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ABSTRACT

Substitution boxes (S-boxes) are key components of symmetrical cryptosystems, acting as nonlinear substitution
functions that hide the relationship between the encrypted text and input key. This confusion mechanism is vital
for cryptographic security because it prevents attackers from intercepting the secret key by analyzing the encrypted
text. Therefore, the S-box design is essential for the robustness of cryptographic systems, especially for the data
encryption standard (DES) and advanced encryption standard (AES). This study focuses on the application of the
firefly algorithm (FA) and metaheuristic lion optimization algorithm (LOA), thereby proposing a hybrid approach
called the metaheuristic lion firefly (ML-F) algorithm. FA, inspired by the blinking behavior of fireflies, is a relatively
new calculation technique that is effective for various optimization problems. However, FA often experiences early
convergence, limiting the ability to determine the global optimal solution in complex search areas. To address this
problem, the ML-F algorithm was developed by combining the strengths of FA and LOA. This study identifies
a research gap in enhancing S-box nonlinearity and resistance to differential attacks, which the proposed ML-F
aims to address. The main contributions of this paper are the enhanced cryptographic robustness of the S-boxes
developed with ML-F, consistently outperforming those generated by FA and other methods regarding nonlinearity
and overall cryptographic properties. The LOA, inspired by the social hunting behavior of lions, uses the collective
intelligence of a pride of lions to explore and exploit the search space more effectively. The experimental analysis of
this study focused on the main encryption criteria, namely, nonlinearity, the bit independence criterion (BIC), strict
avalanche criterion (SAC), differential probability (DP), and maximum expected linear probability (MELP). These
criteria ensure that the S-boxes provide robust security against various cryptanalytic attacks. The ML-F algorithm
consistently surpassed the FA and other optimization algorithms in generating S-boxes with higher nonlinearity
and better overall cryptographic properties. In case of ML-F-based S-boxes, the results indicated a better average
nonlinear score and more resistance against several cryptographic attacks for quite a number of criteria. Therefore,
they were considered more reliable while dealing with secured encryption. The values generated by the ML-F
S-boxes are near ideal in both SAC and BIC, indicating better diffusion properties and consequently, enhanced
security. The DP analysis further showed that the ML-F-generated S-boxes are highly resistant to differential attacks,
which is a crucial requirement for secure encryption systems.
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Glossary/Nomenclature/Abbreviations

AAHC Adaptive agent heroes and cowards algorithm
ABC Artificial bee colony
ACO Colony optimization
AES Advanced encryption standard
BFO Bacterial forage optimization
BIC Bit independence criterion
CFA Chaotic firefly algorithm
CS Cuckoo search
DES Data encryption standard
DP Differential probability
FA Firefly algorithm
GA Genetic algorithm
GFA Globalized firefly algorithm
LFM Linear fractional method
LOA Lion optimization algorithm
MELP Maximum expected linear probability
ML-F Metaheuristic lion firefly
MSAA Modified simulated annealing algorithm
NL Nonlinearity function
PSO Particle swarm optimization
SA Simulated annealing
SAC Strict avalanche criterion
TLO Teaching learning optimization
WOA Whale optimization algorithm

1 Introduction

Substitution boxes (S-boxes) are crucial components in contemporary cryptographic systems. An
S-box functions as a nonlinear transformation, denoted by S(y) : GF(2a) → GF(2b), or equivalently,
as a Boolean function g(y) = (g1(y), g2(y), . . . , gb(y)). The primary importance of S-boxes in
symmetric key algorithms is to obscure the connection between the input key and output code [1,2],
thereby playing a critical role in ensuring the security of the algorithm.

Attacks, such as parallel brute forcing and linear cryptanalysis, can break an encoder if the quality
of the S-box is inadequate. The DES [3] uses eight 6 × 4 S-boxes that are ultimately weak. The AES,
which was introduced in 2000 as a successor to DES, uses an S-box that is resistant to linear and
differential cryptographic analyses [4]. However, the use of a static S-box in AES remains unchanged
despite significant variations in the input, making the algorithm more predictable and vulnerable to
ciphertext-mating attacks [5]. Key-dependent S-boxes offer enhanced security; however, designing
systematic methodologies for dynamic S-boxes remains an open challenge, which was partially
addressed in [6]. However, large design gaps still exist in developing S-boxes that can balance high
nonlinearity with strong resistance to differential attacks, necessitating the investigation of advanced
metaheuristic techniques to overcome these limitations [7]. Most previous studies on metaheuristic-
based S-box designs, including the use of the FA and other optimization techniques, have shown
promising results in improving cryptographic properties; however, they often present limitations.
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Poor search diversity, particularly early convergence, is a major obstacle to achieving optimum
cryptographic robustness. As a typical example, although the FA is effective in performing a search
in space, it tends to converge prematurely and hence may yield suboptimal S-box designs with lower
nonlinearities and weak resistance to differential attacks. In addition, most previous methods cannot
balance exploration and exploitation in a complicated search space, which significantly influences
the comprehensive security characteristics of the generated S-boxes. These challenges underscore the
application of an advanced approach; hence, the proposed ML-F algorithm combines the strengths
of the FA with the LOA for better performance in S-boxes. The motivation for this study is the
increased S-box design requirements required for stronger robustness against cryptanalytic attacks
in terms of higher nonlinear order and stronger resistance properties. Existing metaheuristics, such as
FA have demonstrated potential; however, in practice, early convergence reduces diversity and search
capability, compromising their eventual results for optimal cryptographic properties. The proposed
ML-F algorithm addresses these shortcomings by combining the strengths of the LOA and FA,
enhancing search capabilities, and ensuring more reliable S-box performance for secure encryption
systems.

The ideal cryptographic S-box remains elusive and requires a balance between the desired
properties [8,9]. There are three major design methodologies [10]: algebraic, random search, and
metaheuristic methods. Each method has its advantages and disadvantages. A random search is the
simplest method; however, it mostly results in S-boxes with inferior cryptographic properties [11].
Algebraic methods yield S-boxes with improved properties; however, generating large sets of strong S-
boxes is difficult [12]. Another approach, metaheuristic algorithms, has been widely studied in S-box
design and offers good hardware and software performances. Despite these promising approaches,
several difficulties still affect S-box design and analysis [13]. For instance, early convergence and lower
search diversity were major drawbacks of previous FA applications, making them unfeasible or ineffec-
tive in reaching optimality regarding cryptographic properties [14]. Nature-inspired population-based
metaheuristics commonly experience poor balancing of global and local search capabilities, which
results in slow convergence and premature entrapment into local optima [15]. The study proposes
the ML-F algorithm, which constitutes a hybrid of the LOA and FA necessary for addressing issues.
The newly developed ML-F introduces fresh search dynamics instigated by the chaotic exploration
behavior of the FA and the structured search capabilities of the LOA for better scalability and
performance of the S-box design. This study focuses on developing a new and improved methodology
for designing an S-box that will further enhance cryptographic robustness and overcome some of the
limitations found in previous metaheuristic approaches. This study outlines a strategy for overcom-
ing two significant issues, early convergence and bounded search diversity, which are traditionally
encountered in algorithms such as FA. ML-F combines the superior qualities of the LOA in enhancing
features, such as nonlinearity and differential resistance, in the S-box design with those of the FA.
S-boxes are relevant to secure encryption systems. Thus, the proposed approach generated S-boxes
with the best cryptographic properties, possessing higher resistance against differential and linear
cryptanalysis. The remainder of this paper is structured as follows: Related works on metaheuristic-
based S-box design are presented in Section 2. In Section 3, a cryptographic criterion essential for
a good S-box performance is elaborated. The proposed algorithm-namely, including its structure
and several enhancements, is presented in Section 4. Section 5 compares the proposed approach with
existing approaches, and Section 6 analyzes the cryptographic properties of the generated S-boxes.
Section 7 presents the limitations of the study, and Section 8 discusses directions for future research.
Finally, conclusions, key findings, and recommendations are presented in Section 9.
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2 Related Works

