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Emission of Electric Dipole Radiation in Between Parallel Mirrors 
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Abstract. An oscillating electric dipole in free space emits its energy along straight lines. When the dipole is located 

in between parallel mirrors, this mechanism is significantly altered. Interference between the electric field of the 

dipole and the reflected magnetic field by the mirrors leads to a four-vortex structure in the emission pattern. The 

strength of the vortices depends on the separation between the mirrors and the distance of the dipole to one of the 

mirrors through a universal function. 
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1 Introduction 

Characteristics of emitted electromagnetic radiation by an oscillating electric dipole are not only 

determined by the dipole itself but also by its environment. The most celebrated phenomenon is 

the alteration of the energy emission rate due to the presence of an interface with a material 

medium. Radiation reflected back to the dipole by the interface changes the local electric field 

and this leads to either an enhancement or an inhibition of the energy emission rate.1-8 A natural 

generalization is the situation where the emitting dipole is located in between two parallel plane 

interfaces,9 with the most interesting case being power emission in between parallel mirrors.10-13  

2 Dipole in between mirrors 

We consider an electric dipole, oscillating at angular frequency  , and located in between 

parallel mirrors, separated by a distance L. The lower mirror is the xy plane and the z axis is 

perpendicular to both mirrors, with the positive end up. The dipole is located on the z axis, a 

distance H above the lower mirror. The dipole moment is written as od=d u , with od  the 

amplitude of the oscillation and u  a unit vector indicating the direction of oscillation. We shall 

assume that the dipole oscillates under angle   with the positive z axis, so that 

  cos sinz y = +u e e   .  (1) 

The setup is illustrated in Figure 1. The reflected field is identical to the field radiated by an 

infinite sequence of images on the z axis. They are located at 

  1 1
2 2

( ) ( 1) ( )m
mz m L H L= + + − −   ,  (2) 

with m any integer. The ‘image’ with m = 0 is the dipole itself, and we have 0z H= . The dipole 
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moment of the mth image is om md=d u , with 

  cos ( 1) sinm
m z y = + −u e e   .  (3) 

For m even, m =u u , and this is the dipole moment vector of the dipole itself, as in Eq. (1). For m 

odd, the parallel component changes sign. 

 

Fig. 1 The figure shows the dipole in between the mirrors. 

3 Fields 

Let 

  
3
o o

o4

k d



=   ,  (4) 

with o /k c=  the wave number of the radiation. For the electric field ( )E r  and the magnetic 

field ( )B r  we split off a factor as 

  ( ) ( )=E r e r   ,  (5) 

  ( ) ( )
c


=B r b r   .  (6) 

The field point r  with respect to the location of the mth image is 

  m m zz= −r r e   .  (7) 

The dimensionless distance between the mth image and the field point is om mq k r= , and unit 

vector ˆ
mr  points from the mth image to the field point. The complex amplitudes of the electric 
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and magnetic fields of the mth image can then be written as 

  垐 垐( ) ( ) [ 3( ) ] 1
miq

m m m m m m m m m
m m m

i i e

q q q

   
= − + − +  
   

e r u u r r u u r r   , (8) 

  ˆ( ) ( ) 1
miq

m m m
m m

i e

q q

 
=  + 

 
b r r u   .  (9) 

The total electric and magnetic fields in between the mirrors are the sums over the contributions 

from all images, including the dipole itself: 

  ( ) ( )m

m



=−

= e r e r    ,  (10) 

  ( ) ( )m

m



=−

= b r b r   .  (11) 

4 Poynting vector and flow lines of energy 

The flow lines of electromagnetic energy are represented by the field lines of the Poynting vector. 

The time-averaged Poynting vector in free space at the field point r  is 

  
o

1
( ) Re[ ( ) ( )*]

2
= S r E r B r   .  (12) 

We set 

  
2

o

( ) ( )
2 c




=S r σ r   ,  (13) 

so that we have  

  ( ) Re[ ( ) ( )*]= σ r e r b r   ,  (14) 

and this is the dimensionless Poynting vector. When the sums (10) and (11) are substituted into 

Eq. (14), cross terms between all m values appear. The field lines of ( )σ r  are the flow lines of 

the radiated energy by the dipole.  

