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ABSTRACT

The diagnosis and prognosis of cardiovascular diseases are critical medical responsibilities that assist cardiologists
in correctly classifying patients and treating them accordingly. The utilization of machine learning in the medical
domain has witnessed a notable surge due to its ability to discern patterns from vast amounts of data. Machine
learning algorithms that can categorize cases of cardiovascular illness may help doctors reduce the number of
wrong diagnoses. This research investigates the efficacy of different machine learning algorithms in predicting
cardiovascular disease in accordance with risk factors. This study utilizes a variety of machine learning models,
including Logistic Regression, Random Forest, Decision Tree, Extra Trees classifier, Support Vector Machine
(SVM), XGBoost (XGB), Light Gradient Boosting Machine (LGBM), GaussianNB, and Multilayer Perceptron
(MLP). The machine learning models are applied to a concrete dataset acquired from Kaggle. The models
underwent training using a dataset that was partitioned into an 80:20 ratio. Machine learning model evaluation
involves the utilization of performance measurements such as Accuracy, Precision, Recall, and ROC curves. An
exhaustive evaluation is carried out to gauge the efficacy of the models.
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1 Introduction

Cardiovascular disease has been well recognized as a highly severe and potentially fatal condition
in the human population. The rising prevalence of cardiovascular illnesses, characterized by a
substantial mortality rate, poses a substantial risk and burden to healthcare systems on a global scale.
The prevalence of cardiovascular illnesses is higher in males compared to females, particularly during
middle or old age [1]. However, it is worth noting that children are also experiencing similar health
conditions [2]. Based on data presented by the World Health Organization (WHO), it is evident that
cardiovascular disease accounts for approximately one-third of all global mortality. Cardiovascular
Diseases (CVDs) are responsible for the mortality of roughly 17.9 million individuals annually on a
global scale, with a greater prevalence observed in the Asian population [3]. According to a European
Cardiology Society (ESC) survey, the global prevalence of heart disease stands at 26 million adults,
with an annual identification rate of 3.6 million individuals. Approximately 50% of patients who receive
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a diagnosis of heart disease experience mortality within a relatively short timeframe of 1–2 years.
Additionally, approximately 3% of the healthcare budget is devoted to treating heart disease [4].

To predict the occurrence of heart disease, it is imperative to do a series of different tests.
The possibility of inaccurate forecasts stems from a deficiency in proficiency among healthcare
professionals [1]. Identifying heart disease early can provide difficulties [2]. The surgical management
of cardiovascular disease poses challenges, especially in developing countries characterized by a
scarcity of skilled healthcare practitioners and restricted availability of diagnostic tools and essential
resources required for the adequate treatment and diagnosis of individuals with cardiac ailments [3].
To increase patient safety and reduce the occurrence of serious heart attacks, a precise prediction of
the probability of cardiac failure is necessary [4]. Machine learning algorithms have shown efficacy
in disease detection when taught on suitable data [5]. Heart disease datasets that are accessible to
the public enable the evaluation and comparison of prediction models. Researchers utilize machine
learning and AI to construct highly accurate prediction models by leveraging vast databases.

Recent research has placed significant emphasis on addressing CVDs in both adults and children,
with a particular focus on reducing death rates associated with these conditions. Given the uneven
and redundant nature of the available clinical datasets, it is imperative to emphasize the significance
of effective preprocessing as a critical step [6]. Predictive models rely on the identification of relevant
qualities that might operate as risk factors. Careful consideration of feature and algorithm optimiza-
tion is required to build accurate prediction models using machine learning [7]. The examination
of risk variables that meet three particular criteria, namely substantial frequency in the majority of
populations, independent significant impact on heart illnesses, and the capacity for management or
therapy to lessen risks, is crucial and has a great deal of value. Various researchers have used diverse
risk variables or characteristics while constructing models to predict CVDs. Research studies have
incorporated various features in developing CVD prediction models [8]. To accurately predict cardiac
disease, researchers have a difficult time combining these indicators with the necessary machine-
learning algorithms. Machine learning algorithms achieve optimal effectiveness when taught on
suitable datasets [9–12]. Since the algorithms depend on the consistency of the training and test data,
feature selection procedures are important.

