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ABSTRACT

Enabling data sharing among smart grid power suppliers is a pressing challenge due to technical hurdles in verifying,
storing, and synchronizing energy metering data. Access and sharing limitations are stringent for users, power
companies, and researchers, demanding significant resources and time for permissions and verification. This paper
proposes a blockchain-based architecture for secure and efficient sharing of electric energy metering data. Further,
we propose a data sharing model based on evolutionary game theory. Based on the Lyapunov stability theory, the
model’s evolutionary stable strategy (ESS) is analyzed. Numerical results verify the correctness and practicability of
the scheme proposed in this paper, and provide a new method for realizing convenient, safe and fast data sharing.
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1 Introduction

Smart grid is to achieve the goal of reliability, safety, economy and efficiency through the
application of advanced sensing and measurement technology, control methods and decision support
system technology [1,2]. The U.S. Department of Energy’s “Grid 2030” emphasizes: a fully automated
power transmission network that can monitor and control each user and grid node to ensure the
information and electrical energy between all nodes in the entire transmission and distribution process
from the power plant to the end user Two-way flow [3]. In the big data environment, the electric
energy metering device in the smart grid will generate a large amount of data information [4]. Electric
energy measurement is not only the basic technical support and basic data source for power market
transactions and marketing, but also the basic data source for production technology units to judge
whether the equipment is operating economically. Researchers can analyze whether the loss of power
grid equipment such as power transformers in operation exceeds the allowable value through accurate
measurement and calculation, and process or replace high-loss power grid equipment to reduce the
unit energy consumption of the enterprise [5]. However, various data information of the power grid
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is intricate and complicated, and the management of electric energy metering big data faces new
challenges. Due to the isolation of isolated microgrids and different standards, the data between
various departments has always lacked effective integration, resulting in the formation of “data
islands”, and a large number of valuable data resources cannot play a greater role [6]. How to achieve
credible sharing of energy metering data is an important challenge in the development of smart grids.

2 Progress of Research

The last ten years, owing to its characteristics of decentralization, anonymity and trust, blockchain
technology has attracted growing attention and research work in the context of smart grid [7,8]. The
emerging blockchain can establish a stable trust system between participants, and the distributed ledger
ensures that all data and operating processes on the chain are open and transparent [9,10]. Blockchain
can promote the establishment of a safe, credible and decentralized smart grid ecosystem and solve
the problem of data sharing [11].

The traditional principal-agent architecture commonly used in federated learning is not efficient
and does not prioritize privacy protection and trustworthiness. Zhou et al. [12] suggested using
blockchain technology to address these challenges. They propose an autonomous and reliable feder-
ated extreme gradient boosting learning algorithm (FedXGBoost) to crack the data isolation problem
and provide privacy protection and verifiability. They also introduce a secure and trusted data sharing
and trading mechanism that ensures secure on-demand controlled data sharing and fair trading.
However, the model does not take into account the differences in the relationships and identities of
the different participants, leading to possible problems in their allocation of entitlements. The model
does not set out detailed rules for this situation.

Wu et al. [13] presented detailed data exchange protocols for data insertion and retrieval opera-
tions in MapChain-D and provides theoretical analyses of its space, time, and communication com-
plexities compared to conventional single-chain frameworks. The authors implemented a prototype of
MapChain-D using open-source communication protocols and blockchain platforms and show that
it is more suitable for resource-constrained IIoT devices. Isaja et al. [14] designed a heterogeneous
encrypted data sharing scheme supported by blockchain, which is used for tucker decomposition to
protect privacy when the homomorphic encryption method extracts knowledge.

Feng et al. [15] emphasized the significance of data analysis and the sharing of data between
stakeholders in order to achieve greater values. The document introduces the concept of a Product-
Process-Data (PPD) quality hallmark and a distributed ledger-based Trusted Framework (TF) to
address these challenges. It proposes the use of blockchain technology to ensure trustworthy and
traceable quality data sharing in the product supply chain. However, it is worth noting that the article
mainly focuses on the theoretical aspects of their blockchain-based framework for trusted quality data
sharing towards zero-defect manufacturing. The document provides a proof-of-concept for publishing
quality data, but there is no discussion on the practical implementation or challenges that may arise
during the implementation process. Additionally, while the article highlights the importance of data
analysis and the sharing of data between stakeholders, it does not delve into potential privacy or
security concerns that may arise when sharing sensitive data using blockchain technology.

