Discrete AdaBoost classifier 54.6 32.49
SFA 64.81 23.86
Proposed method 81.33 10.29

Figure 4: Comparative analysis graph of binary classification for CICIDS: proposed GFOA vs. existing
methods

Figure 5: Comparative graph of AUC scores for binary classification using the proposed GFOA vs.
existing methods

An error rate comparison between the proposed method for binary classification and conventional
methods is shown in Fig. 6. The performance metrics of the multi-classification analysis for the
CICIDS dataset are summarized in Table 3. These metrics include the F-measure, accuracy, precision,
and recall. With an accuracy of 83.37%, precision of 84.02%, recall of 82.27%, and F-measure of
82.03%, this study shows that the proposed method is the best way to identify port scan attacks.
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Comparatively, the extreme gradient boosting classifier recorded an accuracy of 82.43%, precision
of 83.14%, recall of 81.2%, and F-measure of 82.07% for port scan attacks. Meanwhile, the discrete
AdaBoost classifier exhibited an accuracy of 82.61%, precision of 82.36%, recall of 82.04%, and F-
measure of 82.51%. In contrast, SAF exhibits 83.01% accuracy, 83.62% precision, 82.98% recall, and
83.15% F-measure for port scan attacks. Visual depictions of the multi-classification outcomes on the
CICIDS dataset, focusing on the accuracy and F-measure, are shown in Fig. 7.

Figure 6: Comparative error rate analysis of binary classification: proposed GFOA vs. existing methods

Table 3: Results of multi-classification for the CICIDS dataset

Methods Attacks Accuracy (%) Precision (%) Recall (%) F-measure (%)

Extreme gradient boosting
classifier

DoS 87.21 87.98 84.25 87.83
Web attack 78.36 79.23 57.11 58.31
Port scan 82.43 83.14 81.2 82.07

Discrete AdaBoost classifier
DoS 87.01 88.21 87.27 82.29
Web attack 79.22 82.55 81.57 79.67
Port scan 82.61 82.36 82.04 82.51

SFA
DoS 88.34 88.08 82.73 83.81
Web attack 80.23 83.98 82.51 80.12
Port scan 83.01 83.62 82.98 83.15

Proposed method
DoS 89.68 89.9 89.69 89.99
Web attack 79.21 81.37 80.91 82.97
Port scan 83.37 84.02 82.27 82.03



JAI, 2024, vol.6 315

Figure 7: Comparative analysis for multi-classification of CICIDS: accuracy and F-measure of
proposed GFOA vs. existing method

Fig. 8 shows a graph of the derived values for the precision and recall metrics in the multi-
classification analysis of the CICIDS dataset. The figures show the precision of the method in class
differentiation and the capture of relevant instances in the GFOA. Table 4 summarizes these multi-
classification results in further detail, including one of the more important characteristics when
determining a classifier’s performance: AUC scores and error rate.

Figure 8: Comparing GFOA with classic methods on precision and recall for CICIDS threat
classification

Table 4: AUC scores and error rates: GFOA vs. traditional methods in CICIDS dataset classification

Methods Attacks AUC (%) Error rate (%)

Extreme gradient boosting classifier DoS 87.24 1.279
Web attack 69.73 2.164
Port scan 81.11 1.757

(Continued)



316 JAI, 2024, vol.6

Table 4 (continued)

Methods Attacks AUC (%) Error rate (%)

Discrete AdaBoost classifier DoS 85.37 1.299
Web attack 72.16 2.078
Port scan 89.17 1.739

SFA DoS 86.09 1.234
Web attack 74.52 1.997
Port scan 89.93 1.692

Proposed method DoS 82.25 1.032
Web attack 69.99 2.079
Port scan 90.05 1.663

The AUC score provides an indication of the classifier’s level of accuracy and ranges from 0 to 100.
If the number approaches 100, it is considered extremely high; otherwise, the classifier is considered
inaccurate. According to this evaluation, the GFOA has a high capacity to detect port scans, achieving
a notable AUC score of 90.05% with an extremely low error of 1.663. Extreme gradient boosting
achieved an AUC score of 81.11% and an error rate of 1.757 for the same attacks. The SFA had an AUC
score of 89.93% and an error rate of 1.692 for the same attacks, and the discrete AdaBoost classifier
had an AUC score of 89.17% and an error rate of 1.739 for port scan attacks. This comparative analysis,
particularly focusing on the AUC scores and error rates of the multi-classification capabilities of the
GFOA and traditional approaches, is depicted in Fig. 9, which provides a clear visual representation
of the superior performance and efficiency of the GFOA in threat detection and classification.

