
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/jcs.2024.049658

ARTICLE

An Intrusion Detection Method Based on a Universal Gravitation
Clustering Algorithm

Jian Yu1,2,*, Gaofeng Yu3, Xiangmei Xiao1,2 and Zhixing Lin1,2

1Network Technology Center, Sanming University, Sanming, 365004, China
2School of Information Engineering, Sanming University, Sanming, 365004, China
3School of Economics and Management, Sanming University, Sanming, 365004, China

*Corresponding Author: Jian Yu. Email: 20020127@fjsmu.edu.cn

Received: 14 January 2024 Accepted: 08 May 2024 Published: 04 June 2024

ABSTRACT

With the rapid advancement of the Internet, network attack methods are constantly evolving and adapting. To
better identify the network attack behavior, a universal gravitation clustering algorithm was proposed by analyzing
the dissimilarities and similarities of the clustering algorithms. First, the algorithm designated the cluster set
as vacant, with the introduction of a new object. Subsequently, a new cluster based on the given object was
constructed. The dissimilarities between it and each existing cluster were calculated using a defined difference
measure. The minimum dissimilarity was selected. Through comparing the proposed algorithm with the traditional
Back Propagation (BP) neural network and nearest neighbor detection algorithm, the application of the Defense
Advanced Research Projects Agency (DARPA) 00 and Knowledge Discovery and Data Mining (KDD) Cup 99
datasets revealed that the performance of the proposed algorithm surpassed that of both algorithms in terms of the
detection rate, speed, false positive rate, and false negative rate.
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1 Introduction

With the exponential growth of information technology and the widespread utilization of the
Internet and cloud computing, the Internet has become an essential component of people’s daily
lives and professional endeavors. However, although it offers numerous benefits, the Internet is
also confronting more severe security challenges, among which network intrusion is a particularly
threatening activity. Hackers employ various tactics to breach network security, steal confidential
information, disrupt system operations [1–3], and even compromise national security. Considering
these threats, intrusion detection has emerged as a critical task in network security. Traditional
intrusion detection techniques primarily relies on rules and feature engineering [4–8]. These methods
can be effective in certain scenarios, while exhibiting certain limitations. First, the development of
rules and feature engineering necessitates the expertise and knowledge of specific specialists, which
can restrict their ability to adapt to the continuous evolution of network intrusion. Second, these
methods may result in an excessive number of false alarms, thereby compromising detection efficiency.
Therefore, researchers have explored more sophisticated and adaptable intrusion detection methods.

Clustering is a data analysis and machine learning method that involves grouping or dividing
objects in a dataset into subsets with similar characteristics or attributes, known as “clusters” [9].
The primary objective of clustering is to separate data into meaningful groups without relying on
pre-existing labels or category information to uncover the underlying patterns or structures in the
data. The primary purpose of the clustering algorithm is to quantify the similarity or dissimilarity
between data objects using specific measurements and subsequently group similar objects into the
same cluster to minimize intra-cluster differences and maximize inter-cluster differences. Cluster
analysis is a highly versatile, multivariable statistical method that exhibits a wealth of information
and diverse applications. Commonly employed techniques include dynamic clustering [10], ordered
sample clustering, fuzzy clustering [11], clustering forecasting methods, and graph clustering methods
[12,13]. Moreover, clustering plays a crucial role in the detection of anomalous behaviors.

The problem of detecting abnormal behavior in network users has been the subject of numer-
ous studies conducted by various scholars. Reference [14] utilized the built-in typical classification
algorithm of the Weka machine-learning software tool to conduct classification research on intrusion
detection datasets for cloud computing. Specifically, the naive Bayes algorithm was implemented to
classify the abnormal behavior of intranet users using software engineering methods. The experimental
results, which aimed to classify malicious and normal behaviors, indicated that the naive Bayes
algorithm implemented in that study exhibited high classification accuracy and was effective in classi-
fying, analyzing, and mining intranet user behaviors in cloud computing intrusion detection datasets.
Regarding the limitations of simple threshold detection, reference [15] proposed a method for detecting
anomalies in smart substation process layer network traffic using differential sequence variance.
Reference [16] extracted frequency domain features from smart substation flow data and combined
them with time-domain features to create a time-frequency domain hybrid feature set, which was used
to identify abnormal flow. Machine learning techniques were employed in the literature [17–19] to
detect abnormal flow data in industrial power controls. Reference [20] introduced an outlier detection
method based on Gaussian mixture clustering, utilizing time-series features of power industrial
control system data. Reference [21] formulated rules based on the IEC (International Electrotechnical
Commission) 61850 protocol and performed intrusion detection on the data collection and monitoring
systems of smart substations applying the devised rules. In addition, references [22,23] implemented
outlier detection on IEC 60870-5-104 protocol messages according to the rules. Furthermore, reference
[24] proposed a method that utilized blacklist and whitelist of business logic and similarity matching
to identify attack messages.
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The problem of detecting abnormal user behavior can be viewed as a clustering problem in which
normal behavior data are clustered together and abnormal behavior data are clustered separately.
The objective of this outlier analysis technique is to categorize an object being tested into several
classes or clusters [25]. Recently, advancements in machine learning and data mining technology have
created new prospects for intrusion detection [26]. As a valuable unsupervised learning technique, the
clustering algorithm has been extensively applied in the domain of intrusion detection. Owing to its
capacity to detect potential patterns and anomalies in data, it offers innovative insights for intrusion
detection. However, traditional clustering algorithms also exhibit certain shortcomings in the context
of intrusion detection, such as their inability to effectively adapt to high-dimensional data and their
limited capacity to handle unbalanced datasets [27–30].

This study provides a concise overview of the primary classifications, advantages, and disadvan-
tages of existing IDS, as shown in Table 1.

Table 1: Comparative analysis of IDS techniques

IDS technology Merit Drawback

Signature based IDS -High accuracy in detecting
known attack patterns

-Lacks capability in
detecting unknown attacks
or emerging variants

-A relatively low false alarm rate -Demand for frequent
updates of signature
databases to counter new
threats

-Typically high performance
and suitable for high-speed
network environments

-Vulnerable to evasion
techniques employed by
attackers

IDS based on machine learning -Using data mining techniques
to automatically discover
potential patterns and outliers

-Potential challenges in
adapting to
high-dimensional data

-Proficiently managing
imbalanced datasets

-Necessity of substantial
labeled data for training
supervised learning models

-Capable of adapting to a wider
range of attack scenarios and
variants

-Model retraining may be
necessary when confronted
with novel threats

IDS based on statistical -Using statistical methods to
establish user behavior profiles
for anomaly detection

-The limited processing
capacity of extensive
datasets potentially
necessitates dimensionality
reduction or sampling

-Handling unlabeled data
effectively, making it suitable for
practical network environments

-Requires the identification
of suitable statistical
models and thresholds to
mitigate false positives and
omissions

(Continued)
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Table 1 (continued)

IDS technology Merit Drawback

-Offering the flexibility to
adjust the trusted value ranges
of features according to specific
requirements, thereby adapting
to complex environments

-Processing time-series
data may entail an
increased complexity

This study introduced a novel intrusion detection method based on a universal gravitation cluster-
ing algorithm to overcome the limitations of conventional approaches. The design principles, essential
procedures, and experimental results of the method were elucidated, followed by a comparison with
existing methods to verify its performance and efficacy. The integration of advanced clustering
algorithms was expected to provide a fresh perspective and approach to intrusion detection in the
realm of network security, ultimately enhancing the accuracy and efficiency of such detection and
strengthening the network security.