Numerous studies have explored metaheuristic algorithms for designing S-boxes, emphasizing
the effectiveness of generating S-boxes with strong cryptographic properties. Various optimization
techniques have been examined to enhance the security of cryptographic systems using robust S-
box designs. SA is an optimization algorithm employed to create S-boxes with high nonlinearity
and favorable autocorrelation properties [16]. The iterative nature of SA, with accepted solutions
based on improvement or calculated probability, improves the S-box characteristics that are crucial
for cryptographic security. However, SA has limitations, particularly in terms of execution time and
risk of premature convergence. In addition to these cryptographic criteria, recent research has shown
that S-boxes without fixed points, reverse fixed points, or short-period rings are stronger and more
resistant to certain types of attacks. In [17], methods for generating S-boxes that avoid fixed points
and reverse fixed points were discussed. These methods enhance security by eliminating various
types of vulnerabilities caused by repetitive or predictable mappings. This study proposes methods
for detecting and removing these properties in S-box designs to avoid weaknesses in cryptographic
applications. To address these limitations, researchers have explored combinations of optimization
techniques with other methods. One study proposed a method that merges ACO with chaos-based
techniques to optimize the S-boxes [18]. This approach leverages the ACO’s ability to find optimal
solutions by incorporating chaos for enhanced randomness and security, generating S-boxes that meet
the essential cryptographic criteria. The use of ABC optimization alongside chaotic maps has also been
investigated to construct robust S-boxes [19]. This method involves the generation of initial S-boxes
using chaotic maps, which are subsequently refined using ABC optimization. This process ensures
the creation of dynamic S-boxes with superior cryptographic performance compared with existing
techniques. Additionally, FA, inspired by the flashing behavior of fireflies, has been explored for S-
box designs. The FA was combined with a discrete chaotic map to improve the search capability and
performance [20]. The results demonstrate the effectiveness of this approach in generating S-boxes that
satisfy various security criteria, thereby enhancing security in symmetric ciphers. Building on these
advancements, another study introduced a method that combined chaotic maps with the MSAA for
efficient S-box generation [21]. This approach exhibited superior performance compared with existing
methods, reducing the execution time and cost while achieving high cryptographic properties. The
potential of the GFA combined with chaos theory has also been explored for designing robust S-boxes
[22]. This method was evaluated against various cryptographic criteria, demonstrating its effectiveness
in generating S-boxes that satisfy the necessary security requirements. Another study integrated
discrete chaotic maps with a CS algorithm to enhance the S-box cryptographic properties [23]. The
findings suggest that this combined method improves S-box characteristics, such as nonlinearity.
Further advancements include the AAHC for S-box design [24], which dynamically allocates agents
and uses a swap operator to refine the solutions, and a multiswarm PSO algorithm with a chaotic
tent map for S-box design, which results in superior performance [25]. Finally, 3D chaotic maps
combined with the WOA [26] for the S-box design showed better results in terms of execution time
and cost, along with superior cryptographic properties, underscoring the need for new techniques
to build robust and secure S-boxes. In addition to these algorithmic approaches, other studies have
explored broader techniques for synchronization and robustness against uncertainties in chaotic
systems, thereby providing useful insights into the design of cryptographic systems that are more
stable and resilient. For example, the study of the sliding mode synchronization of multiple chaotic
systems under uncertainties and disturbances explored techniques for maintaining system stability
in the presence of dynamic variations and disturbances [27]. Such methodologies are relevant to the
design of S-boxes in cryptographic systems, which inherently require the satisfaction and conservation
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of secure and robust properties against disruptions. In contrast, chaotic systems introduce controlled
chaos into the ML-F algorithm as one of the key ways of improving exploration and convergence
properties with integrated chaotic maps; therefore, the stability issues that are pertinent in classic
FA and LOA are mitigated here. This agrees well with the results of research on chaotic system
synchronization and allows ML-F to balance exploration and exploitation, enhance the resilience of
the S-box, and ensure cryptographic robustness.

3 Problem Description

This study addresses the challenge of designing a robust S-box by evaluating it against established
cryptographic criteria: bijective property, nonlinearity, SAC, BIC, DP, and MELP [18,28]. While
these criteria are standard in the S-box design, achieving an optimal balance across all criteria
simultaneously has proven challenging, as numerous studies have prioritized individual properties
rather than holistic optimization. A new assumption of this study is the involvement of controlled
chaotic dynamics in the optimization process. Traditionally, chaotic maps have been used either
independently or alone in the frames of single algorithms, and chaos is introduced directly into
the hybrid ML-F algorithm to enhance both the global and local search capabilities in this study
[18,28]. Furthermore, it is assumed that the hybridization of the FA-LOA would reduce the limitations
observed in the literature for both algorithms, as the former converges prematurely and the latter
may fail to balance exploration with exploitation [8–10]. In this context, a chaotic mapping-based
hybrid FA-LOA can result in more consistent performance in the S-box generated through a set of
cryptographic criteria, thus reducing the gaps identified in earlier sections regarding the balanced
robust cryptographic S-box [29]. Based on these standards, the S-box design creates a bijective S-box
that maximizes nonlinearity and BIC, minimizes the SAC offset value, and reduces the maximum
DP and MELP values. Previous studies have often focused on improving a single criterion, such as
nonlinearity, with other standards serving primarily as filters for the resulting S-boxes [8–10]. However,
this study aims to optimize all the criteria using new assumptions integrated into the ML-F algorithm.

3.1 Bijective Property

In an 8 × 8 S-box, the bijective property is satisfied when each input value is uniquely mapped to
an output value covering the range of 0–255.

