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Abstract: The development of modern air combat requires aircraft to have
certain intelligent decision-making ability. In some of the existing solutions,
the automatic control of aircraft is mostly composed of the upper mission
decision and the lower control system. Although the underlying PID (Pro-
portional Integral Derivative) based controller has a good performance in
stable conditions, it lacks stability in complex environments. So, we need to
design a new system for the problem of aircraft decision making. Studies have
shown that the behavior of an aircraft can be viewed as a combination of
several basic maneuvers. The establishment of aircraft basic motion library
will effectively reduce the difficulty of upper aircraft control. Given the good
performance of reinforcement learning to solve the problem with continuous
action space, in this paper, reinforcement learning is used to control the
aircraft’s rod and rudder to generate a basic maneuver action library, and
the flight of the aircraft under the 6 degrees of freedom (6-DOF) simulation
engine is effectively controlled. The simulation results verify the feasibility of
the method on a visual simulation platform.
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1 Introduction

Control theory and controller based on PID (Proportional Integral Derivative) design have been
widely used in industrial control process [1], including aircraft control, etc. Although the controller
designed by PID theory has achieved many good effects in some fields, it still can’t cover up the
weakness of PID theory itself. Take the control of the aircraft for example, the control system of
the aircraft has the characteristics of non-linearity, variable parameters, variable structure and so on
[2]. It is difficult to complete the work to complete a slightly more complex action with a simple linear
PID controller. In addition, the PID-based controller lacks the necessary flexibility, and is difficult to
cope with the interference of other factors such as external weather. On the other hand, almost all the
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components related to the control of the aircraft has a situation of dead-zone non-linearity [3], which
also increases the necessary of the controller, which can be used in more complex cases.

From the perspective of military demand, as the pace of modern warfare increases, the complexity
of war is rising, and the military demand for intelligent combat is also getting higher and higher.
Intelligent air combat has become an important content of the future war. This means, the aircraft
should have the ability to effectively integrate external information and make fast decisions to complete
the given related tasks just with simple instructions from the commander. For the next generation of
flight control systems to become intelligent, they need to design an approach that is capable of adapting
to variable dynamics and environments.

The core content of air combat decision making is air combat maneuver decision. In the
optimization methods of making air combat action decision, it is generally required a designed
maneuver action library. Maneuver action library is the base of maneuvering decision in air combat [4].
The establishment of the action library can reduce the difficulty of designing the end-to-end intelligent
air combat body.

Reinforcement learning is a machine learning algorithm designed for sequential decision problems
that can be learned in interaction with the environment without any prior knowledge of dynamic
models. Reinforcement learning algorithm can gradually improve controller performance from sam-
pling data in the process of interaction with the environment [5]. Reinforcement learning algorithm
can greatly reduce the difficulty of controller design. The use of reinforcement learning method
in the controller design can change the situation that traditional controller design relies too much
on the precise mathematical model of the controlled object and can also solve the problem that
traditional controller can be interfered and fails in the control process. Due to its unique characteristics,
reinforcement learning has been applied in many fields, including reducing the difficulty of control in
control [6], playing a role in task scheduling [7], and showing strong adaptability in image processing
[8].

In this paper, based on the 6-DOF flight dynamics model in JSBSim, a flight maneuver action
library consisting of five basic maneuver actions including stabilized flight, left turn, right turn, climb
and subduction is established.

2 Background

In this part, we will introduce the basic reinforcement learning theory and the aircraft dynamics
model library we used in this paper. After that, we will introduce the related work in aircraft control.

2.1 Reinforcement Learning
Reinforcement learning algorithm is not a newly emerging machine learning algorithm, but the

great achievements in the field of reinforcement learning in recent years increase people’s attention
to it.