The primary achievements of this study were as follows: (1) The development of a novel clustering
algorithm, termed the “universal gravitation clustering algorithm”, which contrasted with traditional
clustering techniques, such as K-means and hierarchical clustering. This algorithm utilized a grav-
itational model to describe the connections between objects to distinguish and cluster the aberrant
behaviors of network users. Moreover, it seeks to identify potential intrusion behaviors in network
intrusion detection. By incorporating dissimilarity and similarity analyses, abnormal behavior distinct
from normal behavior was detected more accurately. (2) The algorithm adopted a dynamic cluster
construction approach, beginning with an empty cluster and subsequently assigning new objects.
This adaptable nature enabled the algorithm to respond to changes in network traffic and user
behavior. (3) It utilized a specified correlation range threshold and difference definition to calculate
the disparity between the new object and each existing cluster and selected the cluster with the smallest
dissimilarity. This approach enhanced the precision of object assignment to their respective clusters.
Furthermore, the integration of this innovative clustering algorithm may improve the efficiency of
intrusion detection, making it more suitable for the realm of network security, and enabling it to detect
and identify network intrusion behaviors more effectively, thereby enhancing network security.

2 Related Studies
2.1 Related Concepts

The inherent properties of user behavior exhibit inconsistencies in statistical characteristics across
various user behaviors. The clustering-based user behavior outlier analysis method employs partially
labeled training samples, leveraging their inherent differences to adapt to the disparities between
normal and abnormal behaviors. Subsequently, collaborative methods were applied to analyze and
identify abnormal user behaviors. This study began by proposing the following definitions to develop
an accurate outlier analysis model:

Definition 1 (User behavioral features): The features of user behavior can reflect the differences
between normal behavior and abnormal behavior, which may include user inquiries, running routes,
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and commencement and conclusion of methodological operations. These distinctions can be depicted
using the cluster Cindex = {C1, C2, · · · , Ci, · · · , Cn}.

Definition 2 (Training sample): The training sample represents the training samples of the data
as shown in Eq. (1), where xij represents the behavioral characteristics of user i, with si ∈ {1, −1, 0},
where 1 represents normal behavior, −1 represents abnormal behavior, and 0 represents unknown type
of behavior.

D =

⎛
⎜⎜⎝

x11 x12 . . . x1n s1

x21 x22 . . . x2n s2

...
...

...
...

xm1 xm2 . . . xmn sm

⎞
⎟⎟⎠ (1)

Definition 3 (Neighborhood): If S (i) = {j|d (i, j) ≤ R}, then node j is a neighbor of node i. If
{i ∈ S (j)} ∩ {j ∈ S (i)} is not empty, then nodes i and j are neighbors, and their common neighbors
form the neighborhood set Ωij, with Ωij = {(S (i) ∩ S (j))}, as shown in Fig. 1. The slashed part in
Fig. 1 is the neighborhood of nodes i and j.

R

b

a
i

j

R

c

Figure 1: Neighborhood of nodes i and j

2.2 User Abnormal Behavior Clustering Representation Model

Assume that the dataset D has m attributes, including mC categorical attributes and mN numeric
attributes, with m = mC + mN. We might also assume that the categorical attributes are located
before the numeric attributes and use Di to represent the set of ith attribute values. Due to the unique
correspondence between an object and its identifier (which can be considered a record number), it is
sometimes the case that an object is identified by its identifier.

Definition 4: Given clusters C and a ∈ Di, the frequency of a in C with respect to Di is defined as
the number of times that a is included in the projection of C on Di.

FreqC|Di
(a) = |{object | object ∈ C, object Di = a}| (2)

Definition 5: Given cluster C, the CSI of C is defined as:

CSI = {n, Summary} (3)

where n = |C| or C, i.e., n is the size of C, and Summary consists of two parts: Frequency information
of different values in categorical attributes and centroid of numerical attributes, namely.
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Summary = {〈Stati, Cen 〉| Stati = {(
a, Freq C|Di

(a)
)∣∣ a ∈ Di

}
1 ≤ i ≤ mC Cen = (

cmC+1, cmC+2, · · · , cmC+mN

)} (4)

2.3 Difference Analysis

The data spaces of two adjacent nodes can be divided into two subspaces: Categorical attributes
and numerical attributes. The distance between the data in the entire space was then categorized into
the distance between these two subspaces. In a linear space, the Minkowski distance can be expanded
to yield the following definition:

Definition 6: Given clusters C of D, C1 and C2, objects of p = [p1, p2, · · · , pm] and q =
[q1, q2, · · · , qm], y > 0, z > 0.

(1) The degree of difference (or distance) dif (pi, qi) between objects p and q on attribute i is
defined as:

For categorical or binary attributes,

dif (pi, qi) =
{

1, pi �= qi

0, pi = qi

or dif (pi, qi) = 1 −
{

0, pi �= qi

1, pi = qi

For continuous numerical attributes or ordinal attributes,

dif (pi, qi) = |pi − qi| (5)

(2) The distance d (p, q) between objects p and q is expressed as:

d (p, q) = dC + dN

m
(6)

The distance dC of the classification attribute part is defined as the sum of the differences in each
classification attribute:

dC =
mC∑
i=1

dif (pi, qi) (7)

The distance dN of the numerical attribute part is the Minkowski distance:

dN =
⎛
⎝mC+mN∑

i=mC+1

|pi − qi|z

⎞
⎠

1
z

(8)

(3) The distance between object p and cluster C, d (p, C) is defined as the distance between p and
the summary of cluster C, which consists of two parts.

d (p, C) = dC + dN

m
(9)
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where the distance dC of the classification attribute part is defined as:

dC =
(

mC∑
i=1

dif (pi, C|Di)
y

) 1
y

(10)

where dif (pi, C|Di) is the average distance between p and each object in C on attribute Di, that is:

dif (pi, C|Di) = 1 − FreqC|Di
(pi)

|C| (11)