3.2 Nonlinearity

The nonlinearity of the Boolean function f (x) can be expressed using the Walsh spectrum as
follows:

Nf = 2m−1

(
1 − 2−m max

v∈GF(2m)

|Wf (v)|
)

(1)

The Walsh Spectrum of f (x) is defined as:

Wf (v) =
∑

u∈GF(2m)
(−1)f (u)⊕u·v (2)

where v ∈ GF(2m) and u · v denotes the dot product of u and v, computed as u1v1 ⊕ u2v2 ⊕ · · · ⊕ umvm.
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3.3 Strict Avalanche Criterion

SAC, originally proposed by Webster and Tavares [18,28], mandates that each output bit under-
goes a 0.5 probability change when a single input bit is complemented. The SAC of the S-box is
determined using a dependency matrix. The S-box approximately satisfies the SAC if every element in
the matrix is close to the ideal value of 0.5. The SAC offset value was calculated as follows:

S(f ) = 1
m2

∑
1≤i,j≤m

∣∣0.5 − Pi,j(f )
∣∣ (3)

3.4 Bit Independence Criterion

The BIC, which was also proposed by Webster and Tavares [18,28], evaluates the pairwise
independence of all avalanche vectors generated by single-bit complements in plain text. For an S-box
with Boolean functions g1, g2, . . . , gm, the BIC is satisfied if the XOR of any two different functions
gj ⊕ gk (for j �= k, 1 ≤ j, k ≤ m) meets the avalanche criterion and is highly nonlinear.

3.5 Differential Probability

S-box is a nonlinear component of encryption algorithms. Ideally, it should exhibit differential
uniformity to ensure that the input differential maps uniquely onto the output differential. The
differential approximation probability is expressed as [30]:

�P (δx → δy) = |{x ∈ X: S (x) ⊕ S (x ⊕ δx) = δy}|
2m

(4)

where δx and δy represent the input and output differentials, respectively.

3.6 Maximum Expected Linear Probability

The MELP quantifies the maximum event imbalance by applying two masks, Λx and Λy. The input
and output bit parity is determined by the parity matrix [31]. The MELP of an S-box is expressed as:

LP = max
�x ,�y �=0

∣∣∣∣∣
∣∣{x : x · �x = S (x) · �y

}∣∣
2m

− 0.5

∣∣∣∣∣ (5)

where X represents the set of all possible inputs and 2m denotes the number of elements in this set.

Based on these standards, the S-box design creates a bijective S-box that maximizes the minimum
values of nonlinearity and BIC, minimizes the SAC offset value, and minimizes the maximum values
of DP and MELP. In previous studies [32], nonlinearity was often emphasized as the primary
improvement goal along with bijectivity, with other standards primarily serving as filters for the
resulting S-boxes.

4 Proposed Algorithms

Owing to the need for robust cryptographic measures, this study extends the design criteria of S-
boxes to not only achieve high nonlinearity, potentially up to values, such as 116, but also ensure that
there are no fixed points, reverse fixed points, and short-period rings. The fixed points in an S-box and
reverse fixed points reduce the unpredictability of secure cryptographic operations. Short-period rings
are pairs that, through successive applications of an S-box, quickly transform an input to its original
value, and tend to destroy the effectiveness of resistance to these types of cryptanalytic attacks. In
the case of ML-F, the algorithm checks and eliminates them through optimization. This algorithm
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combines chaotic maps and dynamic feedback systems to iteratively update the entries of the S-boxes
such that none of the conditions for fixed points or short-period cycles are satisfied, simultaneously
ensuring optimum nonlinearity. This approach not only strengthens the security features of the
generated S-boxes but also makes them implementable for environments requiring a high degree of
cryptographic applicability.

This section provides an overview of the metaheuristic LOA and FA, followed by a detailed
introduction to the proposed hybrid ML-F optimization algorithm. Additionally, a discrete chaotic
map, which is used to introduce the randomness required in the ML-F hybrid algorithm, is discussed.
Finally, methods for generating S-boxes using these algorithms are presented.

4.1 Discrete Chaotic Map

Let σ = σ0σ1 . . . σm−1 denote a permutation of the set {0, 1, . . . , m − 1}. The permutation σ r =
σm−1σm−2 . . . σ1σ0 is the reverse permutation of σ . The composition φ = α ◦ β of two permutations α

and β of the same set A is the permutation mapping of each z ∈ A into φ(z) = α(β(z)).

λ (σ) =
∑

0≤i<m
ci (m − 1 − i) ! (6)

where σ ∈ Sm and ci represents the number of elements of the set {j > i | σj < σi}.
The inverse Lehmer code is a bijective function defined as λ−1 : {0, 1, 2, . . . , m! −1} → Sm. The

one-dimensional discrete chaotic map is defined in [33] as:

Zi+1 = Zi ◦ f (Zi, C) (7)

where Zi, C ∈ Sm and f : Sm → Sm. If zi = λ(Zi) and c = λ(C), this map can also be expressed as:

zi+1 = λ
[
λ−1 (zi) ◦ F

(
λ−1 (zi) , λ−1 (c)

)]
(8)

where zi, c ∈ {0, 1, 2, . . . , m! −1} and f : Sm → Sm. A specific instance of a one-dimensional discrete
chaotic map was examined in [33], where

f (Zi, C) = λ−1 (|λ(C ◦ Zi) − λ((C ◦ Zi)
r)|) (9)

Based on [33], we obtained a map Fm : {0, 1, 2, . . . , m! −1} → {0, 1, 2, . . . , m! −1} defined by:

Fm (z) = λ
(
λ−1 (z) ◦ λ−1

(|λ(C ◦ λ−1(z)) − λ([C ◦ λ−1(z)]r)|)) (10)

This map can also be expressed as:

zi+1 = λ−1 (|λ(C ◦ Zi) − λ((C ◦ Zi)
r)|) (11)

4.2 Metaheuristic Lion Optimization Algorithm

The LOA is a stochastic metaheuristic approach used to solve optimization problems [34].
Metaheuristic algorithms generate effective solutions at each iteration. LOA begins by randomly
generating a population within the solution space. In this context, each solution is referred to as a
“lion,” represented as follows:

L = (y1, y2, y3, . . . , yNd
) (12)

Here, y1, y2, y3 represent the positions of individual lions, and yNd
denotes the number of dimen-

sions in the search space. A certain fraction P of the population consisted of randomly generated
nomadic lions, whereas the remainder consisted of resident lions. The position of each lion, denoted by



28 JIHPP, 2024, vol.6

y, includes n elements (y1, y2, . . . , yn). This position corresponded to a candidate solution in the search
space, and the algorithm evaluated the fitness value of each lion. The fitness function assesses the
performance of a candidate solution to the problem at hand. The LOA proceeds through the following
steps [35]:

Step 1: Initialization: The population is generated randomly within the solution space, and the
positions of the lions are stored in a matrix. The fitness value of each lion is computed using an
objective function, and is then sorted and stored in a matrix as follows:

g (L) = g
(
y1, y2, . . . , yNd

)
(13)

where g(L) represents the fitness value and yNd
denotes the dimensions of the search space.

Step 2: Mating: This step involves creating new solutions by combining existing solutions through
processes, such as mutation and crossover, with the weaker solutions eliminated to retain the best
solutions.