Machine learning models have been implemented in various fields recently including intrusion
detection [13] and fraud detection [14] and others. Machine learning models are also being used
for healthcare systems along with disease identification, disease detection, and diagnosis. Early
intervention, personalized treatment plans, risk stratification, efficient resource allocation, and patient
involvement are all made possible by accurate diagnosis and prognosis in cardiovascular care. Machine
learning is essential in recognizing intricate patterns, producing individualized risk forecasts, assisting
in therapeutic decision-making, and consistently enhancing diagnostic precision [15]. The integration
of machine learning improves the effectiveness and efficiency of cardiovascular healthcare delivery
by minimizing misdiagnoses and enhancing patient outcomes. Extensive research work has been
performed for cardiovascular disease predictions using machine learning, however, the performance
of the machine learning models varies. A comprehensive comparison of the performance of the
models for disease prediction is required to understand the model’s performance in terms of disease
predictions using a public dataset. The primary objective and contribution of this study is to predict
cardiovascular diseases using several risk factors from a real-world dataset through several supervised
learning models, such as Logistic Regression, Random Forest, Decision Tree, Extra Trees, Support
Vector Classifier (SVC), XGBoost, Light Gradient Boosting Machine (LGBM), Gaussian Naive
Bayes (GaussianNB), and Multi-layer Perceptron (MLP) classifiers are applied. Furthermore, a
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comprehensive performance comparison among these models is performed to evaluate the models
using the dataset.

This paper is organized as follows: Section 2 contains related work, and Section 3 contains a
methodology and an overview of the dataset. Section 4 contains the implementation and results.
Section 5 is the discussion and analysis, followed by Section 6, the conclusion of this work.

2 Related Work

The increased precision and efficacy of machine learning and AI technologies in making predic-
tions have led to their broad use in the last several years [16]. The ability to develop and choose models
that show remarkable accuracy and performance is the key to the success of this area of study [17].

Maiga et al. [18] performed a comparative analysis of machine learning algorithms for predicting
cardiovascular disease based on patients’ cardiovascular risk factors. The data is sourced from
Kaggle machine learning competitions and comprises 70,000 patient records. The study employs
machine learning methods such as Random Forest, Naïve Bayes, KNN, and Logistic Regression. The
comparison results indicate that the Random Forest algorithm achieves a classification accuracy of
73%, a specificity of 65%, and a sensitivity of 80%.

Shah et al. [19] examined the feasibility of employing machine learning techniques to construct a
predictive model for cardiovascular disease. The data utilized for this objective were acquired from the
Cleveland heart disease dataset, comprising of 303 occurrences and 17 attributes, and were retrieved
from the UCI machine learning repository. The authors utilized several supervised classification
techniques, such as Naïve Bayes, decision tree, random forest, and k-nearest neighbors (KKN). The
study findings revealed that the KKN model demonstrated the best level of accuracy, reaching 90.8%.
The work underscores the potential efficacy of machine learning methods in forecasting cardiovascular
illness and underscores the significance of choosing suitable models and approaches to attain optimal
outcomes.

Using a dataset provided by the Cleveland Clinic Foundation, Alotalibi [20] also applied machine
learning (ML) techniques to forecast heart failure disease. To develop prediction models, the authors
implemented a variety of ML algorithms, including decision tree, logistic regression, random forest,
Naïve Bayes, and support vector machine (SVM). A 10-fold cross-validation method was utilized in
the process of developing the model. The findings revealed that the decision tree algorithm exhibited
the best level of accuracy in forecasting heart illness, achieving a rate of 93.19%. The SVM algorithm
followed closely behind with a rate of 92.30%. This work offers valuable insights into the potential
of machine learning techniques as a powerful tool for forecasting heart failure disease. It specifically
highlights the decision tree algorithm as a promising choice for further research.