In a typical reinforcement learning process, consider a finite episode problem, we assume that
reinforcement learning agents exist in a complex environment E. At each discrete decision time point
t, the agent will observe the environment and obtain the observed value of the environment at this
time St. Then, the agent will select an action at based on its existing knowledge and strategy π and
execute it. After an agent performs, the environment situation will change. At the next decision point,
the environment will score the performance of the agent in the last step, and the score will be reflected
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in the amount of the reward r given by the environment. During the training process, the interaction
between the agent and the environment will cycle this process, just as the Fig. 1 shows.

Figure 1: Reinforcement learning flowchart

In the reinforcement learning, the aim is to find a target policy π , which can lead to gain the
maximum cumulative return reward. In the finite episode situation, the cumulative reward can be
written like:

Es,a∼π

[∑T

t=1
γ t−1r (st, at)

]
(1)

The discount γ factor is used to adjust the agent’s consideration of future rewards and T is the
number of interactions in an episode.

In the reinforcement learning algorithm based on value update represented by Q learning, we use
the parameter θ to estimate the action value function Q (s, a; θ) under the situation (s, a). With the
help of Bellman equation, we can get the objective function like:

LQ = E
[(

r (t) + γ maxa′Q
(
s′, a′; θ−) − Q (s, a; θ)

)2
]

(2)

Iterate with the least mean square deviation, we can get the best parameter θ , and the optimal
strategy is to obtain the optimal action in different states by maximizing the action value function.

In the reinforcement learning algorithm based on policy update represented by Policy Gradient.
we use the parameter θ to estimate the policy, in the learning progress, the gradient of the cumulative
reward can be written as:
∂Ea∼π [R1:T ]

∂θ
= E

[
∂

∂θ
log π (a|s) (Qπ (s, a) − V π (s))

]
(3)

In the calculation process, the value function and action value function are replaced by the
estimate.

In the process of interacting with the environment, the actions taken by an agent affect not only
the immediate reward, but also the next state, and thus all subsequent rewards. To get the maximum
reward, an agent must effectively explore the environment and choose the most effective action based
on previous experience. This feature makes reinforcement learning more suitable for training agents
to make continuous decisions compared with other machine learning methods.

2.2 Flight Dynamics Simulation
At present, the flight simulation of aircraft is mainly divided into three degrees of freedom

simulation and six degrees of freedom simulation. The 3-DOF simulation model mainly contains the
model of velocity, angle, and its change, without the equation of the relationship between mechanics
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and torque. In the 6-DOF simulation model, based on the 3-DOF model, the relationship between
mechanics and torque is also included. Compared with the 3-DOF flight simulation model, the 6-DOF
simulation model can better describe the real motion of the aircraft, but at the same time, the control
of the 6-DOF simulation model is also more difficult. The 6-DOF simulation model takes continuous
state as input and continuous actions as output which are correspond to the rudder deviation and
engine power. In the subsequent development, it will be more conducive to use in the real aircraft.

The reinforcement learning environment in this paper will be built based on the 6-DOF simulation
model. The 6-DOF simulation model library used in this work is JSBSim, which is an open source,
multi-platform, data-driven flight dynamics modeling framework [9]. This simulation platform is
essentially a physical or mathematical model that uses classic coefficient construction to effectively
model aerodynamics and torque and can support any type of aircraft model simulation. In addition,
JSBSim defines the motion of the aircraft under the action of its internal forces and the forces from
the nature, which has a high degree of simulation of the flight state, strong scalability, and has got high
recognition in the field of flight simulation.