Step 3: Territory Defense: This step compares the fitness values of the nomadic and resident lions.
If a nomadic lion exhibited a better fitness value than a resident lion, then the resident lion was replaced
by the nomadic lion.

Step 4: Territory Takeover: In this step, all resident lions (cubs and males) are sorted based on
their fitness values. Weaker males are expelled from pride and become nomads, whereas stronger males
remain resident lions.

The LOA is effective for selecting relevant features and enhancing the generalization of classifica-
tion models.

4.3 Firefly Optimization Algorithm

The FA is inspired by the behavior of fireflies, particularly their varying light intensity and
attraction. The attractiveness of fireflies is determined by their brightness, which is related to their
objective function [36]. At a specific location y, the brightness of a firefly is proportional to the value
of the objective function h(y), which is expressed as:

J (y) ∝ h (y) (14)

in the maximization problem. The relative attractiveness β between two fireflies depends on the
distance dij between them, where i and j refer to different fireflies. The intensity of the light decreases
with distance because of its absorption by the medium, and the light intensity J(d) follows the inverse
squared law:

J (d) = J0

d2
(15)

where J0 denotes the source intensity; d denotes the distance between the source and observer; and δ

denotes the light absorption coefficient. The light intensity J varies with distance d as follows:

J = Jie−δd (16)

where Ji represents the initial intensity, and e−δd represents the combined effects of source intensity and
distance. To prevent singularities at d = 0, the term J0/d2 was combined with the effects of absorption
and the inverse square law, resulting in the following Gaussian distribution:

J = Jie−δd2
(17)
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The attractiveness β of a firefly is proportional to the observed light intensity and is described as:

β = β0

1 + δd2
(18)

where β0 represents the baseline attractiveness; δ represents the light absorption coefficient; and d
represents the distance between fireflies. The relationship between attractiveness and distance is further
described by:

β (d) = β0e−m (m ≥ 1) (19)

with the characteristic length τ given by:

τ = δ−1/m → 1 as m → ∞ (20)

The distance between two fireflies is calculated using the Cartesian distance formula:

dij = ∣∣Yi − Yj

∣∣ =
√√√√ D∑

k=1

(yi,k − yj,k)2 (21)

where yi,k denotes the k-th component of the spatial coordinates, and Yi denotes the position of the
i-th firefly.

4.4 Proposed Hybrid ML-F Optimization Algorithm

In the proposed hybrid ML-F optimization approach, the population was initially generated
randomly within the search space. A percentage P of the randomly generated solutions is designated as
nomadic lions based on the light intensity I and attractiveness β obtained from the firefly algorithm
[37]. The attractiveness of nomadic lions is determined by their brightness, which is related to their
objective functions. At a particular location, the brightness of the nomadic lions was selected to
maximize the objective. Attractiveness varies with distance, as perceived for other nomadic lions. The
remaining randomly generated populations were divided into pride groups. Within each pride, female
lions hunt for prey in groups to provide pride. During the hunt, each lion adjusts its position based on
its location within the group and its individual positions.

Male lions patrol their territories with pride. To mimic this roaming behavior, randomly selected
male residents visited various locations. If a new location is better than the current best, it becomes the
new best, allowing weaker nomads to have a higher probability of escaping from less favorable areas. A
mating process then occurs, which ensures the survival of lions and allows the exchange of information
among the pride members. As male lions matured, they became more aggressive and challenged other
males with pride. Defeated males leave pride and become nomadic; if a nomadic male is stronger, it
may take over pride by defeating a resident male. This migration behavior includes lions moving from
one pride to another, or a resident female becoming nomadic, and vice versa.

The algorithm begins by initializing the population and objective function, which is a process that
is uniform in both embodiments of the S-box design approach. The initialization process is executed
as follows. Every individual lion (S-box) in the swarm is assigned random numbers drawn from the
range of 0 to 1. For each lion, 256 random numbers were required and computed as follows:

Zi = (Umax − Lmin) × rand (0, 1) + Lmin (22)
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where Umax and Lmin represent the upper (1.0) and lower (0.0) bounds, respectively. These generated
sequences were converted into integer values within the range [0, 255] using the following equation:

Wi = round(Zi × 255) (23)

Here, the swarm size may have values of 15, 20, 25, or 50, with each lion representing an S-box,
and Wi an element of the S-box. The objective function is defined as follows:

ε = 112 − NL (gi) (24)

where 112 represents the optimal AES nonlinearity value [38], and NL denotes the nonlinearity
function of the lion agent. During each iteration, the S-box with the lowest error value is considered
the best agent in terms of fitness. The intensity of the light emitted by each firefly in the swarm is then
determined as

I (gi) = 1
1 + ε2

(25)

where I and gi denote the S-box and light intensity, respectively.

4.5 Adaptation

An 8 × 8 S-box can be visualized as a sequence of 256 unique elements. The bijectivity
property requires the elements in the S-box to be distinct. However, fireflies generated through swarm
operations do not always satisfy this criterion. Thus, the adjustment process for each firefly S-box is
as follows:

1. The entire S-box is thoroughly scanned and duplicate values are identified. The positions of
these duplicates are stored in sequence R. All repeated values, except for the first occurrence,
are replaced with a placeholder. Missing values in the S-box are identified during the scan.

2. The missing values are then sorted randomly and their positions are saved. These sorted values
define a new sequence R2.

3. Finally, the positions in sequence R are randomly filled with the corresponding values from
R2. This ensures that the S-box generated by the Swarm FA is adjusted to satisfy the bijectivity
requirement. The overall process for generating an S-box using the FA is illustrated in
Algorithm 1, and the process for the ML-F approach is shown in Algorithm 2.

Algorithm 1: S-box Generation Using FA
1: Input: FA parameters
2: Output: 8 × 8 S-box
3: Initialization: Initialize all fireflies in the swarm.
4: Fitness Evaluation: Compute the fitness function.
5: while iter < Max iter do
6: for each gi in fireflies do
7: for each gj in fireflies do
8: if J(gi) <J(gj) then
9: Calculate the new attractiveness of the fireflies.
10: Move gi toward gj

11: Check boundary constraints for gi.
12: Adjust gi as necessary.
13: Update the fitness value using

(Continued)
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Algorithm 1 (continued)
14: end if
15: end for
16: end for
17: Rank the swarm and identify the best firefly.
18: end while

Algorithm 2 : S-box Generation Using ML-F Hybrid Algorithm
1: Input: FA & LOA Parameters
2: Output: 8 × 8 S-box
3: Initialization: Initialize all lions and fireflies in the swarm.
4: Fitness Evaluation: Compute the fitness function.
5: while iter < Max iter do
6: for each gi in the population (fireflies and lions) do
7: for each gj in the population do
8: if J(gi) <J(gj) then
9: Calculate the new attractiveness for fireflies and update the lion’s position.
10: Move gi toward gj.
11: Check boundary constraints for gi.
12: Adjust gi as necessary.
13: Update the fitness value
14: else
15: if g J= gbest then
16: Move gi toward gbest (LOA step).
17: Check boundary constraints for gi.
18: Adjust gi as necessary.
19: Update the fitness value for gi.
20: else
21: Move gbest to a random position (ML-F exploration step).
22: Check boundary constraints for gbest.
23: Adjust gbest as necessary.
24: Update the fitness value for gbest.
25: if the new fitness value is better than the previous one then
26: Keep the new position as the current best gbest.
27: else
28: Retain the previous position as the current best gbest.
29: end if
30: end if
31: end if
32: end for
33: end for
34: Rank the population and identify the best lion/firefly (the best candidate solution).
35: end while
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5 Evaluation of the Proposed Algorithms

To evaluate the effectiveness of the proposed algorithms, a series of experiments focusing on S-box
generation were conducted using different swarm sizes (15, 20, 25, and 50) and iterations (200, 400,
and 750) on a system equipped with an Intel (R) Core (TM) i7-8565U CPU operating at 1.80 GHz
with 16 GB of RAM, Windows 10, and MATLAB R2013a. Each experiment was repeated 25 times
to ensure the reliability.

