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Abstract: The COVID-19 outbreak has taken a toll on humankind and
the world’s health to a breaking point, causing millions of deaths and cases
worldwide. Several preventive measures were put in place to counter the esca-
lation of COVID-19. Usage of face masks has proved effective in mitigating
various airborne diseases, hence immensely advocated by the WHO (World
Health Organization). A compound CNN-LSTM network is developed and
employed for the recognition of masked and none masked personnel in
this paper. 3833 RGB images, including 1915 masked and 1918 unmasked
images sampled from the Real-World Masked Face Dataset (RMFD) and
the Simulated Masked Face Dataset (SMFD), plus several personally taken
images using a webcam are utilized to train the suggested compound CNN-
LSTM model. The CNN-LSTM approach proved effective with 99% accuracy
in detecting masked individuals.
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1 Introduction

With an official death count of 171, COVID-19 was publicized in January 2020 as a public health
threat with fever to cold, dire breathing ability, loss of taste and smell sense in some cases as the main
symptoms [1], affecting the respiratory system as well as kidneys and the Liver [2]. The COVID-19
pandemic has claimed a huge number of lives, 6,152,095 deaths of 489,779,062 confirmed cases as of
April 2022 reported to the World Health Organization globally.

To limit the further escalation of COVID-19, extreme measures had to be taken; such as local
lockdowns, nationwide lockdowns, social distancing (standing 6ft apart), mask mandates, and hand
hygiene have been implemented as primary Covid counter stratagems [3]. Several studies were done to
evaluate the efficacy of facemasks in the fight against COVID-19. In Beijing ménages, a study inves-
tigated the depletion of secondary spread of SARS-CoV-2 by facemask employment [4]. It descried
that face masks were 79% helpful in fending off transmission if used by all ménage members before
the occurrence of symptoms though the study did not investigate the sorts of masks. Leffler et al. [5]
investigated the correlation between facemask use and the diffusion of SARS-CoV-2 using a multiple
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regression approach. Their study noticed that SARS-CoV-2 diffusion was multiple times higher in
countries a facemask decree had not been put in place equivalent results were noticed in other studies
in some countries [6].

Be it well noted that facemask usage as a pandemic prevention tool is not a 20th or 21st-century
invention. Wu Lien Teh recognized the cloth mask, which he designed immensely used in 20th-century
all over the world as the chief mean of personal protection [7]. Although Wu designed it, he stated that
the airborne diffusion of plague was notorious in the 13th century. A century later, face coverings
started being employed for airborne disease protection [8].

2 Related Works

All the above and more studies supported putting in place social distancing and face mask
mandates. Researchers and developers have hopped on the opportunity to create systems to assist
the compliance of the set rules during the fight against COVID-19.

Using a Deep CNN model created from a convolutional neural network (CNN) structure with a
slight kernel value and two fronts that operate in a variety of scene settings with no prior familiarity,
Jarraya et al. [9] proposed a crowd monitoring system for social distancing in public places of high
and low concentrations. Sonn et al. [10] illustrated the role of intelligent cities in countering the
coronavirus diffusion in South Korea. Hastening the city’s communication survey together with
patient displacement, transaction history, cell phone use, and locating by a time-space cartographer.
Rahman et al. [11] designed a model based on CNN, capable of detecting an unmasked individual with
a 98% accuracy and informing law enforcement to deter the diffusion of COVID-19.

Ge et al. [12] suggested detecting masked individuals using an LLE-CNN network, manifesting
them with high dimensional descriptors after fusing pre-trained CNNs to extract relevant facial
regions. Using the Viola-Jones algorithm, Fan et al. [13] developed a deep learning-based feather-light
facemask detection system to satisfy embedded systems’ low computational necessities, introducing
the SL-FMDet that operated commendably because of its little hardware obligations Using the nearest
neighbor (NN) classifier distance for face recognition, Ejaz et al. [14] developed PCA for face portion,
masked and unmasked facial image detection, and for working out Eigenface simultaneously.

The COVID-19 pandemic has drastically boosted research hunger in the domain of MFR as
a whole that protracted existing methods like OFR and attained outstanding accuracy results by a
significant margin. Above all, deep learning methodologies have gradually been advanced to counter
MFR trials, as illustrated in Fig. 1 below [15].