2.3 Related Work
NASA has been developing intelligent air combat systems based on expert predictions between

the 1960s and 1990s, making several attempts to use artificial intelligence systems to assist and even
replace pilots in air combat decisions [10]. Heuristic methods such as genetic algorithm and fuzzy
tree are also explored and used [11,12]. In recent years, with the develop of machine learning theory
and the improvement of computing power, intelligent algorithms represented by deep learning and
reinforcement learning have shown great advantages in air combat. Huang Changqiang et al. assumed
the unilateral decision in close air combat as Markov decision process, used Bayesian reasoning
to calculate the air situation, and used fuzzy logic method to predict the movement of enemy
aircraft. Changqiang et al. [13], using DDPG algorithm, have successfully obtained a reinforcement
learning model capable of trajectory retention and velocity retention. Zhang’s team [14] proposed
an approximate dynamic programming method for solving maneuvers in air combat, which also
performed well in environmental tests. Weiren McGrew et al. [15] also conducted relevant research on
the intelligent decision-making of unmanned combat air vehicles in the case of air combat within the
visual range and proposed the decision algorithm of reinforcement learning for the decision-making
strategy of 1V1 air combat scenario. Kong et al. [16] used DDPG to control a 3-DOF aircraft to
generate a decision model for air combat. For the complex problem of reward setting, they developed
a battlefield situation assessment model to aid in the generation of rewards for agent decisions [17].

Although many papers published in aircraft control that has achieved good results, even some
work has been conducted on the simulation platform to run, but it is important to note that the current
flight simulation model used by most of the work is the 3-DOF model, and the setting is not unified.
Zhuang Sheng et al. ‘s work is based on six degrees of freedom, but it also simplifies the real situation.
There is still a long way to go to realize the effective controller based on the 6-DOF flight dynamics
model, and then develop intelligent aircraft capable of real intelligent air combat based on it.

For the movement of aircraft, some scholars have made a summary and summary of it. Scholars
of NASA in the United States have put forward a library of seven movements composed of common
maneuvering methods in air combat, which mainly includes: maximum acceleration, minimum
deceleration, maximum overload climb, maximum overload subduction, maximum overload right
turn, maximum overload left turn, stabilized flight and so on. Kaneshige et al. divided the control
of the aircraft into three layers: the decision layer, the planning layer and the control layer. The
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control layer was mainly responsible for the execution of the maneuvering instructions of the aircraft.
Kaneshige et al. [18] also verified the effectiveness of establishing basic action library in simple
simulation scenarios [19]. Based on this, this paper proposes to build a basic motion action library
for the 6-DOF aircraft simulation model to reduce the training difficulty of the agent and provide
effective choices for the upper level of the confrontation decision.

3 Experiment
3.1 Soft Actor Critic Algorithm

Soft Actor Critic (SAC) is a reinforcement learning algorithm for continuous state input and
continuous state output, which is based on actor-Critic structure design. In the structure, the
actor receives the observation values, makes decisions according to policy, and interacts with the
environment, the critic is responsible for evaluating the value of actions made by actor. The actor
next adjusts the frequency of action selection according to the score of the value function.

More different from other policy iterative algorithms, SAC adds the entropy value of the action
to the basic cumulative reward. The target policy can be written as:

π∗ = argmaxπE(st,at)

[∑
t
R (st, at) + α H (π (·|st))

]
(4)

with H (P) = Ex∼P [−logP (x)].

The temperature parameter α determines the relative importance of the entropy term against
the reward, and thus controls the stochasticity of the optimal policy. The existence of entropy can
effectively increase the exploration of the environment without missing any feasible strategy. Models
designed on this will be more adaptable for subsequent upper flight decisions.

In the depth model, we use multi-layer networks to estimate policies and state functions, using
Vψ (st) to evaluate the value function, using Qθ (st, at) to estimate the soft-Q function, using πϕ(at|st)

to evaluate the strategy. ψ , θ , and ϕ are three parameters of deep network. Soft-V function is updated
by minimizing residual square as:

JV (ψ) = Est∼D

[
1
2

(
Vψ (st) − Eat∼πφ

[
Qθ (st, at) − log πφ(at|st)

])2
]

(5)

D is the replay buffer of previously sampled states and actions. The gradient of Eq. (5) can be
written as:

∇ψJV (ψ) = ∇ψVψ (st) (Vψ (st) − Qθ (st, at) + log πφ(at|st)) (6)

As for the soft-Q function, the target function can be written as Eq. (8):