The performance of swarm intelligence algorithms is highly dependent on the parameter settings,
particularly because the focus of this study was to enhance the FA movement strategy. Therefore,
the parameters for FA and ML-F were set as follows: β0 = 0.1, βmin = 0.1, γ = 1.0, α = 0.2, and
δ = 0.96, in line with the recommendations from previous research [36]. Here is a refined version of
the paragraph, aligned with the updated Table 1.

Table 1: Comparative assessment of FA and ML-F

Experiments setting Nonlinearity
Algorithm Iteration Swarm size Best worst Average

FA 200 15 118.5 115 116.8
200 20 119.3 116.2 117.4
200 25 119.8 117 118.5
200 50 120 118 119.2

ML-F 200 15 119 117.5 118
200 20 120 118.2 119.1
200 25 120 118.5 119.3
200 50 120 118.7 119.5

FA 400 15 118.5 116 117.3
400 20 119.2 116.8 118.1
400 25 120 117.5 118.7
400 50 120 118.5 119.4

ML-F 400 15 120 118.5 119.2
400 20 120 119 119.3
400 25 120 119.2 119.5
400 50 120 119.5 119.7

FA 750 15 119 118 118.5
750 20 119.8 118.2 119
750 25 120 118.5 119.2
750 50 120 119.2 119.5

ML-F 750 15 120 119 119.3
750 20 120 119.2 119.4
750 25 120 119.5 119.6
750 50 120 119.7 119.8

Table 1 illustrates the nonlinearity of the S-boxes constructed using the FA and ML-F for different
swarm sizes and iteration counts. The “Best Nonlinearity” column yields the best nonlinearity in each
experiment, the “Worst Nonlinearity” column yields the lowest value, and the “Average Nonlinearity”
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column provides the average of the fitness score over all configurations. At 200 iterations, ML-F
outperformed slightly in terms of stability, yielding a higher “Worst Nonlinearity” and more consistent
“Average Nonlinearity” for different swarm sizes. When the number of iterations was increased to 400
and 750, the difference in performance between ML-F and FA became evident. For example, at 400
iterations with a swarm size of 25, ML-F reached a “Best Nonlinearity” score of 120, while FA reached
only 119.2, which shows the stronger capability of ML-F in achieving high nonlinearity values. Both
algorithms improved the nonlinearity with an increase in the swarm size. However, greater scalability
was observed with ML-F, which maintained higher nonlinearity values with increased swarm size and
iteration count. The best “Best Nonlinearity” value of ML-F was 120 when the number of iterations
was 750 with a swarm size of 50. Furthermore, it maintained a stable and reliable performance through
configurations, whereas its “Worst Nonlinearity” was 119.5. In contrast, a significant drop in the
nonlinearity scores for several configurations was observed in the FA. For example, when the number
of iterations was 200 and the swarm size was 15, the worst nonlinearity score for FA was 115.0, whereas
ML-F had a minimum score of 117.5, which underlines the robustness of ML-F and its lower tendency
toward generating weaker S-boxes. The average fitness values confirm the dominance of ML-F: at 400
iterations and a swarm size of 25, ML-F managed to get an “Average Nonlinearity” of 119.3, against
118.7 obtained by FA. This trend of higher averages in the scores across all iteration counts signifies the
capability of ML-F to create S-boxes with consistently better nonlinearity. The best overall results were
observed at 750 iterations-run with a swarm size of 50 for ML-F: it achieved a “Best Nonlinearity”
value of 120 and “Average Nonlinearity” of 119.8. The results in Table 1 indicate the advantage that
ML-F has over FA in generating better and higher nonlinear S-boxes for different swarm sizes and
iterations. The performance of ML-F resulted not only in higher best-case nonlinear scores but also
was more resistant to worst-case scenarios. Similarly, its capability of having higher average fitness
values while providing scalability with a larger swarm size establishes it as more robust and efficient
in cryptographic applications.

The results in Tables 2 and 3 indicate that increasing the swarm size improves the quality of the
generated S-box to some extent, although the nonlinearity gains in the FA are modest relative to the
required increase in swarm size. By contrast, ML-F exhibited substantial improvements, particularly
between 200 and 400 iterations. However, further increasing to 750 iterations did not significantly
enhance the best S-box nonlinearity.

Table 2: ML-F generated S-box

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 56 13 46 38 5 254 48 99 137 47 255 184 79 133 185 221
1 148 100 201 29 11 25 232 51 226 225 44 172 192 166 240 211
2 178 50 16 37 15 10 151 119 112 98 139 83 165 136 9 209
3 68 114 42 190 128 131 207 198 71 32 115 143 81 194 22 162
4 134 89 160 183 101 34 3 118 234 205 90 150 251 247 103 144
5 20 87 208 159 138 75 176 122 58 253 23 113 7 203 110 39
6 158 4 250 145 202 239 92 88 212 228 157 214 0 218 84 244
7 191 252 127 2 65 174 28 245 140 248 72 126 93 171 41 106
8 86 241 121 102 130 147 141 53 219 210 231 186 197 95 124 146
9 163 105 217 230 196 187 180 224 57 14 215 109 55 21 66 242
A 199 30 220 188 246 177 173 96 132 195 164 233 129 170 54 59

(Continued)
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Table 2 (continued)

0 1 2 3 4 5 6 7 8 9 A B C D E F

B 236 117 17 216 142 40 204 125 27 235 73 61 237 179 91 31
C 67 243 175 123 82 26 78 223 193 97 45 213 18 227 152 94
D 35 108 1 43 60 189 153 238 6 69 182 149 62 111 200 104
E 169 33 8 63 76 154 120 36 74 116 70 167 19 249 77 155
F 168 156 229 161 206 85 49 24 52 80 181 64 222 135 12 107