5 Poynting vector and flow lines of energy 

Let us first consider a dipole in free space, so we use only the m = 0 term above. We then find  

  
2

02
0

sin
ˆ( )

q


=σ r r   ,  (15) 
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with 0q  the dimensionless distance from the dipole to the field point, and 0r̂  is the radially 

outward unit vector from the dipole. Angle   is the angle between vector u  and the direction of 

observation, so 0
ˆcos = r u . The Poynting vector ( )σ r  is proportional to 0r̂ , and therefore the 

field lines are straight lines, coming out of the dipole. No radiation is emitted along the dipole 

axis ( 0 = ). Figure 2 shows the field lines for a free dipole.  

 

Fig. 2 The diagram shows the field lines of the Poynting vector for a free linear dipole. The dipole oscillates along 

the u direction, and the field lines of energy flow are straight at all distances. 

6. Energy flow lines between parallel mirrors 

The field lines of the vector field ( )σ r  can be obtained numerically,14 and a typical example is 

shown in Fig. 3. The free parameters for the problem are the dimensionless distance ok L=  

between the mirrors, the dimensionless distance oh k H=  between the dipole and the lower mirror, 

and the angle   between the dipole direction and the z axis. Shown are field lines in the y z  

plane, with oy k y=  to the right and oz k z=  up. With o1/ k  as the length scale, 2  corresponds to 

an optical wavelength. In the figure we have 4= , / 2 = , and the dipole is located at the 

midway point between the mirrors. Close to the dipole, the electric and magnetic fields of the 

dipole diverge, so one may expect that in this region the field lines come straight out of the 

dipole, as for a free dipole. At larger distances, interference with the reflected field sets in, and 

close to the mirrors the field lines bend away from the mirrors, since radiation cannot penetrate 

the mirrors. Again, no radiation is emitted along the dipole axis, and we see from the figure that 
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field lines bend toward this axis, and end there. Fig. 4 shows the field lines for 4= , / 2 = , 

but now the dipole is closer to the bottom mirror. Below the dipole, field lines still come out of 

the dipole, but now they curve up and some return to the dipole at the other side. Above the 

dipole a singularity appears, which is indicated by a little circle. Apparently, close to the dipole 

the radiation from the dipole itself does not dominate the emission of radiation, since this would 

be emitted in the radially outward direction for all directions. Fig. 5 shows field lines for 4= , 

1h =  and / 3 = . The loop structure of Fig. 4 rotates with the dipole moment, and at the same 

time the field line structure becomes more intricate. Apparently, very close to the dipole the 

reflected field has a significant influence on the emission of radiation, except in the case of Fig. 3.  

 

Fig. 3 Field line pattern for a horizontal dipole midway between the mirrors. The solid lines on top and bottom 

represent the mirrors. 

 

Fig.4 Field line pattern for a horizontal dipole, at a distance 0.5h =  from the bottom mirror. The top mirror at 

4=  is outside the picture. 
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Fig.5 Field line pattern for 4= , 1h =  and the dipole moment is tilted over 60°.  Little circles indicate singular 

points of the flow field. 

7. Emission of radiation 

The electric and magnetic fields of the dipole itself are given by Eqs. 8 and 9 with m = 0. The 

distance to the dipole is 0q . The electric field has terms with 01/ q , 2
01/ q  and 3

01/ q , and all these 

terms diverge for 0 0q → . Similarly, the magnetic field has terms with 01/ q  and 2
01/ q . Therefore, 

in Eq. (14) for the Poynting vector one would expect that the highest order term is 5
01/ q . We see 

from Eq. (15), however, that only the term with 2
01/ q  is present for a free dipole. All other 

combinations leading to terms with 3
01/ q , 4

01/ q  and 5
01/ q  cancel out exactly. The reflected 

electric and magnetic fields are finite at the location of the dipole. Therefore, in the Poynting 

vector we get a combination of the 3
01/ q  term of the electric field of the dipole with the reflected 

magnetic field. Such a term would give a 3
01/ q  contribution to the Poynting vector, and this 

would dominate the 2
01/ q  term of the radiation emitted by the free dipole. From Eq. 9 we can 

find the magnetic field of the images at the location of the dipole. We cross this with the 3
01/ q  

term of the electric field of the dipole, giving the leading term in the Poynting vector in the 

neighborhood of the dipole. We obtain 

  2

3
0

sin
( ) '(1 3cos ) 3 cos cos ( , ) ...h

q


    = − + +

 
σ r u u   . (16) 

Vector 'u  is defined as 

  ' x= u e u   ,  (17) 
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and angle   is defined above. Angle   is the angle between 'u  and 0r̂  so 0
ˆcos ' = r u . The 

dependence on h and  is accounted for by the function and om mz k z= . A typical example of the 

function ( , )h  is given in Fig. 6. 