These research results provide new ideas for the wide application of blockchain, and also provide
a safe and reliable method for data sharing in smart grids.

Research on data sharing of smart grid, mining the effective value of big data, breaking data
islands is an effective way to improve the efficiency of smart grid operation. In this article, we propose
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a blockchain-based smart grid energy metering data sharing architecture to ensure the security of
data sharing. Furthermore, we propose a data sharing model based on evolutionary games. The main
contributions are as follows:

1) We propose a blockchain-based grid data sharing architecture. The architecture makes full use
of the advantages of blockchain decentralization and de-trust, and establishes a Pointer-to-Pointer
(P2P) network-based transaction model between data providers and data demanders, and promotes
the interconnection of grid data.

2) We propose a data sharing model based on dynamic evolutionary game theory. We have
established a value rule for data transactions and proposed a piecewise function whose value changes
with the volume of transactions. The evolutionary game model between data providers and data
demanders is further constructed. The conditions of the optimal stable strategy of the data provider
are analyzed. The platform can formulate rules based on this condition to motivate the data owner to
analyze the data.

The remainder of this paper is organized as follows. In Section 2, we introduce the system model.
Section 3 establishs data sharing based on evolutionary game model. In Section 4, we evaluate the
performance of data sharing model. Finally, Section 6 concludes this paper.

The subsequent sections of this paper are meticulously structured to present a comprehensive
understanding of the proposed framework. Section 2 provides an in-depth exposition of the system
model, elucidating its fundamental components and intricacies. In Section 3, we expound upon the
establishment of data sharing, leveraging an evolutionary game model to underpin the conceptual
framework. Building upon this foundation, Section 4 undertakes a rigorous evaluation of the perfor-
mance exhibited by the data sharing model, probing its efficacy, reliability, and efficiency through
empirical analysis. Conclusively, Section 6 synthesizes the findings and discussions, encapsulating the
essence of this research endeavor and charting potential avenues for future exploration.

3 System Model

Blockchain has the main advantages of decentralization, trustlessness, traceability, collective
maintenance, security and non-tampering, openness, anonymity, etc. We propose a smart grid energy
metering data sharing system model based on blockchain technology, see Fig. 1 below. Data providers
mainly include power supply enterprises and users. Data demanders mainly include colleges and
universities, academies, and government departments. Data providers sell data to data demanders as
a research basis. Through effective analysis of data, researchers can ensure uninterrupted production,
sales and service levels at the lowest cost, thereby improving the management level of power supply
companies. Advanced data analysis technology can improve the productivity and efficiency of power
plant operation activities, and can optimize energy according to business and customer needs. Data
demanders and power supply companies, as strong nodes of the blockchain, keep complete data and
transaction records. Due to their weak storage and computing capabilities, individual users, as light
nodes of the blockchain, only provide data, and do not store data and transaction records.

Blockchain-based data transactions are carried out on the P2P network, and the process is as
follows:

1. First, the data provider creates a new transaction and makes a transaction order.
2. Second, the data provider broadcasts the new data record to the entire network.
3. Third, the receiving node records and verifies the integrity of the received the electric energy

metering data.
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4. Fourth, all accepting nodes in the entire network execute a consensus algorithm on the block.
5. Fifth, the block is officially included in the blockchain for storage after passing the consensus

algorithm process, and all strong nodes keep complete transaction records.
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Figure 1: System model

Data owners can adopt two trading strategies: sharing data or not sharing data. Shared data
means that the data is provided to the blockchain platform, and all strong nodes that join the shared
platform can download and save the data. Similarly, data demanders also have two strategies, join a
shared platform, or buy data directly. We aim to establish a suitable sharing mechanism, promote the
interconnection of data, provide the most basic data source for enterprise optimization and scientific
research, and give play to the potential value of data.