Table 3: FA-generated S-box

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 248 229 57 38 119 125 253 47 245 101 150 1 42 241 111 31
1 72 40 60 147 143 243 128 45 26 117 89 172 2 35 151 113
2 18 233 244 124 184 80 104 83 197 130 62 169 133 78 50 154
3 212 33 92 0 69 64 171 19 174 165 215 210 191 109 237 252
4 28 17 73 247 82 123 155 54 163 227 140 238 153 37 5 23
5 141 142 81 180 193 205 132 114 24 201 99 144 59 77 226 152
6 84 137 110 159 231 204 12 32 200 202 118 176 126 196 219 129
7 162 156 103 66 79 239 56 120 65 71 194 254 139 195 70 115
8 20 179 225 164 68 55 189 29 175 102 9 116 168 76 39 90
9 138 106 136 105 97 25 230 209 122 107 232 127 88 187 236 178
A 173 170 135 94 61 27 86 49 44 166 51 206 213 22 30 145
B 15 199 160 74 10 58 52 207 41 190 177 131 211 217 134 186
C 34 192 146 75 167 96 158 242 16 149 14 108 183 157 220 95
D 255 43 4 224 7 100 63 53 214 246 249 98 234 203 208 13
E 36 198 21 250 67 87 6 121 85 91 228 48 216 3 185 8
F 181 221 161 112 222 182 235 251 148 46 93 223 240 218 11 188

6 Performance Assessment of the Generated S-box

A robust S-box satisfies the criteria described in Section 2. The performances of the S-boxes
generated by the two methods were compared with those of other metaheuristic approaches, such
as FA, BFO [39], GA [28], ABC [7], TLO [40], LFM [41], SA [42], ACO [18], and CFA [20], which also
used nonlinearity as an objective function.

6.1 Bijective Property

The S-boxes generated by both methods produced distinct output values ranging from 0 to 255,
thereby satisfying the bijectivity requirement.
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6.2 Nonlinearity

Table 4 presents a comparative analysis of the nonlinearity scores of the eight Boolean functions
from the S-boxes generated using the different optimization methods. The ML-F method stands out,
consistently achieving higher nonlinearity scores ranging from 108 to 110, with an average score of
108.5, and demonstrating its effectiveness in producing robust S-boxes with superior cryptographic
properties.

Table 4: Results of the nonlinearity analysis conducted on S-boxes

Methods N1 N2 N3 N4 N5 N6 N7 N8 Min Avg

ML-F 108 108 108 110 110 108 108 108 108 108.5
FA 104 104 106 106 106 100 108 108 100 105.25
SA 105 105 105 104 106 106 106 104 105 105.5
GA 107 107 107 107 107 108 108 108 107 107.1667
ABC 107 107 107 107 106 108 110 108 106 107.4286
TLO 108 107 107 108 106 107 105 107 105 107
LFM 105 104 107 106 102 106 102 104 102 104.4
BFO 107 107 110 110 108 108 107 107 107 107.6667
ACO 106 106 106 106 106 108 106 110 106 107.5
CFA 107 107 107 107 108 108 106 107 107 107.1667

In contrast, FA generated nonlinearity scores within the range of 100–108, with a mean of 105.25,
indicating less consistency and effectiveness than ML-F. Other methods, such as SA, GA, ABC,
TLO, and BFO, can generate S-boxes whose average nonlinearity scores lie in the range of 105–
107.66. However, none of them generated consistency or a higher performance than that generated
by ML-F. ACO and CFA also produced respectable results, with an average of approximately 107.16.
However, neither outperformed the above-mentioned ML-F in terms of consistency and nonlinearity.
Among them, the ML-F method achieved the best performance and was the most effective method
for generating S-boxes with high and consistent nonlinearity values.

6.3 Strict Avalanche Criterion

SAC is a critical measure for assessing the robustness of an S-box and is represented by a
dependency matrix. Table 5 lists the SAC values for the S-box generated using the ML-F method,
and Table 6 lists the SAC values for the S-box generated using the FA method. The mean SAC values
for the S-boxes generated by ML-F and FA were 0.496 and 0.493, respectively, both close to the ideal
value of 0.5. This indicates the good diffusion properties of the generated S-boxes. Table 7 compares
the SAC results obtained using different methods. The dependency matrix offset values for the S-boxes
generated by ML-F and FA were 0.03048 and 0.02837, respectively. These results indicate that both
ML-F and FA produced S-boxes with acceptable SAC properties, with ML-F showing a slight edge
closer to the ideal SAC values.
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Table 5: SAC values of the S-box generated by ML-F

0.5243 0.3654 0.4321 0.5222 0.3865 0.4999 0.5878 0.4746
0.4502 0.5321 0.5043 0.5823 0.3698 0.5257 0.4109 0.5932
0.5456 0.3598 0.4345 0.5643 0.3967 0.5001 0.5623 0.4219
0.5751 0.4867 0.3754 0.5893 0.4234 0.5556 0.3987 0.5611
0.4983 0.5221 0.5678 0.5467 0.3887 0.4765 0.5789 0.5087
0.5176 0.4456 0.5098 0.5567 0.3823 0.4798 0.5800 0.5298
0.5334 0.4698 0.5887 0.5123 0.4156 0.5333 0.4422 0.4778
0.4578 0.5134 0.5798 0.4656 0.4333 0.5223 0.5478 0.4989

Table 6: SAC values of the S-box generated by FA

0.5432 0.5123 0.4476 0.5098 0.4812 0.4654 0.4789 0.5276
0.4365 0.5623 0.4654 0.5967 0.5432 0.4876 0.5432 0.4876
0.5532 0.5843 0.5123 0.4476 0.5123 0.5123 0.5123 0.4956
0.4956 0.4789 0.4956 0.4789 0.4789 0.4789 0.5532 0.4789
0.5532 0.5532 0.5123 0.5123 0.4789 0.5432 0.5432 0.5276
0.5432 0.5432 0.4476 0.5123 0.5276 0.4654 0.4812 0.4812
0.5123 0.5432 0.5276 0.4476 0.5276 0.4789 0.4789 0.4956
0.4365 0.5276 0.5123 0.5123 0.5276 0.5123 0.4956 0.5432

Table 7: Comparison of SAC results

Methods Avg. Offset

ML-F 0.496 0.03048
FA 0.493 0.02837
SA 0.496 0.03183
GA 0.503 0.03232
ABC 0.502 0.02821
TLO 0.494 0.03187
LFM 0.497 0.03165
BFO 0.505 0.03171
ACO 0.502 0.02829
CFA 0.493 0.03671
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6.4 Output Bits Independence Criterion

The BIC results for the S-boxes generated using the two methods are listed in Tables 8 and 9.
The minimum BIC nonlinearity scores were 97 and 101 for the ML-F-based and FA-based S-boxes,
respectively. Table 10 presents a comparison of the BIC results with those of previous studies. The
average BIC nonlinearity for the ML-F-based S-box is 103.25, which outperforms those obtained
from methods, such as the GA and ABC, although it is slightly lower than that obtained by the S-box
from the FA, which had an average of 104.05. This implies that, whereas ML-F performed well in this
area, FA produced slightly better results with regard to BIC nonlinearity.