  

0

sin( 1)
( , ) cos

m
m

m
m mm

h


 
 



 −
= − 

 
   , (18) 

with 

  m mz h = −   ,  (19) 

 

Fig.6 Shown is ( , )h  as a function of h for 10= . 

To see the significance of the result shown in Eq. (16), we notice that the term of ( )σ r  shown is 

in the y z  plane, since both u  and 'u  are in the y z  plane. The dependence on the field point 

( , , )x y z  only comes in through the angles   and  . Vector 'u  is perpendicular to the dipole 

direction vector u . Let a field point be in the y z  plane on a line through the dipole and vector 

'u . Then 90 = , and so ( )σ r  is into the direction of 'u  for ( , )h  positive. If a field point is in 

the y z  plane on a line through the dipole and vector u , then 90 = , cos 1 =  , and ( )σ r  is in 

the direction of 2− u . On completing the picture we see that we get closed loops in the y z  plane, 

with field lines coming out of the dipole at one end and returning to the dipole at the other end. 

The orientation of the loops depends on the sign of ( , )h . For the examples shown in Figures 4 

and 5 we have ( , ) 0h  , and the orientation is as shown in the figures (field lines coming out at 

the bottom and returning on top).  
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Fig. 7 Shown are spiraling field lines coming out of the dipole. The parameters are 4= , 0.5h =  and / 2 = . 

These parameters are the same as for the field line pattern in Figure 4. Behind the y z  plane are two more spirals 

that wind around the same singular lines. The x  and y  axes have been raised to the height of the dipole for clarity. 

Let us now consider field points off the y z  plane and close to the dipole. The higher order terms 

will give a radially outgoing component, so a field line will have the tendency to move away 

from the y z  plane, while the contribution from Eq. (16) is still in the y z  plane. This gives 

spiraling field lines, as illustrated in Figure 7. We see from the figure that the spirals appear to 

wind around singular lines. On a singular line, the Poynting vector vanishes, and it is easy to see 

that the term shown in Eq. (16) is zero for   

 
1

cos
3

 =    ,    cos 0 =   .  (20) 

Equations (20) define a set of two lines. From cos 0 =  it follows that the lines lie in a plane 

perpendicular to vector 'u , so the plane is spanned by u  and xe . In this plane,   is the angle 

between u  and a line. This gives two solutions: 54.7 =  and 125.3 = . These lines are 

indicated by +  and −  in Fig. 8, and the direction of rotation of the Poynting vector around 

these lines is shown for ( , ) 0h  . The lines extent at the other side of the dipole (behind the y z  

plane), and there the field lines also wind around these singular lines. A set of field lines forms a 

vortex structure, and so we conclude that radiation is emitted in a pattern of four vortices, 

provided that ( , )h  is not exactly zero. The direction of rotation of the field lines around the 

singular lines is determined by the sign of ( , )h . Another example of the vortex emission is 

shown in Fig. 9.  
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Fig.8 The figure shows the orientation of two singular lines, +  and − , which are singular lines at the 

centers of two vortices. The lines extend to the left, and these are center lines of two other vortices. The 

direction of rotation of the Poynting vector around these lines is illustrated for ( , ) 0h  . 

 

Fig. 9 Shown are two emission vortices for 5.5= , 0.5h =  and / 2 = . 

8. The function ( , )h  

The strength of the vortices is proportional to function ( , )h , and this function represents the 

dependence on h  and  of the Poynting vector close to the dipole. If this function is zero for 

certain values of h  and , then the four vortices are absent. The spatial extent of the loops in the 

y z  plane and the vortices off the y z  plane are determined by the value of ( , )h  for a given h 

and . We now look at this function in more detail. Combination of Eqs. (2) and (19) gives 

  1
2

(1 ( 1) )( )m
m m h = + − − −    ,  (21) 

or when split in odd and even 

  
, even

( 1) 2 , odd
m

m m

m h m



= 

+ −
   .  (22) 

For m even, we have m m − = − , and we see that the terms with m even in Eq.(18) cancel in pairs. 

