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Abstract: As the development of smart grid and energy internet, this leads to a significant 

increase in the amount of data transmitted in real time. Due to the mismatch with 

communication networks that were not designed to carry high-speed and real time data, 

data losses and data quality degradation may happen constantly. For this problem, 

according to the strong spatial and temporal correlation of electricity data which is 

generated by human’s actions and feelings, we build a low-rank electricity data matrix 

where the row is time and the column is user. Inspired by matrix decomposition, we divide 

the low-rank electricity data matrix into the multiply of two small matrices and use the 

known data to approximate the low-rank electricity data matrix and recover the missed 

electrical data. Based on the real electricity data, we analyze the low-rankness of the 

electricity data matrix and perform the Matrix Decomposition-based method on the real 

data. The experimental results verify the efficiency and efficiency of the proposed scheme. 
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1 Introduction 

As the development of smart grid and energy internet [Tsoukalas and Gao (2008)], the 

amount of transmitted data in real time significantly increase. Due to the mismatch with 

communication networks that were not designed to carry high-speed and real time data, 

data losses and data quality degradation may happen constantly.  

For this problem, the most common data recovery methods [Tu, Lin, Wang et al. (2018); 

Meng, Rice, Wang et al. (2018)] are used, such as mean, regression, interpolation and 

deep learning [Zeng, Dai, Li et al. (2018); Xiang, Li, Hao et al. (2018)]. According to the 

strong spatial and temporal correlation of electricity data which is generated by human’s 

actions and feelings, some work takes the weather information as aid to recover electrical 

data via collective matrix factorization [Han, Dang, Zhang, et al. (2018)]. However, the 

weather information is quietly different for different locations, which can only be used to 

recover the electrical data of one location.  

                                                      
1 Information & Communication Corporation, State Grid Gansu Electric Power Company, Lanzhou, 730050, 

China. 

2 State Grid Gansu Electric Power Corporation, Lanzhou, 730050, China. 

3 School of Computer and Communication Engineering, Changsha University of Science and Technology, 

Changsha, 410114, China. 

4 Business Administration Research Institute, Sungshin W. University, 02844, Korea. 

* Corresponding Author: Shiming He. Email: shuiqiao9999@163.com. 



 

 

 

2  Copyright © 2019 Tech Science Press                           JIOT, vol.1, no.1, pp.1-7, 2019 

Inspired by Matrix Decomposition or Matrix factorization (MF) [Tikk (2008); Hoyer 

(2004)], we treat the electricity data as a low-rank matrix where the two dimensional are 

day and user. We divide the low-rank electricity data matrix into the multiply of two 

small matrices and use the known data to approximate the low-rank electricity data 

matrix and recover the missed electrical data. Based on the real electricity data, we 

perform the Matrix Decomposition-based method on the real data. The experimental 

results verify the efficiency and efficiency of the proposed scheme.   

The remainder of this paper is organized as follows. Section 2 introduces the system 

model. Section 3 presents electrical data matrix factorization. Section 4 provides 

simulation results and analyses. In the end, we conclude this work in Section 5. 

2 System model 

Generally, the value of the smart meter is the the cumulative power consumption of user 

on each day. The minus of two consecutive values is the power consumption on one day. 

We take the power consumption on each day as the electricity data. The electricity data is 

generated by human’s actions and feelings, which has a strong spatial and temporal 

correlation. At the same time the human’s actions and feelings has periodicity. Therefore, 

we treat the electrical data as a matrix H NX . In the electrical matrix, there are N uses 

and H days. The electrical data matrix contains the data within a H times measurement 

for N users. An element xij represents the power consumption of user j on the ith day, as 

shown in Fig. 1.  
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Figure 1: The matrix of electrical data (The row is time. The column is user.) 
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Figure 2: The recovery of electrical data 

The electrical matrix has many lost elements. The subset  of matrix is the known set, 

where the elements xij, ( , )i j   are known. As shown in Fig. 2, the recovery task is to 

estimate the lost or unknown element in the matrix by the spatial and temporal correlation 

and periodicity of the data in order to minimize the recovery error, which is usually 
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defined as squared error 2ˆ( )ij ijx x− , where ijx is the real value and ˆijx is the estimated value. 

The low-rankness of the electricity data matrix is analyzed [Han, Dang, Zhang et al. 