The distance dN of the numerical attribute part is defined as the Minkowski distance between p
and the centroid of C:

dN =
⎛
⎝mC+mM∑

i=mC+1

|pi − ci|z

⎞
⎠

1
z

(12)

(4) The distance d (C1, C2) between clusters C1 and C2 is defined as the distance between two
summaries and consists of two parts.

d (C1, C2) = dC + dN

m
(13)

where the distance dC of the classification attribute part is defined as:

dC =
(

mC∑
i=1

dif (C1|Di, C2|Di)
y

) 1
y

(14)

where dif (C1|Di, C2|Di) is the average distance in attribute Di between any object p in C1 and any object
q in C2, that is:

dif (C1|Di, C2|Di) = 1 − 1
|C1| · |C2|

∑
p∈C1

Freq C1|Di
(pi) · Freq C2|Di

(pi)

= 1 − 1
|C1| · |C2|

∑
q∈C2

Freq C1|Di
(qi) · Freq C2|Di

(qi) (15)

The distance dN of the numerical attribute part is defined as the Minkowski distance between the
centroids of C1 and C2.

dN = (∣∣c(1)

i − c(2)

i

∣∣z) 1
z (16)

Definition 7: Given clusters C of D, C1 and C2, objects p = [p1, p2, · · · , pm] and q = [q1, q2, · · · , qm],
and x > 0.

(1) The degree of difference (or distance) dif (pi, qi) between objects p and q on attribute i is
defined as:

For categorical attributes or binary attributes,

dif (pi, qi) =
{

1, pi �= qi

0, pi = qi
(17)
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For continuous numerical attributes or ordinal attributes,

dif (pi, qi) = |pi − qi| (18)

(2) The degree of difference (or distance) d (p, q) between two objects p and q is defined as the
power average of the degree of difference on each attribute, that is:

d (p, q) =

⎛
⎜⎜⎝

m∑
i=1

dif (pi, qi)
x

m

⎞
⎟⎟⎠

1
x

(19)

(3) The distance between object p and cluster C, d (p, C), is defined as the distance between p and
the summary of cluster C:

d (p, C) =

⎛
⎜⎜⎝

m∑
i=1

dif (pi, Ci)
x

m

⎞
⎟⎟⎠

1
x

(20)

where dif (pi, Ci) is the distance between p and C on attribute Di.

For categorical attribute Di, its value is defined as the arithmetic mean of the distance between p
and each object in C on attribute Di, that is:

dif (pi, Ci) = 1 − Freq C|Di
(pi)

|C| (21)

For a numeric attribute Di, its value is defined as:

dif (pi, Ci) = |pi − ci| (22)

(4) The distance d (C1, C2) between clusters C1 and C2 is defined as the distance between two
abstracts:

d (C1, C2) =

⎛
⎜⎜⎝

m∑
i=1

dif
(
C(1)

i , C(2)

i

)x

m

⎞
⎟⎟⎠

1
x

(23)

where dif
(
C(1)

i , C(2)

i

)
is the distance between C1 and C2 on attribute Di.

For a categorical attribute Di, the value is defined as:

dif
(
C(1)

i , C(2)

i

)
= 1 − 1

|C1| · |C2|
∑
pi∈C1

Freq C1|Di
(pi) · Freq C2|Di

(pi)

= 1 − 1
|C1| · |C2|

∑
qi∈C2

FreqC1|Di
(qi) · FreqC2|Di

(qi) (24)
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For a numerical attribute Di, the value is defined as:

dif
(
C(1)

i , C(2)

i

) = ∣∣c(1)

i − c(2)

i

∣∣ (25)

Definition 8: Given clusters C of D, C1 and C2, objects p = [p1, p2, . . . , pm] and q = [q1, q2, · · · , qm].

(1) The distance d (C1, C2) between clusters C1 and C2 is defined as:

d (C1, C2) =

m∑
i=1

dif
(
C(1)

i , C(2)

i

)
m

(26)

where dif
(
C(1)

i , C(2)

i

)
is the difference in attribute Di between C1 and C2.

For a categorical attribute Di, the value is defined as:

dif
(
C(1)

i , C(2)

i

)

=
∑

a∈(C1∪C2)|Di

Freq C1|Di
(a) + FreqCC2|Di (a)

|C1| + |C2| ·

∣∣∣∣Freq C1|Di
(a)

|C1| − Freq C2|Di
(a)

|C2|
∣∣∣∣

Freq C1|Di
(a)

|C1| + Freq C2|Di
(a)

|C2|
(27)

Frequency sets of different values are used to represent classification attributes.

If a /∈ C|Di, then Freq C|Di
(a) = 0.

For a numerical attribute Di, the value is defined as:

dif
(
C(1)

i , C(2)

i

) =

⎧⎪⎨
⎪⎩

0, c(1)

i = 0 and c(2)

i = 0∣∣c(1)

i − c(2)

i

∣∣∣∣c(1)

i

∣∣ + ∣∣c(2)

i

∣∣ , c(1)

i �= 0 or c(2)

i �= 0
(28)

where c(1)

i and c(2)

i correspond to the centroids of C1 and C2 on attribute Di.

In particular, when a cluster contains only one object, two distinct definitions are obtained.

(2) The distance d (p, C) between object p and cluster C is defined as:

d (p, C) =

m∑
i=1

dif (pi, Ci)

m
(29)

where dif (pi, ci) is the difference between p and C in attribute Di.

For a categorical attribute Di, the value is defined as:

dif (pi, Ci) = |C| + 1 + 2 · Freq C|Di
(pi)

|C| + 1
· |C| − Freq C|Di

(pi)

|C| + Freq C|Di
(pi)

(30)

For a numerical attribute Di, the value is defined as:

dif (pi, Ci) =
⎧⎨
⎩

0, pi = 0 and ci = 0
|pi − ci|
|pi| + |ci| , pi �= 0 or ci �= 0 (31)

where ci corresponds to the centroid of C on the attribute Di.
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(3) The distance between objects p and q is defined as:

d (p, q) =

m∑
i=1

dif (pi, qi)

m
(32)

where dif (pi, qi) represents the difference between p and q on the attribute Di.

For categorical attributes, the value of dif (pi, qi) is defined as:

dif (pi, qi) =
{

0, pi = qi

1, pi �= qi
(33)

For continuous numerical attributes, the value is defined as:

dif (pi, qi) =
⎧⎨
⎩

0, pi = 0 and qi = 0
|pi − qi|
|pi| + |qi| , pi �= 0 or qi �= 0 (34)

Definition 8 is an extension of the Canberra distance.