Hasan et al. [21] conducted a study to determine the most effective feature selection method for
predicting cardiovascular disease by comparing several algorithms. The initial consideration involved
three widely recognized feature selection methods: Filter, wrapper, and embedding. Subsequently, a
feature subset was obtained by applying a Boolean process-based common “True” condition to the
results of these three algorithms. This method consisted of extracting subsets of features in two stages.
Multiple models, such as random forest, support vector classifier, k-nearest neighbors, Naïve Bayes,
and XGBoost, were considered to determine their comparative accuracy and choose the best predictive
analytics model. The artificial neural network (ANN) was utilized as a benchmark for comparing all
attributes. The study revealed that the XGBoost classifier, when combined with the wrapper approach,
yielded the most precise predictions for cardiovascular disease. XGBoost achieved an accuracy rate of
73.74%, whereas SVC achieved 73.18% and ANN achieved 73.20%.
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The main limitation of the previous research is its restricted dataset, which increases the likelihood
of overfitting. The models created may not be suitable for extensive datasets. On the other hand, a large
size dataset on cardiovascular diseases that included 70,000 patients and 12 characteristics is utilized
in this research, which helped decrease the risk of overfitting. Table 1 provides a brief review of studies
on predicting cardiovascular disease.

Table 1: Related work

Refs. Techniques Results Limitations

Maiga et al. [18] -Random forest
-Naïve Bayes
-Logistic regression
-KNN

Random Forest algorithm
achieves a classification
accuracy of 73%, a
specificity of 65%, and a
sensitivity of 80%.

Kaggle
cardiovascular
disease dataset
(70,000 patients, 12
attributes), using
only 3 models

Shah et al. [19] Naïve Bayes, decision tree,
random forest, and
k-nearest neighbors
(KKN)

KKN model demonstrated
the best accuracy of 90.8%.

Cleveland heart
disease dataset of
303 occurrences and
17 attributes

Alotalibi [20] Decision tree, logistic
regression, random forest,
Naïve Bayes, and support
vector machine (SVM).

Decision tree algorithm
exhibited the best level of
accuracy rate of 93.19%.

Cleveland heart
disease dataset of
303 occurrences and
17 attributes

Hasan et al. [21] Random forest, support
vector classifier, k-nearest
neighbors, Naïve Bayes,
and XGBoost

XGBoost achieved an
accuracy rate of 73.74%,
whereas SVC achieved
73.18% and ANN achieved
73.20%.

UCI cardiovascular
dataset (303 patients,
14 attributes)

2.1 Machine Learning Models
2.1.1 Logistic Regression

Logistic Regression is a primary model used for classifying binary problems in several fields, such
as healthcare. Its interpretability and ability to evaluate probabilities make it particularly valuable
in diagnosing cardiovascular illness. Within clinical settings, it assists in evaluating risk and making
informed decisions by offering valuable insights into the probability of particular outcomes.

2.1.2 Random Forest

The Random Forest algorithm is a popular ensemble learning technique that is extensively utilized
in cardiovascular research due to its strong resilience and capacity to effectively handle data with a high
number of dimensions. Through the process of combining forecasts from numerous decision trees, it
reduces the risk of overfitting and effectively captures intricate relationships within cardiovascular
datasets. Its usefulness in activities like risk prediction and disease classification is immeasurable.
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2.1.3 Decision Tree

Decision trees are intuitive models that provide transparency and interpretability in the context
of cardiovascular disease diagnosis. Data is partitioned based on distinctive qualities to construct
a hierarchical structure resembling a tree, with each node representing a point of decision-making.
Decision Trees are highly effective at finding significant predictor factors and are frequently utilized
in clinical decision support systems for evaluating risk and developing treatment strategies.

2.1.4 Extra Trees

Extra Trees is an ensemble learning method that is similar to Random Forest, but it incorporates
more randomness in the process of selecting features. The inherent unpredictability of Extra Trees
contributes to the variety of tree structures, which in turn improves their ability to handle data with
high levels of noise and prevents overfitting. Extra Trees is a valuable tool in cardiovascular research
for creating accurate diagnostic and prognostic models, especially when dealing with complicated or
noisy information.

2.1.5 Support Vector Machine (SVM)

SVM is a highly effective model used for both classification and regression tasks in the investiga-
tion of cardiovascular diseases. Support Vector Machines (SVM) classify data points by identifying the
hyperplane that maximizes the distance between different classes in a space with many dimensions. The
valuable applications of this tool include patient risk stratification and disease categorization, thanks
to its capability to handle non-linear correlations and high-dimensional data.

2.1.6 Gaussian Naïve Bayes

Gaussian Naïve Bayes is a probabilistic model that is both straightforward and highly effective,
and it is extensively employed in the diagnosis of cardiovascular disease. The assumption is that the
features are independent and follow a normal distribution. This makes the method computationally
efficient and resistant to the influence of irrelevant features. Gaussian Naïve Bayes is used in healthcare
contexts to assist with risk assessment and classification tasks. It provides probabilistic predictions by
analyzing patient data.