4 Data Sharing Based on Evolutionary Game Model

Evolutionary game theory was first introduced by biology. In traditional game theory, the strategy
of a rational person is to choose a strategy from the perspective of maximizing benefits, while the
strategy in biological phenomena is determined by genes. In the long-term natural selection process,
genes suitable for survival undergo continuous self-replication, and through continuous reproduction
and adaptation, the stable survival of genes gradually determines the behavior of individual organisms.
This stable behavior is ESS. The actors in traditional game theory are completely rational. Generally,
under the assumption of complete rationality, if the Nash equilibrium exists, then the two sides of the
game can directly reach the Nash equilibrium in one game. This result does not depend on the initial
state of the market, so there is no need for any dynamic adjustment process. On the contrary, the
evolutionary game theory believes that the Nash equilibrium should be reached after multiple games,
and a dynamic adjustment process is required. The achievement of the equilibrium depends on the
initial state and path. Next, we have to establish data trading rules.

The value growth of data is related to the amount of investment of data producers [16]. Generally,
the utility reward to the data producer is dependent only on its investment, which can be written as
the variant of logarithmic function alog(1 + x), where x is the amount of investment made and a Is
a scale factor [17]. Without loss of generality, let us take a = 2 as an example and draw the curve of
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the utility reward with the investment amount, see Fig. 2 below. The variant of logarithmic function,
which reflects the trend of income changes with the amount of investment is first fast and then slow,
and then tends to be basically saturated. This macro trend is in line with the general law that returns
change with investment.

Figure 2: The curve of the utility reward with the investment amount

In this paper, we propose a new trading rule that revenue depends on the amount of data. The
specific functional relationship expression is as follows:

f (x) =

⎧⎪⎨
⎪⎩

k1x + b1, [x1, x2),
k2x + b2, [x2, x3),
k3x + b3, [x3, x4),

(1)

where b1, b2, and b3 are positive numbers, and 0 < k1 < k2 < k3. The function graph can be seen in
Fig. 3 below.

Figure 3: Data value function

The value growth of data is mainly divided into three stages. The first stage has the largest growth
rate, which aims to encourage data providers to provide more valuable data. The value growth in the
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second stage is relatively flat, but there is still a way to ensure that the data owner is profitable. The
third stage of growth is particularly slow and belongs to the saturation period. In summary, income
will not increase rapidly with the increase in transaction volume, it should be fast first, then slow, and
then tend to be saturated. In particular, the data volume of a single transaction must be within an
upper limit. For example, the platform stipulates that data greater than a certain threshold x4 will not
be traded. Data providers can split large data packets into small data packets for multiple transactions,
which can alleviate the bandwidth pressure caused by data transmission. In addition, notice that when
the amount of data is less than the threshold x1, the platform also refuses to trade.

In order to promote the sharing of smart grid data, we establish sharing rules with reward factors.
For data providers, they can trade data with a sharing strategy, and the benefits is af (x)−c, where α is
the sharing gain coefficient and c is the cost of joining the sharing platform. For data demanders,
they can also freely choose whether to join the sharing platform. If the data demander joins the
sharing platform, it can download and store all transaction data to realize resource sharing. If the
data demander does not join the sharing platform, then they only need to buy the data that they are
most interested in. In particular, if both the data provider and data demander in a transaction join the
sharing platform, the platform will give both parties economic rewards δ. Under such trading rules,
in view of the dynamic evolutionary game theory [18], we give the payoff matrix of data transactions
as follows, see Table 1.