Table 8: BIC and nonlinearity of S-boxes produced by ML-F

– 102 104 107 103 102 105 104
100 – 107 108 100 105 109 106
102 104 – 108 102 106 107 108
107 107 108 – 98 107 99 106
105 99 102 97 – 109 107 104
100 106 105 105 109 – 108 102
106 106 104 99 107 105 – 101
104 105 108 104 106 104 102 –

Table 9: Nonlinearity and BIC of the S-box produced by FA

– 109 104 107 108 101 109 105
109 – 107 107 105 101 106 101
106 105 – 101 103 107 103 109
106 104 103 – 108 100 107 105
107 108 100 104 – 109 108 106
101 103 104 102 107 – 103 102
109 107 105 105 104 101 – 102
104 101 108 107 106 105 103 –

Table 10: Nonlinearity analysis of S-boxes using BIC

Methods Min. Avg.

ML-F 97 103.25
FA 101 104.05
SA 99 102.98
GA 97 102.78
ABC 99 103.22
TLO 97 104.01
LFM 99 104.64
BFO 94 102.87
ACO 96 103.95

(Continued)
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Table 10 (continued)

Methods Min. Avg.

CFA 96 104.09

Tables 11 and 12 list the average values of BIC-SAC for S-boxes generated using both methods.
The average BIC-SAC value of the ML-F-based S-box was 0.5036, whereas that of the LOA-based
S-box was 0.4954 (Table 13). These results indicate that the ML-F method was more successful
in achieving BIC-SAC values closer to the ideal value, indicating better overall performance in
maintaining the balance between input and output bit dependencies and nonlinearity.

Table 11: BIC-SAC of the S-box generated by ML-F

– 0.5032 0.4888 0.4999 0.5256 0.5111 0.5154 0.4923
0.5023 – 0.5290 0.4922 0.5289 0.5098 0.5232 0.5199
0.5187 0.5211 – 0.5111 0.5292 0.5091 0.5187 0.4977
0.5333 0.5199 0.5077 – 0.5122 0.5199 0.5177 0.5201
0.5156 0.4966 0.5001 0.5054 – 0.4966 0.5066 0.5001
0.5066 0.5187 0.5187 0.4588 0.5378 – 0.4620 0.4713
0.4988 0.5023 0.5290 0.5134 0.4844 0.5222 – 0.5099
0.5256 0.4966 0.5199 0.4687 0.5256 0.4732 0.4620 –

Table 12: BIC-SAC of the S-box generated by FA

– 0.5032 0.5044 0.5099 0.5089 0.4977 0.4825 0.4861
0.5066 – 0.5034 0.4966 0.5011 0.4955 0.4950 0.5001
0.4987 0.4754 – 0.4557 0.4882 0.4827 0.4952 0.4671
0.5181 0.5045 0.5095 – 0.5075 0.4929 0.5051 0.5065
0.5253 0.4980 0.5016 0.5177 – 0.4934 0.4882 0.4944
0.5089 0.5134 0.4854 0.5123 0.5045 – 0.4867 0.5219
0.4890 0.5176 0.4980 0.4951 0.5004 0.5117 – 0.5237
0.4688 0.5021 0.4869 0.4690 0.4956 0.4751 0.4753 –

Table 13: BIC-SAC comparison of S-boxes

Methods Avg.

ML-F 0.5036
FA 0.4954

(Continued)
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Table 13 (continued)

Methods Avg.

SA 0.4979
GA 0.5027
ABC 0.5019
TLO 0.4963
LFM 0.5039
BFO 0.5023
ACO 0.5026
CFA 0.4983

6.5 Differential Harmonization Probability

The S-boxes were analyzed using the DP method, and the results are presented in Tables 14 and 15.
Each table element represents the DP of the generated S-box. The analysis showed that both ML-F and
FA produced S-boxes with DAP values mostly concentrated around 6–8 with occasional values of 10.
As shown in Table 16, both the ML-F and FA S-boxes are produced with a maximum DP value of 11,
which is consistent with other high-performance methods reported in the literature. This consistency
between the different optimization techniques, including ML-F and FA, shows that these methods
are effective in generating S-boxes with strong resistance to differential attacks, thus maintaining a
uniform distribution of differential opportunities.

Table 14: DP, of the S-box generated by ML-F

4 6 6 6 6 6 8 6 6 6 6 6 8 8 8 8
6 6 6 4 10 6 6 8 6 6 8 6 6 8 6 10
8 6 8 6 6 8 6 6 6 8 8 6 10 8 6 6
6 10 6 6 8 6 6 6 6 6 6 4 8 8 6 6
6 8 8 8 8 6 8 6 6 8 8 8 8 8 6 6
8 6 6 8 8 8 6 10 6 8 8 6 8 6 8 6
6 6 6 8 10 8 8 6 10 6 8 8 8 8 6 8
6 6 8 6 6 6 6 8 8 6 8 10 6 6 6 8
6 6 6 8 6 6 8 6 8 8 6 8 6 6 10 8
6 6 6 6 6 6 6 6 6 6 6 8 8 8 8 6
6 8 6 8 10 6 8 6 6 8 6 6 6 6 8 6
6 6 8 6 6 6 6 6 6 8 6 6 8 8 8 6
6 6 6 8 6 10 4 8 8 6 10 8 6 8 6 6
8 8 6 8 6 8 6 8 6 6 8 6 6 8 8 6
6 6 6 6 6 6 6 4 10 8 6 6 6 8 6 6
8 6 6 8 6 8 8 8 6 6 10 6 6 8 6 —



40 JIHPP, 2024, vol.6

Table 15: DP, of the S-box generated by FA

6 6 6 8 6 6 6 6 6 6 6 6 6 6 8 6
8 8 8 8 6 6 8 6 6 6 8 6 8 6 6 6
6 8 8 6 6 8 6 6 6 6 8 6 6 6 8 6
8 6 8 6 6 6 6 6 8 8 8 6 6 6 8 8
6 6 6 6 8 8 8 6 6 8 6 6 6 6 6 6
8 6 6 8 6 6 8 8 8 6 8 6 6 8 6 8
8 6 6 10 6 6 6 8 6 6 6 8 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 8 6 8
8 6 8 6 10 8 8 6 6 6 6 8 10 6 8 8
6 6 8 6 6 8 6 8 8 6 6 6 6 8 6 6
8 6 8 6 8 6 8 6 6 6 4 6 8 6 4 8
10 6 6 6 6 8 6 6 6 6 6 6 8 6 6 6
6 6 6 10 6 8 6 6 6 6 10 6 6 6 6 6
8 6 6 6 6 8 10 8 6 6 8 6 6 6 6 8
6 6 6 10 8 6 6 8 8 8 6 6 6 8 6 6
8 6 6 4 6 8 6 8 6 6 6 8 6 6 6 –