2.1.7 XGBoost

XGBoost is a gradient-boosting algorithm that is widely recognized for its outstanding perfor-
mance in predictive modeling applications, specifically in the analysis of cardiovascular disease. The
process involves constructing a series of decision trees, where a differentiable loss function is optimized
at each step. The favored choice for risk prediction, disease categorization, and feature selection
in cardiovascular research is XGBoost due to its capacity to handle big datasets, capture intricate
correlations, and prevent overfitting.

2.1.8 Light GBM

Light GBM is a gradient-boosting framework that has gained recognition for its ability to process
large-scale datasets rapidly and effectively. The method employed in this system is a unique tree-based
learning approach that emphasizes the growth of leaves in a hierarchical manner, resulting in reduced
computational requirements and enhanced training speed. Light GBM expedites model construction
and allows for real-time analysis in cardiovascular research, hence aiding prompt decision-making and
patient care.



134 JAI, 2024, vol.6

2.1.9 Multi-Layer Perceptron (MLP)

MLP, or Multilayer Perceptron, is a crucial component of artificial neural networks. It has
the ability to acquire intricate patterns from cardiovascular data through learning. The system is
composed of numerous layers of interconnected nodes, or neurons, which enables it to effectively
capture complex relationships and representations in high-dimensional spaces. MLPs are particularly
effective in cardiovascular disease analysis, demonstrating superior performance in tasks such as
predicting risk, classifying diseases, and extracting features from various data sources.

Each of these machine learning models has strengths that are useful for cardiovascular disease
diagnosis and prognosis, providing a complete toolkit. Logistic Regression simplifies binary clas-
sification, while Random Forest and Decision Tree models capture complex interactions in high-
dimensional data for feature selection and clinical decision-making. SVM can separate data points
in high-dimensional domains, making it useful for risk stratification and disease categorization. The
Gaussian Naïve Bayes algorithm is efficient and reliable for probabilistic classification problems,
especially with big datasets. Ensemble approaches like Extra Trees and XGBoost reduce overfitting and
capture complex cardiovascular data correlations to improve predicting performance. Light GBM’s
speed and efficiency enable real-time analysis and decision-making, while Multi-layer Perceptron
learns complex patterns from diverse data sources to predict risk and classify diseases in cardiovascular
research and clinical practice. These models can improve cardiovascular care through precise diagnosis,
prognosis, and individualized treatment.

3 Methodology

The research analyses the machine learning models for Cardiovascular Disease Predictions using
the Risk Factors dataset. Several Machine Learning algorithms are used in this research, including
Logistic Regression, Random Forest, Decision Tree, Extra Trees, Support Vector Classifier (SVC),
XGBoost, Light GBM, Gaussian Naïve Bayes, and Multi-layer Perceptron (MLP). The dataset pre-
processing is performed, after which the feature extraction is performed to understand the data.
Furthermore, the dataset analysis is performed using some of the extracted features. The dataset is
divided into two parts, training, and testing, with 70% and 30% of the total, respectively, to implement
the models, where the models are trained using the training set, and the performance of the models is
evaluated using a test set through various evaluation metrics including accuracy, precision, recall, and
F-1 score. The methodology of this research work is shown in Fig. 1.

3.1 Dataset
This dataset includes thorough information about cardiovascular disease risk factors [22]. It

includes information of 70,000 patients with 12 distinct features including age, gender, height, weight,
blood pressure, cholesterol, glucose, smoking habits, and alcohol use. Furthermore, it provides
information regarding the individual’s activity level and presence of any cardiovascular conditions.
Additionally, it outlines if the person is active or not and if he or she has any cardiovascular diseases.
The Age is in days, which is converted into years. To better understand cardiovascular disease and
develop more effective preventative strategies, researchers use this dataset to investigate potential
relationships between risk factors and the condition. It can be accomplished by applying modern
machine learning techniques. The dataset attributes are shown in Table 2.
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Figure 1: Methodology