Figure 9: AUC score showdown: GFOA vs. conventional methods on the CICIDS dataset

The proposed GFOA performs better than traditional classification methods, as shown in Fig. 10,
which shows the error rates for multi-classification on the UNSW-NB15 dataset. For the UNSW-NB15
dataset, Table 5 summarizes a full breakdown of the classification performance metrics, including
the error rate, false negative rate, false positive rate, recall, F-measure, and accuracy. This in-depth
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analysis pits the performance of the GFOA against that of widely recognized classifiers, such as
extreme gradient boosting and discrete AdaBoost classifiers. The study showed that GFOA performed
better on the UNSW-NB15 dataset, with accuracy, precision, recall, and F-measure rates of 86.25%,
86.07%, 86.82%, and 86.99%, respectively. It also had error, false negative, and false positive rates of
0.007, 5, and 3, respectively. By contrast, the extreme gradient boosting classifier achieved an accuracy
of 85.37%, precision of 89.59%, recall of 89.32%, F-measure of 89.95%, error rate of 0.0093, false
negative rate of 4, and a significantly higher false positive rate of 22. In contrast, SFA reported 85.21%
accuracy, 85.73% precision, 85.23% recall, 86.23% F-measure, 0.0096 error rate, four false negative
rates, and 23 noticeably larger false positive rates. Then, Fig. 11 shows how the new GFOA compares
to other methods by showing how the binary classification results on the UNSW-NB15 dataset differ.

Figure 10: Comparing error rates in multi-classification: GFOA vs. traditional methods

Table 5: Performance metrics on UNSW-NB15: GFOA vs. established techniques

Metric (%) Extreme gradient
boosting classifier

Discrete AdaBoost classifier SFA Proposed method

Accuracy 85.37 84.83 85.01 86.25
Precision 89.59 85.02 85.73 86.06
Recall 89.32 85.45 85.98 86.82
F1-measure 88.95 85.94 86.23 86.99
Error rate 0.0093 0.009 0.0096 0.007
False negatives 4 4 4 5
False positives 22 59 23 3
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Figure 11: Binary classification showdown on UNSW-NB15: GFOA vs. traditional methods

6 Comparative Analysis

This section compares how well the new GFOA works compared to well-known computer models
such as feedforward neural networks (FNN), Vanilla long short-term memory (LSTM), and sparse
deep belief networks (DBN) in terms of binary classification on the CICIDS dataset. This tabulated
comparison against the key performance indicators developed and summarized in Table 6 includes
accuracy, precision, recall, and F-measure. Specifically, traditional approaches only test against a
subset of attack types compared to training, resulting in a significantly less optimal overall attack
classification. By contrast, the GFOA substantially improved its classification ability through detailed
training and data evaluation. The GFOA perfectly classified data for different types of attacks using
the NB classifier, thereby increasing the classification accuracy. Notably, for the binary classification
exercise of the CICIDS dataset, the GFOA exhibited the following results: precision, 86.34%; recall,
85.78%; and an F-measure of 85.45%. In contrast, the accuracy, precision, recall, and F-measure of the
FNN approach were 82.34%, 83.98%, 83.99%, and 84.38%, respectively. Fig. 12 presents a comparison
graph, which succinctly shows that the GFOA performed better in identifying and classifying attack
detection threats. This comparison is shown between the GFOA and traditional models, which further
proves that the GFOA has a better ability to detect attacks accurately than traditional models.

Table 6: Comparative binary classification outcomes on UNSW-NB15: GFOA vs. established
techniques

Metrics FNN Vanilla LSTM Sparse DBN SFA Proposed method

Accuracy 82.34 86.24 86.21 86.37 86.89
Precision 83.98 86.92 86.76 86.52 86.34
Recall 83.99 86.99 85.28 85.16 85.78
F-measure 84.38 87.23 87.19 86.29 85.45
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Figure 12: Performance graph for binary classification on UNSW-NB15: showcasing the GFOA

7 Conclusion

In this study, an innovative optimization method, the GFOA, is proposed for DoS, web attacks,
and port scan threat detection in the IoT. When analyzing the key datasets (CICIDS and UNSW-
NB15), it underwent preprocessing to eliminate noise and fill data gaps. Using PCA to extract features
helped identify low-rate attacks and improved the selection process in the GFOA framework, which
made the classifications more accurate. The NB classifier, at the heart of the classification phase, was
instrumental in efficiently organizing data across various attack vectors, significantly improving the
classification results. With extensive training and accurate data evaluation, the GFOA outperformed
conventional gradient-boosting classifiers in attack classification.