JQ (θ) = E(st ,at)∼D

[
1
2

(
Qθ (st, at) − Q̂ (st, at)

)2
]

(7)

with Q̂ (st, at) = r (st, at) + γ Est+1∼p

[
Vψ (st+1)

]
The gradient of formula (6) can be written as Eq. (9):

∇θJQ (θ) = ∇θQθ (at, st)
(
Qθ (at, st) − r (st, at) − γ Vψ (st+1)

)
(8)

In the update process, another estimate of the state function is used as the target network, which
has the same structure as Vψ (st) and different updating speed of parameters.
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Finally, for the policy network, since the policy generates a non-deterministic policy, the value
directly output from the network is the mean and covariance of the action distribution. Therefore, the
parameter θ of the policy network is non-differentiable during the whole process, which results in that
the parameters of the policy network cannot be directly updated through the way of back propagation.
Here, a reparametrize method is used in SAC, let at = fφ (εt; st), then the target function of the policy
network can be written as:

Jπ (φ) = Est∼D,εt∼N
(
log πφ

(
fφ (εt; st) |st

) − Qθ

(
st, fφ (εt; st)

))
(9)

Then, the gradient of formula (6) can be written as:

∇φJπ (φ) = ∇φlog πφ (at|st) + (∇at log πφ (at|st) − ∇atQ (st, at)
) ∇φfφ (εt; st) (10)

There are many flight dynamics models of aircraft in JSBSim, and the training process will be
introduced based on the flight simulation model of F15 fighter jet. The training process taking F15 as
an example will also be theoretically applicable to the training of flight dynamics simulation models
of other 6-DOF aircraft in JSBSim.

In the training process, the agent was provided the observation value of the aircraft’s own state
in one-dimensional vector format. By exploring the action space, the agent will generate strategies for
different targets, to achieve the optimal controller of a series of end-to-end flight action libraries.

In the design of the aircraft basic action library, we use neural network to estimate the strategy,
and design relevant reward functions for different action commands to guide the agent to learn the
desired action mode and maintain the stable state of the aircraft at the same time.

3.2 Stabilized Flight
For the basic maneuver action of stabilized flight, we use a four-layer fully connected neural

network to estimate the strategy. In this mission, we expect the trained agent has the ability to maintain
the altitude before action started and maintain the heading. Assume that when the command is given,
the altitude of the aircraft at this time is alt, and the aircraft’s heading is hg. At this point, we set the
observation as [altt, vt, hgt, pt]

T based on the observable properties of the actual aircraft, among them,
altt is the altitude of the aircraft at time t, vt is the speed shown on the plane’s dashboard. hgt is the
heading angle of the aircraft of time t, pt is the pitch angle of the aircraft. In SAC algorithm, Actor
network receives six inputs, namely, the current altitude attt, the current speed vt, the current heading
angle and pitch angle of the aircraft, as well as the altitude att and the heading angle hg at the beginning
of receiving the instruction. The three outputs of actor network are the position of the direction bar,
the position of the lifting bar and the thrust ratio of the engine respectively. JSBSim will get these
and help us convert the information acting on the direction sense and the lifting bar into the swing
changes of the wing. The Critic network receives nine inputs, including six inputs to Actor network
and three outputs from Actor network, while the output of Critic Network is just one. The only output
represents the scoring of the current decision taken in this case. According to the current direct mission
objectives, we get three main elements into consideration to set the reward function. In addition to the
ability of the agent to maintain the height of aircraft, the ability to maintain the heading angle, we
take the real aircraft control into consideration. In most cases, the actions of aircrafts are smooth,
thus we ae added an estimate of the control of the smoothness of the decisions made by agents. The
final reward function can be written as follows:

reward = ωα |altt − alt| + ωβ |ht − hg| + ωγ ||at − at−1|| + rs (11)
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where ωα, ωβ , ωγ are the proportions of the three parts in the overall reward. at −at−1 is used to estimate
the difference between the two actions. And rs is the reward once the agent step successfully.