(2018)]. 

3 Electrical data Matrix Factorization 

MF techniques approximate a low rank matrix X  as a product of two much smaller 

matrices: 

TX UV                                                                                                               
(1) 

where U  is an H × K and V  is a N×K matrix.  
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Figure 3: The concept of matrix factorization 

X  has many unknown elements which cannot be treated as zero. The subset of its entries 

xij, ( , )i j  are known. The subset  can be formed with randomly selected entries of the 

matrix, and the sampling operator : H N H NP  

 →  is defined by 
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(2) 

For this case, the approximation task can be defined as follows. Let *H KU   

and *N KV . Let uik denote the elements of U , and vjk the elements of V . Let i*U  

denote a row of U , and j*V  a row of V . We can calculate the dot product of the two 

vectors corresponding to i*U  and j*V  as Equation 2 to get the estimation of xij. 
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(3) 

X can be recovered by solving the optimization problem. 
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where
 
e ij denotes the training error on the (i, j)-th element. Problem (5) states that the 

optimal U  and V  minimizes the sum of squared errors only on the known elements of X . 

we can use a simple incremental gradient descent method to find a local minimum, where 

one gradient step intend to decrease the square of prediction error. We compute the 

gradient of 21
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(5) 

Having obtained the gradient, we can now formulate the update rules for uik and vkj as 

follows:

 '

ik ik ij jku u e v= +  
, 

'

jk jk ij ikv v e u= +  
 
                                                     

(6) 

where   is a small value that determines the rate of approaching the minimum. To avoid 

over fitting, a regularized MF by penalizing the square of the Euclidean norm of weights 

is introduced. 
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where F|| ||• represents Frobenius norm. The first two terms in the objective function are 

used to control the error in the matrix factorization process. The last item is the Euclidean 

paradigm of the factorized sub-matrix. The regularization penalty term prevents the 

matrix item from appearing negative values. 

The objective function is not conjointly convex for all variables ,U V . We solve it by 

gradient descent. The partial derivative of the variable is used as a gradient.  
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Having obtained the gradient, we can now formulate the update rules as follows: 
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(9)
 

where   is a small value that determines the rate of approaching the minimum. All above, 

the stochastic gradient descent (SDG) Algorithm of MF for recovery is shown as 

Algorithm 1. 
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Algorithm 1 SDG Algorithm of MF for recovery 

Input：X，Error threshold   

Output： ,U V  

1.Random initialization
* *,H K N K U V

 

2.   is the step，t is the number of iteration which is set to 1 

3.While (t<M and Lt-Lt+1> ) 

4.  for all  ij 0 
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5.Return , ,U V T  

4 Simulation 

The real electrical data comes from Lanzhou power system company with 160 users in 

Jiuquan of the Lanzhou province from August 1, 2016 to August 31, 2017. Except for the 

lost data, we can get the available real data of 160 users in 385 days which are all known. 

The real data is treated as a matrix 385 160X . There are 160 uses and 385 days. 

The root mean squared error (RMSE) is used to evaluate the recovery accuracy, which is 

defined as: 

2
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(14) 

where  is set of the entries on which the values are unknown, | | is the number of 

unknown entries. If the RMSE is smaller, the recovery accuracy will be higher. We 

compare our scheme with the Average filling (AVG) recovery on different sample ratios. 

The sample ratio is the ratio of the number of known elements to the number of all 

elements in the electrical data. The higher the ratio, the more known elements, the more 

information we know, and the fewer elements we need to recover. We set the sampling 

ratios from 85% to 97.5%, increasing at 2.5% intervals. 

Fig. 4 shows the RMSE of MF and Average filling (AVG) with different sample ratios. 

With the all sample ratio, the recovery accuracy of CP is better than that of MF. The 

reason is that MF uses more periodicity information. And as the sample ratio increases, 

the RMSE decreases because the more information is known, the more potential 

relationships will be provided to help improve recovery accuracy. 
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Figure 4: The RMSE with different sample ratios 

5 Conclusion 

According to the strong spatial, temporal correlation and periodicity of electricity data, 

we treat them as a low-rank matrix where the dimensional are day and user. We perform 

the matrix decomposition-based method on the real data. The experimental results on real 

data verify the recovery accuracy efficiency of the proposed scheme. 
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