Although the GFOA has not been used practically, its performance compared to the existing
techniques has been quite remarkable. The GFOA outperformed the existing algorithms, indicating
its potential in real-world practical applications. Such comparisons are important because they reveal
an algorithm’s competence and constitute the first steps toward its practical implementation. We have
confidence in the success that the GFOA will experience as well as in helping push IoT security
measures forward.

However, a few limitations associated with the GFOA exist, which have only been tested using
the CICIDS and UNSW-NB15 datasets; hence, its effectiveness on other datasets or in practical
applications is yet to be demonstrated. Success depends on the preprocessing phase and the results
are unlikely to be as effective under different data characteristics. PCA used for feature extraction
may overlook important features that are useful for detecting sophisticated attacks. The performance
of the NB classifier is data dependent and may not consistently offer high accuracy. However, its ability
to generalize different types of attacks is yet to be proven. Additional studies are required to fine-tune
this method. The current dependence on a single classifier suggests that improvements in detection
accuracy and reliability can be achieved by integrating more types of classifiers.

In the context of IoT domain threats, the GFOA represents a significant improvement in terms
of DoS, web attacks, and port scanning. The technique has exhibited promising results in its novel
approach, but further development is required for its full potential to change the larger security
landscape of the IoT. Specifically, it focuses on the scalability and adaptability of the method in
different IoT ecosystems, resilience to emerging threats, and the integration of real-time data analysis
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to proactively mitigate threats. Future studies in these areas will strengthen the contribution of the
GFOA to a robust and dynamic IoT security framework, leading to the final enhancement and
improvement of defense against a spectrum of attacks in a secure IoT environment.
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[30] H. S. Alhadawi, D. Lambić, M. F. Zolkipli, and M. Ahmad, “Globalized firefly algorithm and

chaos for designing substitution box,” J. Inf. Secur. Appl., vol. 55, 2020, Art. no. 102671. doi:
10.1016/j.jisa.2020.102671.

[31] A. H. Gandomi, X. S. Yang, S. Talatahari, and A. H. Alavi, “Firefly algorithm with chaos,” Commun.
Nonlinear Sci. Numer. Simul., vol. 18, no. 1, pp. 89–98, 2013. doi: 10.1016/j.cnsns.2012.06.009.

[32] K. P. Murphy, Naive Bayes Classifiers. Vancouver, BC, Canada: University of British Columbia, 2006, vol.
60, pp. 1–8.

https://doi.org/10.1049/iet-net.2018.5206
https://doi.org/10.1109/ACCESS.2023.3318316
https://doi.org/10.1109/ACCESS.2023.3318176
https://doi.org/10.1007/s11082-023-04553-x
https://doi.org/10.1016/j.knosys.2022.110132
https://doi.org/10.1016/j.comnet.2022.109553
https://doi.org/10.1515/jisys-2022-0155
https://doi.org/10.1109/ACCESS.2020.3009843
https://doi.org/10.1016/j.procs.2020.03.367
https://doi.org/10.14722/madweb.2022.23010
https://doi.org/10.1504/IJSI.2013.055801
https://doi.org/10.1016/j.asoc.2017.10.032
https://doi.org/10.1016/j.ins.2016.12.024
https://doi.org/10.1016/j.jisa.2020.102671
https://doi.org/10.1016/j.cnsns.2012.06.009


322 JAI, 2024, vol.6

[33] A. Bansal and S. Kaur, “Extreme gradient boosting based tuning for classification in intrusion detection
systems,” in Adv. Comput. Data Sci.: Second Int. Conf., Dehradun, India, Apr. 20–21, 2018, pp. 372–380.

[34] W. Hu, W. Hu, and S. Maybank, “AdaBoost-based algorithm for network intrusion detection,” IEEE Trans.
Syst., Man, Cybern., Part B (Cybern.), vol. 38, no. 2, pp. 577–583, 2008. doi: 10.1109/TSMCB.2007.914695.

https://doi.org/10.1109/TSMCB.2007.914695

	Optimizing Internet of Things Device Security with a Globalized Firefly Optimization Algorithm for Attack Detection
	1 Introduction
	2 Related Works
	3 Proposed Methodology
	4 Proposed Globalized Firefly Algorithm GFOA
	5 Experimental Results and Discussion
	6 Comparative Analysis
	7 Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