Definition 9: Given clusters C of D, C1 and C2, objects p = [p1, p2, · · · , pm] and q = [q1, q2, · · · , qm],

(1) The distance d (C1, C2) between clusters C1 and C2 is defined as:

d (C1, C2) =

⎛
⎜⎜⎝

m∑
i=1

dif
(
C(1)

i , C(2)

i

)x

m

⎞
⎟⎟⎠

1
x

(x > 0) (35)

where dif
(
C(1)

i , C(2)

i

)
is the difference between C1 and C2 in attribute Di.

For a categorical attribute Di, the value is:

dif
(
C(1)

i , C(2)

i

) = 1
2

∑
pi∈(C1∪C2)|Di

∣∣∣∣ Freq C1|Di
(pi)

|C1| − Freq C2|Di
(pi)

|C2|
∣∣∣∣ (36)

Categorical attributes are represented by frequency sets of different values. If a value does not
appear, the frequency is zero.

For a numerical attribute Di, the value is defined as:

dif
(
C(1)

i , C(2)

i

) = ∣∣c(1)

i − c(2)

i

∣∣ (37)

Specifically, when a cluster contains only one object, two distinct definitions are obtained.

(2) The distance d (p, C) between object p and cluster C is defined as:

d (p, C) =

⎛
⎜⎜⎝

m∑
i=1

dif (pi, Ci)
x

m

⎞
⎟⎟⎠

1
x

(x > 0) (38)

where dif (pi, Ci) is the difference between p and C in attribute Di.



JCS, 2024, vol.6 51

For a categorical attribute Di, the value is:

dif (pi, Ci) = 1
2

⎛
⎝1 − FreqC|Di

(pi)

|C| +
∑

qi∈C|Di ,qi �=pi

FreqC|Di
(qi)

|C|

⎞
⎠

= 1 − Freq C|Di
(pi)

|C| (39)

For a numerical attribute Di, the value is defined as:

dif (pi, Ci) = |pi − ci| (40)

(3) The distance d (p, q) between objects p and q is defined as:

d (p, q) =

⎛
⎜⎜⎝

m∑
i=1

dif (pi, qi)
x

m

⎞
⎟⎟⎠

1
x

(x > 0) (41)

where dif (pi, qi) represents the difference between p and q in attribute Di.

For categorical or binary attributes, the value is:

dif (pi, qi) =
{

1, pi �= qi

0, pi = qi
= 1 −

{
0, pi �= qi

1, pi = qi
(42)

For continuous numerical or ordinal attributes, the value is:

dif (pi, qi) = |pi − qi| (43)

Note: In Definition 9, the relational expression
∑

qi∈C|Di

Freq C|Di
(qi) = |C| is used. In actual

application, numeric attributes need to be normalized within the range of [0, 1].

It is evident that the distance given in Definition 9 satisfies several basic properties:

(1) d (C1, C2) = d (C2, C1)

(2) dif
(
C(1)

i , C(2)

i

) ≤ 1

For categorical attributes, the equal sign holds if and only if (C1|Di) ∩ (C2|Di) = ∅.

(3) 0 ≤ d (C1, C2) ≤ 1

d (C1, C2) = 0, if and only if the value and corresponding frequency of each classification attribute
of the two classes are identical, and the centroid of each numerical attribute is constant, the two classes
can be regarded as the same.

d (C1, C2) = 1, if and only if the values of each categorical attribute of the two classes are different,
and the centroid of each numerical attribute is zero for one class and one for the other class.

(4) If FreqC|Di
(pi) ≤ FreqC|Di

(qi), then dif (pi, Ci) ≥ dif (qi, Ci).

Especially, dif (pi, Ci) ≥ dif
(
p∗

i , Ci

)
, where p∗

i satisfies:

FreqC|Di

(
p∗

i

) = max
{
FreqC|Di

(qi) |qi ∈ Ci

}
(44)

This property resembles the core theorem, on which the k-modes algorithm was proposed in [31].
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To mitigate the impact of different measurement units on the outcomes, it is essential to standard-
ize numerical attributes. As demonstrated in Definitions 6 to 9, the distance on each categorization
attribute falls within the range of [0, 1]. Adopting the average primarily serves to neutralize the impact
of the attribute count on the distance value and confine the ultimate distance within [0, 1], thereby
facilitating comparison.

It is readily apparent that Definitions 6 and 7 are equivalent when the values of x, y, and z
are all set to 1. This scenario is analogous to the extension of Manhattan distance. In this case, for
categorical datasets with purely categorical attributes, the distance between two objects is a simple
matching coefficient, as described in the literature, where x, y, and z all take the value of two. This
aligns with the generalization of Euclidean distance. As distance is only utilized for comparing sizes
during the clustering process, and the absolute value of the distance is not utilized, multiplying the
distance by a constant factor will not impact the clustering results. In datasets in which all attributes
are either purely categorical or purely numerical, when x = y = z, the distance measures derived
from Definitions 6 and 7 differ only by a proportional constant. Consequently, they were considered
equivalent. This equivalence enables the substitution of the distance definition in clustering algorithms
that are limited to numerical or categorical attributes with Definitions 6 or 7, thereby expanding
the applicability of these algorithms to any data type, similar to the generalization of the k-means
algorithm to k-prototypes [32].

The concepts underlying the distance definitions vary significantly from Definitions 6 to 9.
Definitions 6 and 7 start with the gradual extension of the distance from objects to clusters and
compute the distance between objects and clusters and between clusters based on the distance
between two objects. Definitions 8 and 9 first define the distance between clusters and then treat the
distance between objects and clusters and the distance between objects as special cases. Despite this
difference, the distances between objects and clusters and the distances between objects calculated
using Definitions 7 and 9 are essentially equivalent.

Definition 10: The gravitational force between clusters C1 and C2 is defined as:

g (C1, C2) = ln (C1 · n + 9) · ln (C2 · n + 9)

d (C1, C2)
2 (45)

where ln (C · n + 9) is regarded as the mass of cluster C.

In particular, the gravitational force between clusters C and p is:

g (p, C) = ln (C · n + 9) · ln (10)

d (p, C)
2 (46)

The gravitational force between objects p and q is defined as:

g (p, q) = ln (10)
2

d (p, q)
2 (47)

More generally, the gravitational force between clusters C1 and C2 is defined as:

g (C1, C2) = ln (C1 · n + 9) · ln (C2 · n + 9)

d (C1, C2)
2 (z > 0) (48)

The gravitational force between the clusters can be regarded as a special form of similarity. The
greater the gravitational force between the clusters, the more similar they are.
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Definition 11: The difference between clusters C1 and C2 is defined as a function of the distance d
between the two clusters, the size n of the two clusters, and the radius r of the cluster.

dissim (C1, C2) = f (d, C1, C2)

= f (d, C1 · n, C1, r, C2 · n, C2 · r) (49)

Function f (d, C1, C2) is a monotonically increasing function of distance d.