We get 
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odd

sin1
( , ) cosm

m
m mm

h


 
 

 
= − 

 
   . (23) 

In order to evaluate the sum in Eq. (23), we notice the following integral representation 

  

1

odd 0

( , ) d sin( )m

m

h uu u =   ,  (24) 

as can be checked by inspection. With m  for m odd given in Eq. (22), this can also be written as 

  

1

2 ( 1)

odd0

( , ) Im d ihu i m u

m

h uu e e − +=    , (25) 

and with Poisson’s summation formula for the sum over m we obtain 

  

1

2

0

( , ) Im d ( )ihu

n

n
h uu e u

 
 



−

=−

= −   . (26) 

Integration over u then yields the alternative representation 

  

[ / ]2

2

1

2
( , ) sin

n

n h
h n


 



=

 
= −  

 
   ,  (27) 

where the upper limit [ / ]  is the integer part of / . This new representation is a finite sum, 

as compared to the infinite series in representation (18).  

 

The sum over m in Eq. (18) gives numerical convergence problems for small values of . The 

reason is obvious from Eq. (27): For   the sum is empty, so we have 

  ( , ) 0 ,h =    .  (28) 

Since 2  corresponds to an optical wavelength, we conclude that the four-vortex structure is not 

present if the separation between the mirrors is less than half a wavelength. For 0h =  and h =  

the sine functions in Eq. (27) are zero, so we have 

  (0, ) ( , ) 0 = =   ,  (29) 

e.g., the function is zero at the endpoints (at the mirrors). At the midpoint between the mirrors 

we have / 2h = , which gives 

  1
2

( , ) 0 =   .  (30) 

So there are no vortices if the dipole is at the midway point, as in Figure 3. It also follows from 

Eq. (27) that 



 JOURNAL OF ADVANCED OPTICS AND PHOTONICS                                                            Vol.1, No.2, 2018 

Copyright© Tech Science Press                                                                                                  153 

  ( , ) ( , )h h − = −   ,  (31) 

so the function is antisymmetric around the midpoint. The sine functions in Eq. (27) give 

oscillations as a function of h, as seen in Figure 6. At h =  we have in the n-th term 

sin(2 / ) sin(2 )n h n = , and this corresponds to n full swings of the sine curve when at the top 

mirror.  The largest value of n is [ / ] , and therefore the function ( , )h  makes n full swings 

(2n loops) on the range 0 h  . Figure 10 shows ( , )h  for 40= , so [ / ] 12 = , and we see 

indeed 12 swings in the figure. 

Interestingly, the finite sum in Eq. (27) can be evaluated in closed form. We find 

   
2

2 2
( , ) 2( 1)sin cos[(2 1) ] sin[2( 1) ]

4 sin
h N x N x N x

x


 = + + − +   , (32) 

with [ / ]N =  and /x h= .  

 Finally, we mention that the limit of a single mirror can be found easily. When we set →  

for h fixed, we have m → , except for 1m = − . With 1 2h− = −  we find from Eq. (18) 

  
1 sin(2 )

( , ) cos(2 )
2 2

h
h h

h h


 
 = − 

 
  ,  (33) 

in agreement with earlier results.15 

 

Fig. 10 The figure shows ( ,40)h , illustrating that the number of full swings is [ / ] , which is 12 here. 

9. Conclusions 

Electric dipole radiation in between parallel mirrors is emitted as four vortices, two of which are 

shown in Figs 7 and 9. This is a result of the interference between the directly emitted electric 

field by the dipole and the reflected magnetic field by the mirrors. Equation (16) gives the 

Poynting vector at very close distances to the dipole, and it is shown that this leading term is 
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responsible for the loops in Figs 4 and 5 and the vortices in Figs 7 and 9. The extent of the 

vortices is determined by the function ( , )h , which only depends on the separation of the 

mirrors and the distance of the dipole to the lower mirror.  
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