Table 1: Payoff matrix in data transactions

Data demanders

Participate and share Not participate

Data providers Participate and share αf (x) − c + δ, −αf (x) − c + δ f (x) − c, −f (x)

Not participate f (x), −f (x) − c f (x), −f (x)

We assume that there is a total of N data provider nodes in the network, and we mainly study the
evolutionary game model between this N data owner nodes. Data providers can adopt two strategies:
S1 (Participate and Share) and S2 (Not Participate). We assume p1 and p2 are the proportions of total
N population taking strategies S1 and S2, respectively, p1 + p2 = 1, we assume that the proportion
of data needs to adopt different strategies is also the same. Letting E [Ush] is the expected utility of a
player for participating and sharing, E [Uno] is the expected utility of a player for not participate, then
we can get

E [Ush] = p1 (αf (x) − c + δ) + p2 (f (x) − c), E [Uno] = f (x) (2)

Further, we can calculate the average utility of the data providers

E [Ush] = p1 (αf (x) − c + δ) + p2 (f (x) − c) (3)

E [Uno] = f (x) = (αf (x) − c + δ) p1
2 + (f (x) − c) p1p2 + f (x)p2

According to dynamic evolutionary game theory [19], we can get the dynamic equation of
replication of data providers under different strategies as

dp1

dt
= p1

[
E (Ush) − E

(
Uavg

)]
(4)
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dp2

dt
= p2

[
E (Uno) − E

(
Uavg

)]

That is
dp1

dt
= p1

[
(αf (x) − c + δ) p1

2 + p1 ((c − f (x)) p2 + αf (x) − c + δ) − cp2

] = g1 (p1, p2) (5)

dp2

dt
= p2

[
(−αf (x) + c − δ) p1

2 + (c − f (x)) p1p2 − p2f (x) + f (x)
] = g2 (p1, p2)

In order to obtain the EES that replicator dynamics equations, we first solve its equilibrium.

Let g1 (p1, p2) = g2 (p1, p2) = 0, Eq. (5) with up to three stable states, which are

E0 = (1, 0), E1 = (0, 1) (6)

E2 =
(

c
f (x)α + α − f (x)

,
f (x)α + α − f (x) − c

f (x)α + α − f (x)

)

Regarding the EES that replicator dynamics equations, we have the following theorem:

Theorem 1 For the replicator dynamics equations, the following conclusions hold:

1) If the conditions c < f (x) + δ and c + f (x) < f (x) α + δ are satisfied, then the no participate
strategy is EES for data providers;

2) If the conditions c > 0 and f (x) > 0 are satisfied, then the no Participate strategy is EES for
data providers.

Proof: We can calculate the Jacobian matrix of the replicator dynamics equations at any point as
follows:

J|(p1, p2) =

⎡
⎢⎢⎣

∂g1 (p1, p2)

∂p1

∂g1 (p1, p2)

∂p2

∂g2 (p1, p2)

∂p1

∂g2 (p1, p2)

∂p2

⎤
⎥⎥⎦ (7)

where
∂g1 (p1, p2)

∂p1

= 3p2
1 (c − f (x) α − δ) − cp2 + p1 (−c + f (x) α + δ + (c − f (x)) p2) (8)

∂g1 (p1, p2)

∂p2

= p1 (p1 (c − f (x)) − c)

∂g2 (p1, p2)

∂p1

= p1 (2p1 (c − f (x) α − δ) + p2 (c − f (x)))

∂g2 (p1, p2)

∂p2

= p2
1 (c − f (x)α − δ) − 2 (c − f (x)) p1p2 − 2f (x)p2 + f (x)

In view of the Jacobian matrix, we can get the Jacobian matrix at the three stable states as follows:

J|(1,0) =
[

c − f (x) − δ −f (x)

0 c + f (x) − f (x)α − δ

]
, J|(1,0) =

[ −c 0
c − f (x) −f (x)

]
(9)
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J|( c
f (x)α+α−f (x)

, f (x)α+α−f (x)−c
f (x)α+α−f (x)

) =
⎡
⎢⎢⎢⎢⎣

c
(

c2 + c (f − 2f (x) α − 2δ) + (f (x) (α − 1) + δ)
2
)

(f (x) (α − 1) + δ)
2

c2 (c − f (x) α − δ)

(f (x) (α − 1) + δ)
2

(f (x) (α − 1) − c + δ)
(
f (x) (α − 1) − c2 + δ

)
(f (x) (α − 1) + δ)

2

c3 + f (x) (f (x) (α − 1) + δ)
2 − c2 (f (x) α + δ)

(f (x) (α − 1) + δ)
2

⎤
⎥⎥⎥⎥⎦ .