In particular, when the class size is one, the difference between the two objects and the difference
between an object and a cluster can be obtained.

The following are several special definitions of the difference function:

f1 (d, C1, C2) = d (Equivalent to the distance between the centers of two hyperspheres).

f2 (d, C1, C2) = d − C1 · r − C2 · r (Equivalent to the distance between the closest points on the
boundary of two hyperspheres).

f3 (d, C1, C2) = d + C1 · r + C2 · r (Equivalent to the distance between the farthest points on the
boundary of two hyperspheres).

A schematic representation of these three measures is shown in Fig. 2.

f4 (d, C1, C2) = d − C1. ave − C2. ave

f5 (d, C1, C2) = d + C1. ave + C2. ave

f6 (d, C1, C2) = d√
ln (C1 · n + 9) · ln (C2 · n + 9)

f7 (d, C1, C2) = d − C1 · r − C2 · r√
ln (C1 · n + 9) · ln (C2 · n + 9)

f8 (d, C1, C2) = d + C1 · r + C2 · r√
ln (C1 · n + 9) · ln (C2 · n + 9)

f9 (d, C1, C2) = d − C1. ave − C2. ave√
ln (C1 · n + 9) · ln (C2 · n + 9)

f10 (d, C1, C2) = d + C1. ave + C2. ave√
ln (C1 · n + 9) · ln (C2 · n + 9)

where C · n, C · r, and C. ave respectively identify the size, radius, and average distance of objects in
the cluster to the center of cluster C.

Taking ln (C · n + 9) as the mass of cluster C, then:

ln (C1 · n + 9) · ln (C2 · n + 9)

d (C1, C2)
2 (50)

It is the gravitational force between clusters C1 and C2· f6 ∼ f10 can be regarded as the reciprocal
of some kind of gravitational force. Experimental results show that ln (ln (C · n + 9)) can also be used
to replace ln (C · n + 9).
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Figure 2: Schematic diagram of three difference measures f1, f2, and f3

2.4 Similarity Analysis

The classic angle-cosine method [33] is limited to numerical attributes. This study expanded the
angle-cosine concept to accommodate data with categorical attributes and employed it as a measure of
similarity. Similar to text mining, the Vector Space Model (VSM) was utilized to process classification
attributes, with the subspace corresponding to the classification attributes considered as a vector space
comprised of a set of orthogonal vectors. Each cluster C is represented as an eigenvector in vector
space:

V (C) = {
v1 (C) , v2 (C) , · · · , vmC

(C)
}

vi (C) = {(
aj, wi

(
aj

)) | aj ∈ Di

}
(1 ≤ i ≤ mC)

where the weight of the value aj in attribute Di of wi

(
aj

)
in C is defined as a function of the occurrence

frequency Freq C|Di

(
aj

)
of aj in C. If aj does not appear in Di, it can be understood that its frequency

of occurrence is 0. Similar to the selection method for feature word weights in text clustering, three
weight functions are given here:

wi

(
aj

) = FreqC|Di

(
aj

)
wi

(
aj

) =
√

Freq C|Di

(
aj

)
wi

(
aj

) = log
(

Freq C|Di

(
aj

) + 1
)

Definition 12: Given clusters C1 and C2 of D, the similarity Sim (C1, C2) between them is defined
as the cosine of the angle between the summary information CSI of the two classes.
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Sim (C1, C2)

= cos (C1, C2)

=

∑
aj∈(C1|Di)∩(C2|Di)

w(1)

i

(
aj

) · w(2)

i

(
aj

) +
mC+mN∑
i=mC+1

c(1)

i · c(2)

i

√ ∑
aj∈C1|Di

w(1)

i

(
aj

)2 +
mC+mN∑
i=mC+1

c(1)2

i ·
√ ∑

aj∈C2|Di

w(2)

i

(
aj

)2 +
mC+mN∑
i=mC+1

c(2)2

i

(51)

Particularly, when C1 or C2 contains only one object, the similarity between an object and a cluster
can be obtained, as well as the similarity between two objects.

The similarity between object p and cluster C is defined as:

Sim (p, C)

=

∑
aj∈(C1|Di)∩(C2|Di)

w(1)

i

(
aj

) · w(2)

i

(
aj

) +
mC+mN∑
i=mC+1

pi · ci

√ ∑
aj∈C1|Di

w(1)

i

(
pj

)2 +
mC+mN∑
i=m

C+1

p2
i ·

√ ∑
aj∈C2|Di

w(2)

i

(
aj

)2 +
mC+mN∑
i=mC+1

c2
i

(52)

The similarity between the two objects p and q is defined as follows:

Sim (p, q) =
S0

2 ·
mC∑
i=1

dif (pi, qi) +
mC+mN∑
i=mC+1

pi · qi√
S0

2 · mC +
mC+mN∑
i=mC+1

p2
i ·

√
S0

2 · mC +
mC+mN∑
i=mC+1

q2
i

(53)

where S0 is a constant; for the first two weight functions, its value is 1; and for the latter weight function,
its value is log (2). dif (pi, qi) represents the difference between objects p and q in attribute Di, which is
defined as

dif (pi, qi) =
{

1, pi �= qi

0, pi = qi
(54)

By appropriately modifying the definition of the outlier factor OF (Ci) of the class, other similar
examples of clustering-based outlier detection methods can be obtained.

2.5 NetStream Description and Feature Extraction
2.5.1 NetStream

Network behavior within the context of modern network technology refers to the intentional
actions of users utilizing electronic networks facilitated by computer systems to achieve specific objec-
tives. The characterization of network user behavior can be approached from various perspectives.
This study adopted the NetStream perspective to delineate user network behavior, termed the network
user behavior flow. Utilizing Huawei’s NetStream flow [34] statistics tool, this study collected streams
encompassing the rich attributes of user behavior flows. Subsequent analysis was conducted based on
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data collected through NetStream statistical flows. Table 2 provides descriptions of the fields within
NetStream, which are essential for constructing network behavior streams from NetStream viewpoints.