Table 2: Dataset attributes

Feature Variable Min and max values

Age Age Min: 10,798 and max: 23,713 days
Height Height Min: 55 and max: 250
Weight Weight Min: 10 and max: 200
Gender Gender 1: Female, 2: Male
Systolic blood pressure ap_hi Min: −150 and max: 16,020
Diastolic blood pressure ap_lo Min: −70 and max: 11,000
Cholesterol Chol Categorical value = 1(min) to 3(max)
Glucose Gluc Categorical value = 1(min) to 3(max)
Smoking Smoke 1: Yes, 0: No
Alcohol intake Alco 1: Yes, 0: No
Physical activity Active 1: Yes, 0: No
Presence or absence of cardiovascular disease Cardio 1: Yes, 0: No

Fig. 2 shows the dataset overview according to diseases.
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Figure 2: Dataset distribution

3.2 Feature Extraction
The feature extraction is performed using a correlation matrix, which shows the data available in

the dataset, including age, gender, weight, and height, along with cholesterol, smoke, glucose, alcohol,
and cardio, i.e., 0 or 1. Fig. 3 shows the correlation matrix.

3.3 Dataset Analysis
The dataset analysis uses various features, including age, height, weight, and gender. The dataset

analysis is shown below. Figs. 4–7 show the risk factors analysis using Age, Weight, Height, and
Gender, respectively.

3.4 Evaluation Metrics
The performance of various machine learning algorithms is analyzed using the metrics such as

Accuracy, Precision, Recall, F1 Score, Precision-Recall Curve and ROC-AUC Curve.

3.4.1 Accuracy

Accuracy is the most common metric used to evaluate classification algorithms. Accuracy is
defined as the ratio of correct predictions to the total number of samples. The primary criterion for
assessing the effectiveness of supervised machine learning algorithms is accuracy.

Accuracy = TP + TN
TP + FP + TN + FN
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Figure 3: Correlation matrix

Figure 4: Risk factors analysis using age
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Figure 5: Risk factors analysis using weight

Figure 6: Risk factors analysis using height
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Figure 7: Risk factors analysis using gender

3.4.2 Precision

Precision is defined as the ratio of true positives to all positive predictions made by the algorithms.
The precision is the percentage of relevant algorithm outcomes.

Precision = TP
TP + FP

3.4.3 Recall

It is the average probability of complete retrieval.

Precision = TP
TP + FN

3.4.4 F1 Score

The F1 Score is the combination of precision and recall. It is calculated by taking the harmonic
mean of precision and recall.

F1 Score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

3.4.5 Area Under the ROC Curve (AUC)

The area under the Receiver Operating Characteristic (ROC) Curve (AUC) is a performance
metric mostly used for classification tasks. The AUC is calculated by plotting the True Positive Rate
(TPR), also known as sensitivity or recall, against the False Positive Rate. The higher the AUC, the
more accurate the model is at predicting heart disease. The ROC curve displays the performance trade-
off between a classification model’s TPR and False Positive Rate (FPR).
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4 Implementation and Results

The main objective of this research is to implement different machine-learning models for
predicting cardiovascular heart disease utilizing a dataset of risk variables. The machine learning
models are applied to the Cardiovascular Risk Factors dataset. Based on the risk factors, the dataset
predicts cardiovascular heart illnesses. The dataset is divided into two parts, training and testing, with
70% and 30% of the total, respectively, to implement the models. Following their training on the
training set, the machine learning models are evaluated on the test set. The performance of the machine
learning model is assessed by comparing it using several evaluation measures, such as precision, recall,
and F1 Score. Additionally, the Precision-Recall and AUC curves are utilized, and the confusion
matrix is displayed for each model output. In addition, the evaluation measures allow for a thorough
comparison of the models’ performance.

4.1 Evaluation Results
In this section, the performance of the models is highlighted, using several evaluation metrics and

a confusion matrix.

4.1.1 Logistic Regression

With a precision of 0.73, recall of 0.66, accuracy of 0.71, and F1 Score of 0.70, the logistic regres-
sion model performs well in the prediction of cardiovascular disease. Fig. 8 displays the confusion
matrix for the Logistic Regression model.

Figure 8: Confusion matrix of logistic regression

The performance of the model is shown in Table 3.
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Table 3: Logistic regression performance

Metrics Performance

Precision 0.73
Recall 0.66
Accuracy 0.71
F1 Score 0.70

4.1.2 Random Forest

With a precision of 0.72, recall of 0.70, accuracy of 0.72, and F1 Score of 0.71, the Random Forest
has performed well. Fig. 9 displays the confusion matrix for the Random Forest model.