3 Methods and Materials

This study is carried out in 5 essential stages. Starting with data collection, data pre-processing,
and data division into training, validation, and testing sets are the subsequent steps. Model develop-
ment is the next step, based on a combination of CNN and LSTM architecture, and model evaluation
is the last step, used to assess how well the produced model performs in terms of accuracy, recall,
precision, and F1-Score ranking. A fair representation of all classes in the testing set was taken
into account throughout the experiment, and the Test set was deliberately set aside for the model
evaluation stage. The entire work is summarized in Fig. 2 below, which shows the process in a left to
right direction.
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Figure 1: Demonstrates a hike in research endeavors in the MFR field since the beginning of the
pandemic

Figure 2: The overall study process

4 Dataset Collection and Description

Using publicly available datasets, the dataset employed in this research endeavor was generated
3833 RGB images in total, including 1915 masked and 1918 unmasked images sampled from a combi-
nation of the RMF Dataset (publicly available on GitHub) and the SMF Dataset (publicly available on
Kaggle), plus several personally taken images using a webcam, dataset sample is showcased in Fig. 3.
The images were split and used for the model’s validation, training, and testing purposes throughout
this endeavor.

4.1 Data Preprocessing and Augmentation
Due to the fact that elements of the dataset are not of the equivalent size, it is essential for resize

to come into play. Employing Keras’ Image Data Generator method to resize all images to 128 × 128
size. Images are later converted to NumPy arrays and later normalized in the range [0–255] to make the
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model converge faster. Data augmentation is done on the dataset by rescaling, rotation, width shift,
height shift, shear, zoom, vertical, and horizontal flip by applying the corresponding Keras method.

(a)

(b)

Figure 3: Dataset samples (a) Masked (b) Unmasked

5 Proposed Method

A fusion of Convolutional Neural Network (CNN) and LSTM (Long Short Memory) for
facemask detection is proposed in this paper and described below.

5.1 Convolutional Neural Network
Many researchers have admired the use of Convolutional Neural Network (CNN) algorithm

designs for Segmentation, Image Classification, and Object Recognition. Generally, a typical CNN
structural design comprises three main components (layers), namely: Convolutional, pooling, and fully
connected layers, in that order. To acquire deep features, which is the architecture’s primary goal, the
inputs are scanned by the initial layer (Convolutional) through a filter. To condense the computational
burden, the pooling layer offers the selection of more significant features.

Lastly, the fully connected layer flattens the inputs and calculates the probabilities of the labels.

A tensor of feature maps is defined by a batch of kernels [16] included in the stated above
Convolutional layer. By the use of strides, the mentioned kernels convolve the input completely turning
the output volume dimensions to integers in the process [17].

Zero-padding [18] is vital to pad the input volume with zeros to preserve the input volume
dimension with low-level features since for the striding process the input volume dimensions reduce
after the convolution layer. The convolutional layer maneuver is mathematically illustrated below as:

G (i, j) = (E ∗ K) (i, j) = �� E (i + t, j + p) K (t, p) (1)
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where E stands for the input matrix, K denotes a size t × p 2D filter, and 2D feature map output
represented by G. E ∗ K denotes the convolution operation. The Rectified Linear Unit (ReLU) layer
is employed to aggregate the nonlinearity in the feature maps (mages are naturally non-linear). By
maintaining the threshold of the input at zero, ReLU works out the activation, illustrated graphically
in Fig. 4. Given mathematically as:

g (x) = max (0, x) (2)

Figure 4: ReLU activation function graph

The pooling layer [19] comes next to diminish the number of parameters by the dint of down
sampling the input dimension. Being one of the notorious methods, Max pooling yields the topmost
value in the input region. Based of acquired features from the above-mentioned layers namely: pooling
and convolutional layers, the fully connected layers [20] is later employed as a classifier to make a
judgment. A whole CNN structural design can be built up with the above-discussed layers, graphically
as Fig. 5.