Table 2: NetStream field description

Name Description

Srcaddr Source IP (Internet protocol) address
Dstaddr Destination IP address
Packets Number of packets in the NetStream
Doctets Number of bytes in the third layer of the NetStream
Srcport TCP (Transmission control protocol)/UDP (User datagram protocol) source port
Sstport TCP/UDP target port, ICMP (Internet control message protocol) type, and code
Tcp_flags Result of the “OR” operation on all TCP flags in the NetStream
Prot IP protocol

2.5.2 Analysis and Feature Extraction of NetStream

Common representations of network user behavior include quadruples consisting of the source IP,
destination IP, statistical parameters, and their corresponding values [35]. The selection of statistical
parameters is contingent upon the research purpose, with popularity serving as an indicator of network
user behavior within the flow. This study focused on delineating the characteristics of network user
behavior within a flow. It conducted an analysis of flow characteristics pertaining to normal user
online behavior using sampled traffic data, referencing the findings described in [36], to construct a
feature set for user behavior based on NetStream flow data [37]. The resulting trends are shown in
Table 3, which illustrates the characteristic traits.

Table 3: Characterized by NetStream

Source IP statistics properties Destination IP statistics properties

S1 Packet bytes D1 Packet bytes
S2 Number of data packets D2 Number of data packets
S3 Number of source ports D3 Number of source ports
S4 Number of destination ports D4 Number of destination ports
S5 Number of destination IP D5 Number of source IP
S6 Proportion of traffic from the top N

protocols
D6 Proportion of traffic from the top N

protocols
S7 Proportion of traffic from the top N

source ports
D7 Proportion of traffic from the top N source

ports
S8 Proportion of traffic to the top N

destination ports
D8 Proportion of traffic to the top N destination

ports
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3 Clustering Method Based on a Gravity Algorithm
3.1 Clustering Algorithm

The clustering algorithm, an unsupervised learning method, categorizes similar data objects
within a dataset into groups or classes. Its objective is to maximize the similarity among objects within
the same group, while minimizing the similarity between different groups. This versatile algorithm has
applications across diverse domains, including data mining, machine learning, image processing, and
natural language processing. It facilitates the exploration of data structures and features, revealing
hidden patterns and insights within the data.

The classification of clustering algorithms encompasses partition-based, hierarchical, and density-
based methods. Among these, partition-based clustering algorithms divide data into K clusters and
determine the number and shape of clusters by minimizing the distance between the data points and
centroids of each cluster. A typical example is K-means. Hierarchical clustering algorithms construct a
hierarchical tree graph by iteratively merging or splitting data points, facilitating partitioning into any
number of clusters. Cohesive hierarchical clustering is a common approach. Density-based clustering
algorithms cluster data based on the density of data points, with DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) being a common algorithm.

Clustering algorithms offer the advantage of automatically discovering potential patterns and
outliers within data, making them well suited for processing extensive datasets without requiring
prior labeling. However, there are drawbacks, including challenges in meeting timeliness and accuracy
requirements for clustering large-scale datasets, difficulties in directly processing mixed attribute data,
dependency of clustering results on parameters, parameter selection primarily relying on experience or
exploration, and lack of simple and universal methods. Hence, selecting clustering algorithms requires
a comprehensive evaluation based on specific data characteristics and application scenarios.

In practical applications, such as intrusion detection, swift processing of vast amounts of data
is imperative, often involving mixed attributes. In response to these characteristics and shortcomings
of existing clustering algorithms, this study investigated novel clustering representation models and
dissimilarity measurement methods. Consequently, a universal gravity clustering algorithm tailored
for large-scale datasets with mixed attributes was proposed.

3.2 Analytical Model

This study presented a method for detecting abnormal behavior based on the universal gravitation
clustering. The outlier analysis process for this model can be summarized as follows. First, a training
dataset was created using the original dataset. Because an imbalance of abnormal behavior data
could affect the accuracy of the classifier in complex network environments, an appropriate sampling
technique was employed to balance the distribution of abnormal behavior data and enhance the
accuracy of identifying such behaviors. Subsequently, a similarity or distance measure was applied
to measure the similarity between data objects with the aim of assigning objects that were similar
to the same cluster with the difference minimized within a cluster. Finally, a process for user-outlier
detection and analysis was established. The outlier detection module and misuse detection method
contributed to enhancing recognition accuracy, and a response module was integrated. The abnormal
user behavior cluster analysis model is shown in Fig. 3.
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Figure 3: User abnormal behavior cluster analysis model

3.3 Related Definitions

The clustering-based outlier mining algorithm can expand the definition of distance into a more
general difference definition. Drawing upon Definitions 10 and 11, this study employed the concept
of universal gravitation to propose a unique definition of difference, thereby establishing an abnormal
user mining approach grounded in universal gravitation.

Definition 13: The difference (or dissimilarity) between clusters C1 and C2 is defined as:

dissim (C1, C2) = d (C1, C2)√
ln (|C1| + 9) · ln (|C2| + 9)

(55)

In particular, the difference between object p and cluster C is:

dissim (p, C) = d (p, C)√
ln (10) · ln (|C| + 9)

(56)

Definition 14: Suppose that C = {C1, C2, · · · , Ck} is a division of D, that is D = k∪
i=1

Ci (Ci ∩ Cj =
∅, i �= j).
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The outlier factor OF (Ci) of cluster Ci is defined as the average difference between Ci and all
clusters:

OF (Ci) =
∑
j �=i

dissim
(
Ci, Cj

)
k − 1

(57)

dissim
(
Ci, Cj

)
can be regarded as the degree to which Ci deviates from Cj. It can be seen from

the definition that this degree of deviation not only reflects the relative distance between clusters, but
also considers the size of the cluster. OF (Ci) measures the degree to which cluster Ci deviates from the
entire dataset. The greater the value, indicating that the farther Ci deviates from the whole.

3.4 Algorithm Description
3.4.1 Clustering Algorithm

The minimum difference principle was utilized to cluster the data. The specific process is as
follows:

(1) Initially, the cluster collection is empty before a new object is read in.

(2) A new cluster is created using this object.

(3) If the end of the data is reached, the algorithm terminates. Otherwise, a new object is read in.
By employing the difference criterion, the disparity between the new object and each existing cluster
is determined, and the least dissimilarity is selected.

(4) If the minimum difference exceeds the given threshold r, return to (2).

(5) Otherwise, the object is merged into the cluster with the smallest difference, updating the
statistical frequency of each classification attribute value of the class and centroid of the numerical
attribute. Return to (3).

(6) The algorithm terminates.