In the training, the policy network and evaluation function network were randomly initialized, the
length of single episode was set as 1000, and the T per step was set as 0.1 s. The judgment condition
for the end of episode is added. When the aircraft deviates from the initial height of 500 m or the initial
heading of 15 degrees, the current round is terminated, and the next episode of interaction is started.

In the test, we recorded the altitude and heading of the aircraft, and obtained the results as shown
in the Fig. 2. Under the control of the stabilized-flight agent, the state of the aircraft is not in the best
state in the first few steps, after the adjustment of the agent in several steps, the altitude and heading
angle of the aircraft change less and only fluctuate in a small range.

Figure 2: The altitude and heading of the aircraft

As shown in Fig. 2a, under the influence of the initial state, the height of the aircraft controlled by
the agent changes dramatically at the beginning, and gradually recovers to stability in the later period.
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The agent can effectively adjust the height deviation in the process. As Fig. 2b shows, during the test,
the heading of the aircraft swings in a small range. Before and after the test, the heading of the aircraft
does not change much, indicating the effectiveness of the control.

3.3 Left- and Right-Turn
The training of left- and right-turn maneuvers action have certain relevance in design and training,

so they are presented together. In the course changing mission, we use a five-layer fully connected
neural network to estimate the strategy and value function. It is expected that the trained agent can
reduce the radius required for course changing as much as possible and maintain the altitude at the
same time. In these two missions, the information that the agent can observe is still controlled as
[altt, vt, hgt, pt]

T . The input of Actor network is still 6 in this mission, but hg in the stabilized flight
is changed to the ht−1, and the output does not change. The input and output of the Critic network
are also the same, respectively as the network in a stabilized-flight mission. According to the current
mission, we adjusted the reward. The reward in this mission still consists of four parts.

reward = ωα |altt − alt| + ωβ |ht − ht−1| + ωγ ||at − at−1| | + rs (12)

In this mission, the angular error term is modified to encourage the agent to change the aircraft’s
course as much as possible while maintaining stability and altitude.

In the training, the policy network and evaluation function network were randomly initialized, the
length of single episode was set as 1000, and the T per step was set as 0.1 s. When the aircraft deviates
from the initial height of 500 m, the current round is terminated, and the next episode of interaction
is started. In the test, we recorded the altitude and heading of the aircraft, and obtained the results as
shown in the Fig. 3.

(a) and (c) are the change of height with the number of steps, (b) and (d) are the change of heading
with the number of steps in the process of turning left and right respectively. In the turning process, the
heading orientation has a stable periodic change, and the change of altitude gradually tends to ease.
During the whole process, the change of altitude was not obvious.

3.4 Climb
In the climbing mission, we also use a five-layer network to estimate the strategy and value

function respectively. We expect the aircraft to be able to raise the altitude as quickly as possible
while maintaining its heading angle. The information that the agent can observe is still controlled
as [altt, vt, hgt, pt]

T . The input of Actor network is still 6 in this mission, but att in the stabilized flight
is changed to the altt−1, and the output does not change. The input and output of the Critic network
are also the same, respectively as the network in a stabilized-flight mission. Similarly, we have adjusted
the return function. The adjusted return function is shown as follows.

reward = ωα |altt − altt−1| + ωβ |ht − hp| + ωγ ||at − at−1|| + rs (13)



JIOT, 2022, vol.4, no.2 93

This time, the altitude error term is modified to encourage the agent to change the aircraft’s
altitude as much as possible while maintaining stability and heading angle.

Figure 3: Altitude and heading changes in left- and right-turn

In the training, the policy network and evaluation function network were randomly initialized,
the length of single episode was set as 500, and the T per step was set as 0.1 s. When the aircraft
deviates from the initial heading of 15 degrees, the current round is terminated, and the next episode
of interaction is started.