Figure 9: Confusion matrix of random forest

The performance of the model is shown in Table 4.

Table 4: Random forest performance

Metrics Performance

Precision 0.72
Recall 0.70
Accuracy 0.72
F1 Score 0.71

4.1.3 Decision Tree

The Precision, Recall, Accuracy, and F1 Score for the Decision Tree are all 0.64, 0.62, 0.63, and
0.63, respectively. Fig. 10 displays the confusion matrix about the Decision Tree model.
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Figure 10: Confusion matrix of decision tree

The performance of the model is shown in Table 5.

Table 5: Decision tree performance

Metrics Performance

Precision 0.64
Recall 0.62
Accuracy 0.63
F1 Score 0.63

4.1.4 Extra Trees Classifier

The Extra Trees Classifier has obtained a Precision of 0.70, Recall of 0.69, Accuracy of 0.69, and
F1 Score of 0.69. The confusion matrix for the Extra Trees Classifier model is displayed in Fig. 11.

Figure 11: Confusion matrix of extra trees classifier
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The performance of the model is shown in Table 6.

Table 6: Extra trees classifier performance

Metrics Performance

Precision 0.70
Recall 0.69
Accuracy 0.69
F1 Score 0.69

4.1.5 Support Vector Classifier (SVC)

The SVC has obtained a Precision of 0.78, Recall of 0.62, Accuracy of 0.72, and F1 Score of 0.69.
The confusion matrix for the SVC model is depicted in Fig. 12.

Figure 12: Confusion matrix of support vector classifier

The performance of the model is shown in Table 7.

Table 7: Support vector classifier performance

Metrics Performance

Precision 0.78
Recall 0.62
Accuracy 0.72
F1 Score 0.69
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4.1.6 Gaussian Naïve Bayes

The Gaussian Naïve Bayes model has attained a Precision of 0.74, Recall of 0.27, Accuracy of
0.58, and F1 Score of 0.40. The confusion matrix for the Gaussian Naïve Bayes model is displayed in
Fig. 13.

Figure 13: Confusion matrix of Gaussian Naïve Bayes

The performance of the model is shown in Table 8.

Table 8: Gaussian Naïve Bayes performance

Metrics Performance

Precision 0.76
Recall 0.69
Accuracy 0.72
F1 Score 0.72

4.1.7 XGBoost Classifier (XGB)

The XGBoost Classifier has attained a Precision of 0.76, Recall of 0.69, Accuracy of 0.72, and F1
Score of 0.72. The confusion matrix of the XGBoost Classifier model is depicted in Fig. 14.

The performance of the model is shown in Table 9.
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Figure 14: Confusion matrix of XBG classifier

Table 9: XBG classifier performance

Metrics Performance

Precision 0.76
Recall 0.70
Accuracy 0.73
F1 Score 0.73

4.1.8 Light GBM Classifier (LGBM)

The Light GBM Classifier has attained a Precision of 0.76, Recall of 0.70, Accuracy of 0.73, and
F1 Score of 0.73. The confusion matrix of the Light GBM Classifier model is displayed in Fig. 15.

Figure 15: Confusion matrix of LGBM
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The performance of the model is shown in Table 10.

Table 10: LGBM performance

Metrics Performance

Precision 0.74
Recall 0.27
Accuracy 0.58
F1 Score 0.40

4.1.9 Multi-Layer Perceptron (MLP)

The Multi-Layer Perceptron has attained a Precision of 0.77, Recall of 0.64, Accuracy of 0.72,
and F1 Score of 0.70. Fig. 16 displays the confusion matrix of the MLP model.

Figure 16: Confusion matrix of MLP

The performance of the model is shown in Table 11.

Table 11: MLP performance

Metrics Performance

Precision 0.77
Recall 0.64
Accuracy 0.72
F1 Score 0.70
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5 Discussion and Analysis

This section provides a performance comparison of machine learning models used for predicting
cardiovascular illness. The comparison is based on performance metrics such as accuracy, precision,
recall, and F1 Score. Additionally, the Precision-Recall and ROC curves are included. It offers an
in-depth evaluation of the model’s performance.