3.4.2 Abnormal User Detection

The initial stage employed a clustering algorithm based on the minimum difference principle to
group data. The subsequent stage proceeded by initially calculating the abnormality factor for each
cluster, subsequently arranging the clusters in descending order based on their abnormality factor, and
ultimately designating the abnormal cluster, that is, the abnormal user. The specific explanation is as
follows:

Phase 1

Clustering: Cluster the dataset D and obtain the clustering result C = {C1, C2, · · · , Ck}.
Phase 2

Determining the abnormal cluster: Calculate the outlier factor OF (Ci) of each cluster
Ci (1 ≤ i ≤ k); rearrange Ci (1 ≤ i ≤ k) in the decreasing order of OF (Ci); find the minimum b that

satisfies

b∑
i=1

|Ci|
|D| ≥ ε (0 < ε < 1); and mark clusters C1, C2, · · · , Cb as ‘outlier’ (that is, each object

in it is regarded as outlier), and mark Cb+1, Cb+2, · · · , Ck as the normal cluster ‘normal’ (that is, each
object in it is regarded as normal), where b can also be directly determined by prior knowledge.
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3.5 Time and Space Complexity Analysis

The performance of the clustering algorithm with respect to time and space complexity can be
influenced by several factors, including the size of the dataset N, the number of attributes m, the
number of clusters generated, and the size of each cluster. To facilitate the analysis, it can be assumed
that the number of clusters finally generated is k, and that each classification attribute D has n distinct
values. In the worst case, the time complexity of the clustering algorithm is:

O

(
N · k

(
mc∑
i=1

ni + mN

))
(58)

The space complexity is:

O

(
N · m + k

(
mc∑
i=1

ni + mN

))
(59)

As the clustering algorithm is executed, the number of clusters progressively expands from 1 to
k concurrently with an increase in the number of attribute values within the clusters. It has been
highlighted in [30] that categorical attributes typically exhibit an exceedingly small value range. The

customary range of categorical attribute values is less than 100 distinct values, and
mc∑
i=1

ni can typically

fall within a restricted range. Therefore, in practical scenarios, the anticipated time complexity of the
clustering algorithm is:

O (N · k · m) (60)

4 Experimental Analysis and Results
4.1 Experimental Parameters

To assess whether user behavior was abnormal by comparing it to a database of abnormal behavior
using the Euclidean distance, it was required to determine a suitable range for the threshold value r.
To begin this process, N0 pairs of objects within dataset D were randomly selected. Subsequently, the
differences between each pair of objects were computed and the average EX of these differences was
determined using Eq. (2). The value of r was set within the range [EX − 0.25D, EX + 0.23DX].

4.2 Experimental Tests

The Euclidean distance (x = 2 in Definition 7) was utilized to quantify the differences between
data, and the effectiveness of the algorithm was verified on the DARPA 00 intrusion detection
evaluation dataset and its extended version, Dataset 99.

4.2.1 DARPA 00 Dataset

The model was constructed using the data from week1 and week2, and subsequently evaluated
using the data from the remaining 4 weeks. Table 4 presents the experimental results when threshold r
was set between 0.5 and 0.6.
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Table 4: Detection performance on DARPA 00 dataset

Week1 (r = 0.5) Week2 (r = 0.6) Week2 (r = 0.5) Week2 (r = 0.6)

Total detection rate (DR) 94.21% 90.25% 89.24% 91.08%
False alarm rate (FR) 3.73% 0.07% 3.81% 0.07%

4.2.2 NSL KDD Dataset

The NSL KDD dataset, a revised iteration of the renowned KDD Cup 99 dataset, features both
training and testing sets devoid of redundant records, thereby enhancing detection accuracy. Each
dataset record comprises 43 features, with 41 representing the traffic input and the remaining two
denoting labels (normal or attack) and scores (severity of the traffic input). Notably, the dataset
includes four distinct attack types: Denial of Service (DoS), PROBE, User to Root (U2R), and Remote
to Local (R2L). A portion of the NSL KDD dataset, comprising 10% of the data, was used to evaluate
the performance of the algorithm. This subset was selected, where all 41 attributes were employed for
processing. This subset were randomly divided into three groups: P1, P2, and P3. P1 contained 41,232
records, representing 96% normal accounts, P2 contained 19,539 records, representing 98.7% normal
accounts, and P3 contained attack types not present in P1, including ftpwrite, guess_passw, imap,
land, loadmodule, multihop, perl, phf, pod, rootkit, spy, and warezmaster.

4.3 Analysis of the Effectiveness of r

The model was trained using P1 as the training set (ε = 005). The established model was tested on
P3, obtaining EX = 0.234, DX = 0.134, EX − 0.5DX = 0.17, EX − 0.25DX = 0.20, EX + 0.25DX =
0.27, and EX + 0.5DX = 0.30. Furthermore, various values of r were obtained between EX − 0.5DX
and EX + 0.5DX, and the detection rates of the different types of attacks are presented in Table 5.

Table 5: Detection performance on KDDCUP 99 dataset

Attack types r = 0.17 r = 0.20 r = 0.25 r = 0.28 r = 0.30

Back. (dos) 3.26% 1.29% 0.32% 0.05% 0.00%
Buffer_overflow. (u2r) 62.07% 75.86% 31.03% 6.90% 10.34%
ftp_write. (r2l) 75.00% 50.00% 12.50% 0.00% 0.00%
Guess_passwd. (r2l) 100.00% 100.00% 100.00% 7.55% 3.77%
imap. (r21) 100.00% 90.91% 90.91% 72.73% 18.18%
ipsweep. (probe) 26.72% 56.73% 7.66% 6.93% 55.12%
Land. (dos) 100.00% 100.00% 100.00% 100.00% 100.00%
Loadmodule. (u2r) 66.67% 33.33% 44.44% 0.00% 22.22%
Multihop. (r21) 58.14% 28.57% 28.57% 0.00% 28.57%
Neptune. (dos) 100.00% 99.99% 99.99% 99.98% 99.99%
Nmap. (probe) 45.22% 48.26% 45.22% 44.78% 48.26%
Perl. (u2r) 100.00% 100.00% 0.00% 0.00% 0.00%
phf. (r21) 25.00% 100.00% 0.00% 0.00% 0.00%
Pod. (dos) 18.18% 3.41% 3.79% 0.38% 0.00%
Portsweep. (probe) 99.90% 98.74% 98.55% 97.78% 97.00%

(Continued)
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Table 5 (continued)

Attack types r = 0.17 r = 0.20 r = 0.25 r = 0.28 r = 0.30

Rootkit. (u2r) 40.00% 10.00% 0.00% 0.00% 0.00%
Satan. (probe) 97.78% 91.32% 90.25% 88.85% 88.85%
Smurf. (dos) 99.86% 99.96% 99.96% 99.96% 99.99%
Spy. (r21) 0.00% 0.00% 0.00% 0.00% 0.00%
Teardrop. (dos) 10.44% 6.76% 26.00% 15.56% 6.55%
Warezclient. (r21) 0.69% 0.59% 0.49% 0.49% 0.20%
Warezmaster. (r21) 74.5.00% 0.00% 0.00% 0.00% 0.00%
DOS 99.10% 99.12% 99.15% 99.11% 99.13%
PROBE 74.08% 80.27% 64.72% 63.75% 78.38%
R2L 8.67% 7.06% 6.34% 1.52% 0.71%
U2R 61.78% 56.86% 25.49% 3.92% 9.80%
Overall detection rate 91.58% 91.02% 90.48% 90.92% 91.13%
False rate 0.17% 1.30% 0.05% 0.05% 0.20%
Missing rate 42.12% 34.47% 35.06% 32.44% 4.30%
The number of clusters 15 25 36 47 60

It can be seen that when conducting experiments on networks with different types of attacks using
r, the detection results are basically stable, and the overall detection rate reaches over 90%, verifying the
effectiveness of r and providing effective measurement parameters for anomaly detection algorithms.
Taking into account both time efficiency (i.e., number of clusters) and accuracy, it is recommended
that r be taken between EX − 025DX and EX + 0.25D.