The altitude and heading recorded during testing are shown below.
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As shown in the Fig. 4, with the increase of the number of test steps, the height of the aircraft
steadily rises under the control of the agent, and at the same time, the heading of the aircraft gradually
becomes stable.

Figure 4: Altitude and heading changes in climb

3.5 Subduction
In the subduction mission, we also use a five-layer network to estimate the strategy and value

function respectively. We expect the aircraft to be able to lower the altitude as quickly as possible
while maintaining its heading angle. But different from the climbing mission, if effective control is not
done, the intelligent body is very likely to adopt a nose-down flight state, resulting in aircraft crash,
which is contrary to the purpose of flight control. The information that the agent can observe is still
controlled as [attt, vt, hgt, pt]

T . The input and output of the Actor network and Critic network are the
same, respectively as the network in a climb mission. Again, we’ve adjusted the return function. The
adjusted return function is shown as follows.

reward = ωα |attt − attt−1| + ωβ |ht − hp| + ωγ ||at − at−1|| + rs (14)

In the training, the policy network and evaluation function network were randomly initialized,
the length of single episode was set as 500, and the T per step was set as 0.1 s. When the aircraft
deviates from the initial heading of 15 degrees, the current round is terminated, and the next episode
of interaction is started. In the subduction mission, we added the reward for the agent’s successful
single-step execution in amount to encourage the agent to keep the vehicle as controllable as possible
while lowering altitude, so that it could fly steadily after lowering altitude.

The altitude and heading recorded during testing are shown below.

As shown in the Fig. 5, with the increase of the number of test steps, the height of the aircraft
steadily decreases under the control of the intelligent agent. Meanwhile, the heading of the aircraft
gradually becomes stable and can effectively maintain the initial heading.
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Figure 5: Altitude and heading changes in subduction

3.6 Simulation Results
In order to have a more intuitive understanding of the flight state of the aircraft in the execution

of the action, we carried out a visual display of the state and track of the aircraft. With the Gisplay
software designed and developed within the group, we visualized the training results. In the display, to
see the attitude of the aircraft more intuitively, we enlarged the model of the aircraft.

The software Gisplay receives the data packet sent by the program, and according to the
description information of the position and attitude of the aircraft, it can draw the state of the aircraft
in real time in the scene and retain the flight track of the aircraft in a previous period of time, which
is of great help for the intuitive analysis of the flight state of the aircraft.

Fig. 6 shows the flight tracks of the aircraft when performing different actions, where (a) and
(b) are observations from two angles of stabilized flight. From (c) to (f) are visualizations performed
during left turn, right turn, pull up, and dive, respectively. On the posture software, we can see that
the trajectory of the vehicle is smooth, with the help of the Gisplay measurement tools, we can know
that the turning radius of the aircraft in the simulation is only about 2.2 km, this makes sense for high
speed aircraft.

   

 

Figure 6: (Continued)
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Figure 6: Flight trajectory of aircraft in different actions

4 Conclusion

In this paper, we use reinforcement learning to design a basic maneuver action library based on
the F15 fighter jet, a six-degree-of-freedom flight model in JSBSim. In the experiment, we use the
network to estimate the agent’s strategy and action value function and design the reward function
with similar structure for five kinds of maneuver actions, namely stabilized flight, left turn, right turn,
climb and subduction, which successfully guide the agent to learn five kinds of basic action library. In
the experiment, the design of the return function is simple, and the structure of the reward function
between different actions is similar, and there is the possibility of migration between various models.

In addition, the motion library of this work is developed based on the JSBSim flight simulation
model with six degrees of freedom, and the simulation degree is greatly improved compared with three
degrees of freedom. The establishment of the maneuver action library not only proves the feasibility
of reinforcement learning under the control of 6-DOF aircraft, but also provides a feasibility for
the control of 6-DOF aircraft for complex actions, which reduces the complexity of upper decision-
making. In the future, we will continue to expand the basic maneuver action library, and on this basis,
design and develop the countermeasures decision strategy model based on the 6-DOF aircraft.
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