Figure 5: Graph representation of a CNN structural design
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5.2 Long Short-Term Memory
Usually called “LSTMs”–Long Short Term Memory–an advance of RNN, Hochreiter et al. (1997)

[21] instigated fit for learning long-term dependencies. They later gained notoriety due to the
refinement work of various people [22,23]. Their immense popularity is based on their outstanding
performance-proven solving various problems.

LSTMs are unequivocally aimed to sidestep the long-term dependency problem. Retention of
information for extensive periods of time is their inherent behavior conduct, a task they do with ease.

To work out exploding and vanishing gradient glitches [24], memory blocks are suggested by the
LSTM in spite of traditional RNN units hence an upgrade of the RNN. An LSTM network is able to
recall and link former information to the extant information [25].

LSTM augmented a cell state to save long-term states distinguishing them from RNN. The design
of an LSTM network is illustrated in Fig. 6. The LSTM associates the output, forget, and input gates.
Where nt denotes the current input, Zt represents the new and later Zt−1 represents the previous cell
state, the current and previous outputs are denoted by Ot and Ot−1 in that order. The LSTM’s input
gate mathematical principle is presented next form.

dt = ϕ (Mi · [Ot − 1, nt] + pi) (3)

Zt = tanh (Mi · [Ot − 1, nt] + pi) (4)

Zt = yt Zt − 1 + dt Zt (5)

Figure 6: Long short term memory graph representation

To elect the quota of information to be added, Ot−1 and nt are delivered via the sigmoid layer.
Afterward, novel information is obtained at (4) once Ot−1 and nt are delivered via the tanh layer.
In (5) Zt () and Zt−1 (long-term memory information) are joined into Zt with dt, Zt representing the
sigmoid, and the tanh outputs respectively, with Mi and pi representing weight matrices, LSTM’s input
gate bias in that order. Then by a dot product and a sigmoid layer, the forget gate of LSTM permits
the discerning information passage. With a given likelihood, the judgment to forget the former cell’s
associated information is carried out with (6), the weight matrix, the offset, and the sigmoid function
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represented by Mf, sf, ϕ respectively.

yt = ϕ (Mf · [Zt − 1, nt] + sf) (6)

After (7) and (8), the essential states to be carried on by the Ot−1 and nt inputs are defined by the
output gate of the LSTM. The concluding output is found to multiply with the state decision vectors
delivering novel information through the tanh layer.

Qt = ϕ (Mo · [Qt − 1, nt] + ro) (7)

Ot = Qt tanh (Zt) (8)

With Mo denoting the output gate’s weighted matrices and ro representing LSTM’s output
gate bias.

5.3 Fused CNN-LSTM Network
This study developed a combination of CNN and LSTM networks to differentiate masked

individuals from unmasked personnel. In this developed architecture, CNN was employed for feature
extraction purposes from images and LSTM was employed for the classification role. Table 1 below
illustrates the proposed architecture.

Table 1: Architecture of the proposed CNN-LSTM network

Layers Type Kernel size Strides Kernel Rate Input size

1 Conv2D 3 × 3 1 64 - 128 × 128 × 3
2 MaxPooling 2 × 2 2 - 126 × 126 × 64
3 BatchNormalization - - - 63 × 63 × 64
4 Conv2D 3 × 3 1 64 - 63 × 63 × 64
5 MaxPooling 2 × 2 2 - 61 × 61 × 64
6 BatchNormalization - - - 30 × 30 × 64
7 Conv2D 3 × 3 1 128 - 30 × 30 × 64
8 MaxPooling 2 × 2 2 - 28 × 28 × 64
9 BatchNormalization - - - 14 × 14 × 128
10 Conv2D 3 × 3 1 128 - 14 × 14 × 128
11 MaxPooling 2 × 2 2 - 12 × 12 × 128
12 BatchNormalization - - - - 6 × 6 × 256
13 Conv2D 3 × 3 1 256 - 6 × 6 × 256
14 MaxPooling 2 × 2 2 - 4 × 4 × 256
15 BatchNormalization - - - - 2 × 2 × 256
16 Reshape - 2 × 2 × 256
17 LSTM - 4 × 256
18 BatchNormalization - - - - 4 × 256
19 Flatten - - - - 4 × 256
20 Dense - - 128 - 1024
21 Dropout - - - 0.4 128
22 Dense - - 64 - 128