5.1 Performance Comparison
Among the models evaluated, XGBoost exhibits the most favorable overall performance, as seen

by its superior F1 Score (0.73) and Accuracy (0.73). Additionally, it has a comparatively high precision
of 0.76 and a recall of 0.70. The Support Vector Machine demonstrates the highest precision, achieving
a value of 0.78. The Gaussian Naïve Bayes is closely behind, which has good precision at 0.76 and recall
at 0.69. On the other hand, it is worth noting that Light GBM exhibits a significantly lower Recall value
of 0.27, which consequently leads to a lower F1 Score of 0.40. The Decision Tree algorithm consistently
demonstrates the lowest performance across all evaluation metrics, including Precision (0.64), Recall
(0.62), Accuracy (0.63), and F1 Score (0.63). When selecting the optimal model, it is imperative to
consider the performance indicators, namely Precision and Recall, along with other pertinent criteria
such as computational efficiency and dataset characteristics. The performance of the machine learning
models is presented in Table 12.

Table 12: Performance comparison of machine learning models

Models Precision Recall Accuracy F1 Score

Logistic regression 0.73 0.66 0.71 0.70
Random forest 0.72 0.70 0.72 0.71
Decision tree 0.64 0.62 0.63 0.63
Extra trees 0.70 0.69 0.69 0.69
Support vector machine 0.78 0.62 0.72 0.69
Gaussian Naïve Bayes 0.76 0.69 0.72 0.72
XGBoost 0.76 0.70 0.73 0.73
Light GBM 0.74 0.27 0.58 0.40
Multi-layer perceptron 0.77 0.64 0.72 0.70

The performance of the machine learning models is presented in Fig. 17.

The evaluation of different machine learning models using the given dataset of cardiovascular
risk variables indicates that XGBoost is the most suitable solution for accurate prediction and
classification. XGBoost exhibits outstanding performance in several measures such as precision,
recall, accuracy, and F1 Score. It demonstrates a well-balanced and resilient approach in dealing
with intricate data patterns that are inherent in cardiovascular risk factor research. Although Support
Vector Machine and Gaussian Naïve Bayes have their own benefits in some measures, XGBoost stands
out as the best option for achieving high overall predicting accuracy and dependability. These findings
emphasize the significance of choosing the most appropriate model for the particular context and goals
of cardiovascular disease research and clinical decision-making. XGBoost is a compelling choice for
improving risk assessment and patient care in cardiovascular health.
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Figure 17: Performance comparison of machine learning models

5.2 Precision-Recall Curve
The Precision-Recall curves provide useful insights into the performance of binary classification

models, especially when class imbalances exist. XGBoost, SVC, MLP, and Light GBM exhibit excep-
tional performance, as seen by their identical Average Precision (AP) ratings of 0.68. These models
demonstrate a robust trade-off between precision and recall, efficiently discerning good examples
from negative ones. The Random Forest algorithm demonstrates strong precision-recall properties,
as seen by its AP value of 0.65. The Decision Tree and GaussianNB models, with AP ratings of 0.59
and 0.57, respectively, demonstrate acceptable albeit somewhat diminished performance, implying
the possibility of enhancing their effectiveness. The occurrence of a negative AP score in Logistic
Regression is atypical and necessitates additional examination, given that AP values generally fall
within the range of 0 to 1. The Precision-Recall curves highlight the effectiveness of XGBoost, SVC,
MLP, and Light GBM in attaining a desirable balance between precision and recall. This balance is
particularly important when accurately detecting positive examples is significant. Fig. 18 shows the
comparison of the precision-recall curve.

Figure 18: Comparison of precision-recall curve
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5.3 ROC Curve
The ROC curves show the performance of binary classification models over different decision

thresholds, highlighting significant differences among the models. The Light GBM model demon-
strates superior performance, with a notable ROC-AUC score of 0.74. This value signifies the model’s
ability to differentiate between positive and negative cases effectively. The XGBoost, SVC, and MLP
models exhibit AUC scores of 0.73 and 0.72, indicating strong discriminatory capabilities. Logistic
Regression and Random Forest exhibit notable performance, as evidenced by their AUC values
0.71. The Decision Tree model, while achieving a somewhat lower discrimination capability of 0.63,
nevertheless demonstrates a reasonable level of performance. The GaussianNB model demonstrates
relatively inferior performance compared to the other models, as evidenced by its AUC value of
0.59. ROC-AUC highlights the effectiveness of Light GBM, XGBoost, SVC, and MLP in attaining
elevated true positive rates while simultaneously keeping false positive rates at a minimum. This
demonstrates their robust discriminatory ability in tasks involving binary classification. Fig. 19 shows
the comparison of the precision-recall curve.