4.4 Performance Analysis

To evaluate the performance of the universal gravitation clustering algorithm, it was necessary to
compare it with existing algorithms, such as the BP neural network and nearest neighbor detection
algorithm proposed in [28,34]. Fig. 4 illustrates the comparison of the three abnormal user behavior
analysis methods with different numbers of training samples and test samples. The overall detection
rates were improved to a certain extent as the number of test samples increased. The performance of
the BP neural network algorithm was found to be unsatisfactory, owing to its susceptibility to noise
and instability. Meanwhile, the nearest neighbor detection algorithm grew approximately linearly,
exhibiting limited stability. It was only capable of performing fuzzy classification, without the ability to
accurately identify or detect Distributed Denial of Service (DDOS) attacks. In contrast, the clustering
algorithm proposed in this study had notable advantages. By employing the difference concept under
the universal gravitation algorithm, the data were classified effectively even for various test samples.
The overall stability of the algorithm was highest, with an average detection rate of 0.98.

Fig. 5 presents a comparative analysis of the detection speeds of the three-intrusion detection
behavior analysis algorithms with varying numbers of training and test samples. As the number of
test samples increased, the recognition speed of the algorithms also increased. This study utilized
under-sampling to preprocess the data and employed a minimum difference principle-based clustering
algorithm to cluster the data, which contributed to the increased speed of sample detection.
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Figure 4: Comparison of detection rates

Figure 5: Comparison of detection speeds

Fig. 6 illustrates a comparison of the accuracies of the three user abnormal behavior analysis
algorithms with respect to the number of training and test samples. As the number of test samples
increased, the accuracy of the three algorithms improved to a certain extent. However, owing to
the influence of noise, the accuracy of the BP neural network algorithm was unstable. The nearest
neighbor-based user abnormal behavior analysis method failed to identify DDOS attacks, which
adversely affected its accuracy in identifying abnormal behaviors. In contrast, the algorithm proposed
in this study was resistant to noise, capable of identifying DDOS attacks, and demonstrated the
potential for recognizing unknown attack types. Therefore, the algorithm presented favorable stability
and high accuracy.

Fig. 7 demonstrates a comparison of the false rates for the three abnormal behavior analysis
methods that utilized varying numbers of training and test samples. The graph indicates that the
overall false rates for the three methods decreased as the number of test samples increased. However,
the method proposed in this paper, which employed an outlier identification algorithm, demonstrated
a consistently lower false rate than the other two methods. This suggested that the algorithm had
superior capabilities for accurately identifying abnormal user behavior.

Fig. 8 compares the missing rates for the three-user abnormal behavior analysis methods, based on
varying numbers of training and test samples. The missing rates for all the three algorithms decreased
as the number of test samples increased. However, the BP neural network algorithm was affected by
noise and unidentified outlier types, resulting in a relatively high missing rate. The nearest neighbor
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algorithm was unable to identify DDOS attacks and could only perform fuzzy classification, leading to
a high missing rate. In contrast, the algorithm proposed in this study demonstrated a lower sensitivity
to noise and exhibited a certain degree of recognition for unknown attack types. Consequently, it had
a lower false-negative rate than the other two algorithms.

Figure 6: Accuracy comparison

Figure 7: False-rate comparison

Figure 8: Missing rate comparison

Fig. 9 presents a comparison of the predicted classification results obtained using the algorithm
proposed in this study with the actual classification results in the context of unknown types of
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abnormal behaviors. This experimental comparison indicated that the algorithm proposed in this
study exhibited superior identification capabilities for known outliers and achieved more favorable
classification outcomes for unknown outlier types.
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Figure 9: Comparison of predicted and real classification results

The findings from the experiments conducted in this study revealed that the universal gravitation
clustering method demonstrated remarkable speed in detecting abnormal behaviors while maintaining
a high level of accuracy. It was also found that the algorithm was relatively resistant to noise, enabling
it to utilize a semi-supervised learning technique to classify user behavior effectively. This proved to
be an effective approach for identifying and responding to abnormal behaviors.

Overall, abnormal behavior analysis technology demonstrated commendable scalability and
adaptability while exhibiting robust identification capabilities.

5 Conclusion

Considering the limitations of traditional clustering algorithms in addressing real-time require-
ments for high-dimensional data, this study presented a method for detecting abnormal behavior based
on a universal gravitation clustering algorithm. The algorithm demonstrated exceptional stability with
an average detection rate of 0.98. First, the minimum difference principle-based clustering algorithm
was employed to cluster the data, followed by calculation of the outlier factor for each cluster. The
clusters were then sorted according to the outlier factors, enabling the identification of abnormal users
in the network. The simulation results demonstrated that this method exhibited notable improvements
in detection rate, speed, false rate, and missing rate. In summary, the proposed intrusion detection
method based on a universal gravitation clustering algorithm offers numerous advantages, effectively
addresses evolving network intrusion threats, and contributes to the protection of network system
security.

The algorithm addresses the challenges in parameter settings within traditional clustering meth-
ods. This study provides comprehensive insights into the fundamental principles, parameter settings,
clustering evaluation criteria, and algorithmic steps. Practical applications demonstrated its efficacy in
both clustering analysis and anomaly detection. However, implementation and performance may vary
owing to factors such as dataset scale, dimensionality, abnormal behavior definitions, and detection
thresholds. Despite this, the anomaly detection method based on the law of universal gravitation
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clustering algorithms proved to be effective in practical applications, exhibiting excellent clustering and
anomaly detection capabilities. Nevertheless, implementation specifics necessitate the evaluation and
optimization tailored to distinct application scenarios and datasets. With the continuous development
of big data and machine learning technologies, there is significant potential for advancing anomaly
detection methods utilizing the law of universal gravitation clustering algorithms. For instance,
incorporating deep learning techniques can enhance the capability of the algorithm to handle complex
data, whereas integrating other anomaly detection methods can yield a more comprehensive and
accurate anomaly detection system.
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