(Continued)
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Table 1: Continued
Layers Type Kernel size Strides Kernel Rate Input size

23 Dropout - - - 0.4 64
24 Output - - 1 64

The input shape requires a size of 128 × 128 pixels. For the training cost not to be augmented,
Convolution layers were kept to 5 layers max. Input Images of size 128 × 128 × 3 go through the initial
five convolution layers, with 64, 64,128,128, and 256 filters, respectively. A (3 × 3) kernel and in the
convolution layer, the ReLU function is employed as the activation function plus a stride of 1. Further,
a pooling layer (MaxPooling) of stride 2 and kernel size (2 ∗ 2) follows each of the convolution layers,
and finally, a Batch Normalization layer follows. For time information to be extracted, the function
map is passed to the LSTM layer in the following section of the architecture. A dense block entailing
2 fully connected layers is found in the last phase after the flattening of the model, a 0.4 drop rate is
set in the Dropout layers of the dense block inhibiting overfitting past each respective fully connected
layer.

Due to the fact that the model gives us a score, applying a threshold will provide a prediction (by
comparison) which is 0.5 by default. The threshold was tuned to 0.946058 based on the ROC curve
in this study, shown in Fig. 7. The notion of using the ROC curve for tuning the threshold is to spot
that threshold that proffers the upper-left corner of the curve. In mathematical terms, that threshold
p satisfies the Eq. (9):

TPR (p) = 1 − FPR (p) (9)

It is equivalent to finding the value of p for which the True Positive Rate is equal to the True
Negative Rate (1-FPR). In simple terms, we want to find the threshold that satisfies the following:

p∗ = argp min |TPR (p) + FPR (p) − 1| (10)

Figure 7: ROC curve of the proposed model with AUC = 0.998

Throughout the training period of the proposed network due to its practical choice of hyperpa-
rameters [26], the Adam optimizer [27] was employed. Furthermore, various batch sizes were inspected
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to achieve a minor error proportion possible (256, 128, 64, plus 32) and was finally set to 64. To inhibit
the saturation of the model and to maintain a nominal error rate, numerous learning rates were tested
and later set to 0.0001. Epochs are set to 200 to monitor the sturdiness of the model and relate the test
scores with comparable conditions.

6 Performance Evaluation Criterion

To gauge the performance of the proposed approach, the highlighted metrics below were utilized.
AP represents the correctly predicted unmasked individuals, FP is the masked individuals that were
wrongfully classified as unmasked by the proposed model, and AN represents the masked cases that
were suitably classified. At the same time, the FN denotes the unmasked cases that were misclassified
as masked.

Accuracy = (AP + AN)/(AN + FP + AP + FN) (11)

Recall = AP/(AP + FN) (12)

Precision = AN/(AN + FP) (13)

F1 score = (AP × 2)/(2 × AP + FP + FN) (14)

7 Evaluation Results and Discussion

The training, testing, and validation of the suggested architecture are carried out using Cuda 10.1
and TensorFlow 2.8.0 on an 84 GB RAM and Nvidia GeForce RTX 3080 Ti GPU computer. Images
are equally distributed according to their respective classes. Considering 3833 total images, they were
split into training, testing, and validation set. With 3036 images in the Training set (1519 unmasked,
1517 masked images), 399 images in the Testing set (211 unmasked, 188 masked), and 398 images in
the Validation set (210 masked and 188 unmasked images Moreover, the ROC-AUC, accuracy, recall,
and precision are computed during the validating and testing stages to examine the performance of
the model.

7.1 Results Evaluation
Fig. 8 portrays the proposed CNN-LSTM architecture’s test phase confusion matrix. Though

the architecture classifies all images almost perfectly, there is a total of 6 misclassified images. Two
were misclassified as unmasked, and four images were misclassified as masked. It is found that the
suggested CNN-LSTM provides an outstanding performance based on harmonious actual-negative,
actual-positive results and fewer false negative and false-positive results. Consequently, the proposed
architecture can proficiently detect masked individuals.