Figure 19: Comparison of ROC curve

5.4 Discussion
After evaluating the strengths and weaknesses of both the high-performing and low-performing

models using the given metrics, it is evident that XGBoost emerges as the most effective performer.
XGBoost shows the ability in managing complex information connection associated with cardiovas-
cular risk factor analysis, as evidenced by its outstanding scores in accuracy, precision, recall, and F1
Score across all measures. The versatility and suitability of this technology for many sorts of datasets
and activities is due to its exceptional ability to capture subtle patterns. Nevertheless, the dependence
of XGBoost on computational resources and the requirement for thorough parameter tweaking might
present difficulties, particularly in contexts with limited resources. SVM also exhibits high precision,
suggesting its ability to properly identify affirmative cases. The great utility of this instrument extends
beyond cardiovascular risk assessment due to its efficacy in effectively distinguishing data points in
environments with a high number of dimensions.

Gaussian Naïve Bayes is notable for its equitable performance in both precision and recall,
providing dependability in prediction problems. Despite its restricted expressiveness compared to more
complicated models, its simplicity and computational efficiency make it well-suited for lightweight
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categorization tasks. However, the assumption of feature independence made by Naïve Bayes may
not be valid for all datasets, which could impact its performance in specific situations. at contrast,
Light GBM exhibits rapidity and effectiveness, rendering it highly skilled at managing extensive
datasets and doing real-time analysis. The capacity of the model to properly handle categorical features
and missing data enhances its attractiveness in specific applications. Nevertheless, the comparatively
inferior precision, recall, and accuracy of Light GBM in respect to other models give rise to doubts
over its capacity to effectively capture intricate data associations. Moreover, the fact that it is prone to
overfitting, especially when dealing with imbalanced datasets or noisy features, indicates that it may
not be entirely reliable for some applications.

To summarize, XGBoost, SVM, and Gaussian Naïve Bayes demonstrate proficiency in precision,
accuracy, and dependability. However, it is important to note that each model also has its own set
of constraints. Although Light GBM is efficient in terms of speed and resource utilization, it falls
short in performance measures, suggesting difficulties in effectively collecting intricate data patterns.
When choosing the most appropriate model, it is important to take into account the specific needs
and limitations of the application, while also finding a balance between performance, computational
efficiency, and interpretability.

6 Conclusion

In cardiovascular heart disease prediction, the assessment of different machine learning models
has yielded significant insights into their efficacy in identifying individuals who are susceptible to
the condition. The performance of the machine learning models is evaluated using performance
metrics, including Precision, Recall, F1 Score, and the Precision-Recall and AUC curve. The SVM
demonstrates a significant precision value of 0.78, indicating a robust capacity to accurately classify
positive instances, a critical factor in predicting heart disease. Nevertheless, the recall value of 0.62
suggests that although the SVM model has high accuracy, it may fail to identify certain positive
cases. This highlights the need to consider both precision and recall in evaluating cardiovascular risk
assessment. XGBoost and Gaussian Naïve Bayes have demonstrated considerable potential in heart
disease prediction, exhibiting a favorable equilibrium between precision and recall. This is reflected
in their notable F1 Score of 0.73 and 0.72, respectively. Achieving a balance between accurately
identifying positive instances and reducing the occurrence of false negatives is of utmost importance
within the healthcare domain. The ongoing development and refinement of models in the field of
cardiovascular health offer significant potential for enhanced identification of patients at risk of heart
disease, leading to more precise and timely therapies and, ultimately, better patient outcomes.

This research work implemented the machine learning models which show better performance for
the dataset used, but it is still not enough for accurate predictions of cardiovascular disease. Also, the
research uses only one dataset for the performance analysis, however, multiple datasets can be used for
the performance comparisons. In the future, models can be implemented and analyzed using multiple
datasets. Furthermore, advanced machine learning and deep learning-based algorithms can be applied
to cardiovascular predictions.
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