Table 16: S-box analysis of DP

Methods Max Dp

ML-F 11
FA 11
SA 11
GA 11
ABC 11
TLO 11
LFM 35
BFO 11
ACO 11
CFA 11

6.6 Maximum Expected Linear Probability

Table 17 compares the MELP results for the S-boxes generated using the proposed method with
those generated using various other techniques. The MELP value for the ML-F-based S-box is 0.0789,
which is similar to the values obtained using methods, such as SA and GA, and slightly lower than
the value achieved by the FA-based S-box (0.0873), which is similar to those obtained using ACO
and ABC. The results show that both the ML-F and FA approaches produce S-boxes that meet the
MELP criterion, demonstrating a strong performance in maintaining a linear probability distribution
comparable to that of other high-performance methods.
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Table 17: MELP analysis of S-boxes

Methods MELP

ML-F 0.0789
FA 0.0873
SA 0.0781
GA 0.0783
ABC 0.0891
TLO 0.0713
LFM 0.0643
BFO 0.0789
ACO 0.0888
CFA 0.0712

7 Threats to Validity

Empirical research is often subject to various validity threats, both external and internal. External
validity threats emerge when experimental results cannot be generalized to real-world applications. In
this study, such threats were mitigated by employing widely accepted benchmarks from the literature
that reflect realistic and commonly encountered cryptographic configurations. Internal validity threats
arise from factors that can inadvertently influence the outcomes of the study, including variations in
the population size, number of iterations, and specific parameters used for each algorithm. Considering
that the source code for all the methods was not available, it would be challenging to confirm
whether the ML-F and LOA methods were evaluated using an identical number of fitness functions.
Nonetheless, the comparisons presented in this study are considered valid because the published S-
box results were obtained using optimal control parameter settings, thereby minimizing the impact of
external factors. In addition, the performance was evaluated based on the averaged results to account
for the stochastic nature of each metaheuristic run. Comparing ML-F with methods such as TLO
could be misleading because of the inherent differences in their operational mechanisms, such as
the dual phases of TLO, which require a greater number of fitness function evaluations. Moreover,
although TLO is often cited as parameter-free, it still requires careful tuning of the iteration counts and
population sizes. Recent scrutiny of TLO has highlighted concerns about unreported implementation
steps that can result in unfair comparisons. Another internal validity threat involves the generation
time, which is significantly influenced by the computational environment. A fair comparison of
generation times necessitates that all methods are executed under identical conditions.

Limitations

Although the performed study illustrates that the ML-F algorithm provides an effective way
of generating highly nonlinear and robust S-boxes, there are specific limitations. The first is that
a larger swarm size with an increase in iterations requires more computation time and execution,
which is perhaps not feasible in real-time or resource-constrained conditions. Although the algorithm
has been tested for a range of swarm sizes and iterations, the configurations are still limited, and
further research is required to explore its performance under different environmental parameters or on
different hardware configurations. More importantly, although the optimization in this study focused
on nonlinearity and resistance to linear and differential cryptanalysis, not all types of cryptographic
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weaknesses, such as fixed points or reverse fixed points, were considered. The performance has
a large remaining margin, which will allow refinement towards fully comprehensive cryptographic
strength. The results of this study are obtained from simulations. Real implementations may have
completely different performances because of additional factors unrelated to this study, such as
hardware variability or specific operating limitations. Future studies may thus overcome these two
limitations, with a primary focus on ML-F optimization in terms of computational efficiency and the
assessment of its real performance against practical cryptographic requirements.

8 Conclusion

S-boxes play a crucial role in symmetrical cryptosystems by providing essential confusion, as
highlighted by Shannon, to obscure the relationship between the encryption key and plaintext, thereby
enhancing the resistance of the cryptosystem to attacks. In this study, we introduced a novel method
for generating S-boxes based on a hybrid ML-F optimization algorithm. This approach leverages the
exploration and exploitation capabilities of both the LOA and FA, which jointly address limitations,
such as early convergence and limited search diversity often observed in standalone metaheuristic
algorithms. These experimental results confirm that the proposed ML-F algorithm is satisfactory for
some important cryptographic attacks, such as nonlinearity analysis, BIC, SAC, DP, and MELP. The
ML-F-based generated S-boxes maintained their nonlinearity scores highly in comparison to the S-
boxes generated by FA and other compared algorithms each time while varying the swarm sizes and
iteration counts used in ML-F. From these experimental results, it can be concluded that ML-F obtains
better S-boxes with higher resistance to both linear and differential crypt analyses.

One of the striking features of ML-F is its scalability, with an increase in iterations and swarm size,
yielding robust performance under larger configurations. In contrast, the FA demonstrated greater
fluctuation and vulnerability to local optima, particularly for smaller iterations. This consistency in
producing high values of best-case, worst-case, and average metrics indicates the reliability of ML-
F for cryptographic applications. However, this study has some limitations. One major limitation
is that the increased swarm size and number of iterations boost the computational time, which
might limit the practice of ML-F in real-world applications with reduced resources or in real time.
Moreover, this study focused only on the optimization of important cryptographic properties, such
as nonlinearity and resistance against differential attacks. Other possible vulnerabilities include fixed
points or reverse fixed points, which are other important aspects of cryptographic strength. These
limitations include avenues for further research, in which better computational efficiency and more
cryptographic criteria may be integrated to enhance the applicability of ML-F. This implies that,
eventually, ML-F is an effective and promising approach toward the optimization of S-box properties
because of its persistent improvement in nonlinearity, along with the general cryptographic security
of various configurations. Further research might address improving the computational efficiency of
ML-F and exploring methods for adaptive tuning to optimize the ML-F performance. In addition,
other practical cryptographic applications may be promising avenues to which the ML-F algorithm
might be deployed, considering the great potential that this can provide for the robustness and
scalability of cryptographic systems. Extending the scope of the application of ML-F by real-time
tests and investigating its hardware implementation could provide a more solid basis for establishing
the practicality and effectiveness of the proposed MLF on modern cryptography.
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9 Future Research Directions

This paper presents the ML-F algorithm as an efficient way of generating highly nonlinear
and robust S-boxes, although a few avenues for future research remain open. Future work may be
undertaken to enhance the computational efficiency of ML-F, especially to optimize its performance
for real-time applications and resource-constrained environments. Adaptive tuning techniques for
parameters or exploring parallel processing may reduce the execution time without compromising
cryptographic strength. In addition, it can be extended further to enhance the robustness of the S-
boxes generated by ML-F with more security criteria beyond nonlinearity, bit independence, and
the properties of differential approximation. Other possible lines of research work may also include
resistance against fixed points, reverse fixed points, and short-period cycles, which are important for
several advanced cryptographic applications. Further investigations were conducted to test the ML-F
algorithm in practical cryptographic contexts, such as encryption schemes for secure communications,
image encryption, and IoT security. In addition, based on recent studies related to the design of S-
boxes, such as weighted Loeplitz matrices for data encryption and corner-modified symmetric Toeplitz
matrices for image encryption, one can gain insight into some feasible and new applications of the ML-
F algorithm in cryptographic infrastructure. Addressing these issues will refine the ML-F approach
in future research, thereby expanding its application and further increasing its viability in various
cryptographic settings.
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