To demonstrate stability of stable states mathematically, we must show that the eigenvalues of the
corresponding Jacobian matrix have negative real part. We need to solve the eigenvalues of these three
matrices. Obviously, the matrices J|(1,0) and J|(0,1) are upper and lower triangular matrices, respectively,
so the eigenvalues of J|(1,0) are c − f (x) − δ and c + f (x) − f (x)α − δ, and the eigenvalues of J|(0,1)

are −c and −f (x). In addition, in our shared architecture, the cost can be positive or negative. If the
cost is negative, it is a disguised incentive measure. Obviously, the conclusion in the theorem is correct.
The stability of the positive equilibrium point is too complicated, we will not discuss it. The proof is
completed.

Realizing data sharing make more users use of existing data resources, reduce duplication of labor
and corresponding costs such as data collection, and focus on the development of novel applications
and system optimization.

In Theorem 1, we obtain the sufficient condition that the equilibrium point (1, 0) is EES. This
condition involves three factors, the cost of joining the platform, sharing gains, sharing rewards.
Reducing sharing costs, increasing sharing gains and sharing rewards are effective ways to motivate
data owners to sharing data. In addition, the introduction of blockchain technology has fully
guaranteed the security, traceability and other advantages of grid data sharing. In the next section,
we will use numerical simulation to verify the effectiveness of the sharing model in this paper.

5 Numerical Results

We mainly verify the correctness of the conclusion in Theorem 1, i.e., verify that the dynamic
evolutionary game converges to different EES under different conditions. Note that there are three key
parameters in the dynamic evolution game model, the cost of joining the platform, sharing gains, and
sharing rewards. Shared gain is generally determined by the platform and the market, and is relatively
stable. Here, we take a = 1.2, which means that sharing data can increase revenue for data providers
by 20%. The cost of participating in the platform and reward factor will be determined later as two
dynamically quantities. In particular, in our evolutionary game model, revenue and data transaction
volume satisfy a unique functional relationship. As an example, without loss of generality, we take
f (x) = 10.

See Fig. 4 below, we simulated the average utility in which data owners participate in sharing under
four different conditions. In the first group, we take c = −4 and δ = 2, which means that you do not
need to pay for participating in the sharing platform, but you can get rewards. Under this mechanism,
it is clear that the average utility of sharing strategies are greater than those of non-sharing strategies.
Therefore, the equilibrium (1, 0) is the EES of the evolutionary game model, see Fig. 5 below. For the
second group, we take c = 0 and δ = 2. Although the cost and reward are equal, but, the reward
and gain can only be obtained under certain probability conditions. Therefore, what kind of strategy
an individual adopts needs to be observed, and it needs to refer to the behavior of other players to
determine its own behavior and make it possible to obtain the best benefits. Under this condition,
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the initial value condition also affects the final convergence state of the model. The third group: we
take c = 0 and δ = 0, it means that the benefits obtained under the two different strategies are the
same. The fourth group: we take c = 6 and δ = 2. Since the reward is greater than the cost, the data
owner adopts a shared data strategy to obtain the optimal benefit. Fig. 6 below shows the evolution
of population dynamics under this condition. The equilibrium (1, 0) is EES of model.

Figure 4: Average utility of participating population under different conditions

Figure 5: Evolution dynamics of participating population
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Figure 6: Evolution dynamics of participating population

6 Conclusion

The smart grid embodies the remarkable characteristics of a high degree of integration of power
flow, information flow and business flow. The main advantage of the smart grid is to achieve high
integration, sharing and utilization of real-time information, and to display a comprehensive, complete
and refined grid operation state diagram for operation management. Therefore, the realization of
data sharing is a necessary condition for the development of smart grid. In the current smart grid
environment, in this paper, we proposed an energy metering data sharing architecture based on
blockchain technology. We analyzed the growth law of data value and constructed a piecewise function
to describe the growth of data value with the change of transaction volume. Further, we proposed a
data sharing model based on evolutionary game theory. Applying the Lyapunov stability theory, the
sufficient conditions of the EES for data providers are obtained. Numerical results show that the
scheme studied in this paper has application value.
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