Additionally, Fig. 9 demonstrates the graphical performance assessment of the bid CNN-LSTM
classifier by loss and accuracy in the training stage and validation phase. The training and validation
accuracy is 98.2% and 97%, in that order. Correspondingly, the training loss and validation loss is 0.18
and 0.05, in turn, for the bid architecture.

Additionally, Table 2 plus Fig. 10 illustrates each class’s assessment metrics of the fused CNN-
LSTM approach. Accuracy is found to be 99% for masked cases and 98% for unmasked cases. The
Precision is at 99% and 98% for masked, unmasked cases, in that order. The Recall is achieved at 98%
for both cases. The f1-score is found to be 98% for the two classes.
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Figure 8: Confusion matrix of the detailed face mask detection system

(1)

(2)

Figure 9: Assessment metrics of the bid LSTM-CNN Face mask detection architecture (1) Accuracy
(2) Loss

From the experimental point of view, it is eminent that the bid CNN-LSTM architecture achieved
an overall 99% accuracy, 99% Precision, and 98% Recall, respectively, for the Masked cases. This
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endeavor’s principal point is attaining outstanding results in masked individuals’ detection. Hereafter,
results disclose that the bid CNN-LSTM design provides reliable performance on that task.

Table 2: Performance assessment of fused CNN-LSTM

Class Accuracy Precision Recall F1-score

Masked 0.99 0.99 0.98 0.98
Unmasked 0.98 0.98 0.98 0.98

Figure 10: Graphical bar chart representation of the assessment metrics results for each class

7.2 Discussions
Analyzing the results demonstrates that a fusion of CNN and LSTM has a noteworthy ability to

detect masked individuals. Based on automatically extracted features, the bid system could distinguish
masked class from unmasked class with high accuracy from the input images. In Table 3 below, a
comparative study of approaches with the bid CNN-LSTM approach is presented. Based on Table 3,
it is proven that a number of the proposed approaches [28–30] achieved a moderately lower accuracy of
97.3%, 96.5%, and 96.2%, in that order. The soberly highest accuracy of 98.7% and 99.82% are found
at [30]. The result of the bid system is superior in terms of performance compared to some existing
systems. Most present systems achieved accuracy in the 0 range of 80% to 96%, slightly less than our
proposed system.

Table 3: Comparative table

Author Architecture Dataset Size Accuracy (%)

Rahman et al. [11] CNN Publicly available
on Kaggle and
GitHub

858 masked, 651
unmasked

98.7

(Continued)
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Table 3: Continued
Author Architecture Dataset Size Accuracy (%)

Sidik et al. [28] CNN based model Face mask
detection by Larxel
on Kaggle and
partially selected
dataset from
MAFA [12]

4423 images and
250 images [12]

97.3

Saravanan et al. [29] Pre-trained Vgg16
based model

Kaggle sourced
(Dataset 1 &
Dataset 2)

1484 images in 2
classes (Dataset 1)
& 7200 images in 2
classes (Dataset 2)

96.5 (Dataset 1)
& 91 (Dataset 2)

Shamrat et al. [30] CNN based model
(Average pooling
approach)

RMFD, SMFD,
personally
collected images

1340 images in 2
classes

98.67

Shamrat et al. [30] CNN based model
(Max pooling
approach)

RMFD, SMFD,
personally
collected images

1340 images in 2
classes

96.23

Shamrat et al. [30] MobileNetV2 RMFD, SMFD,
Personally
collected images

1340 images in 2
classes

99.82

Proposed system CNN-LSTM Webcam images,
RMFD, SMFD

3833 images (1915
masked and 1918
unmasked)

99

8 Conclusion and Future Scope

This study combined CNN and LSTM networks building a collaborative network (CNN-LSTM)
for face mask detection. The primary objective was to suggest a highly accurate attuned model such
that mask identification will be fast and simple to curb the spread of COVID19 and other airborne
diseases in general. The proposed model provided outstanding performance based on experimental
results. Though able to correctly classify images with various occlusion and face angles in almost all
cases, it slipped in some. It is quite a dare that must be addressed to increase the performance of the
employed model for masks in community areas.
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