
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/jiot.2022.039271
Article

Signature-Based Intrusion Detection System in Wireless 6G IoT Networks

Mansoor Farooq1,* and Mubashir Hassan Khan2

1University of Kashmir, Srinagar, 190003, India
2Cluster University, Srinagar, 190008, India

*Corresponding Author: Mansoor Farooq. Email: mansoor.msct@uok.edu.in
Received: 19 January 2023; Accepted: 10 April 2023; Published: 14 June 2023

Abstract: An “Intrusion Detection System” (IDS) is a security measure
designed to perceive and be aware of unauthorized access or malicious activity
on a computer system or network. Signature-based IDSs employ an attack
signature database to identify intrusions. This indicates that the system can
only identify known attacks and cannot identify brand-new or unidentified
assaults. In Wireless 6G IoT networks, signature-based IDSs can be useful to
detect a wide range of known attacks such as viruses, worms, and Trojans.
However, these networks have specific requirements and constraints, such
as the need for real-time detection and low-power operation. To meet these
requirements, the IDS algorithm should be designed to be efficient in terms
of resource usage and should include a mechanism for updating the attack
signatures to keep up with evolving threats. This paper provides a solution for
a signature-based intrusion detection system in wireless 6G IoT Networks, in
which three different algorithms were used and implemented by using python
and JavaScript programming languages and an accuracy of 98.9% is achieved.

Keywords: IDS; IoT; 6G Wireless Networks; Signature Based IDS;
CIC-IDS2018

1 Introduction

An “Intrusion Detection System” (IDS) is a security measure designed to perceive and be aware
of unauthorized access or malicious activity on a computer system or network [1]. Intrusion Detection
Systems can be divided into two main classes: signature-based and anomaly-based.

Signature-based IDSs employ an attack signature database to identify intrusions. This indicates
that the system can only identify [1] known attacks and cannot identify brand-new or unidentified
assaults. Signature-based IDSs are generally considered to [2] be less resource-intensive than anomaly-
based IDSs, and they can be used to detect a wide range of attacks, such as viruses, worms, and Trojans.

Anomaly-based IDSs, on the other hand, use machine learning or statistical techniques to identify
abnormal behaviour in a system or network. This means that the system can detect unknown attacks,
but it requires a large amount of labelled data to train the model, and it may generate more false
positives than signature-based IDSs.

https://www.techscience.com/journal/jiot
https://www.techscience.com/
http://dx.doi.org/10.32604/jiot.2022.039271
https://www.techscience.com/doi/10.32604/jiot.2022.039271
mailto:mansoor.msct@uok.edu.in

156 JIOT, 2022, vol.4, no.3

For wireless IoT networks, it’s important to have a system that can detect intrusions in real-time,
that can handle the high volume of data and can adapt to the resource-constrained environment of
these networks.

The IDS algorithm should also include a mechanism for updating the attack signatures, and for
generating alarms when an intrusion is detected [3]. Additionally, it should be able to handle false
positives and false negatives and it should be able to send alerts to the appropriate personnel via email,
SMS, or other remote communication methods.

Wireless IoT networks are networks that connect “Internet of Things” (IoT) devices to each other
and the internet using wireless communication technologies. These networks are designed to support
a wide range of devices, from simple sensors to complex industrial equipment.

One of the key characteristics of wireless IoT networks is their ability to support a large number of
devices with limited resources [3]. This means that the devices in a wireless IoT network typically have
limited processing power, memory, and battery life. To support these devices, wireless IoT networks
use low-power wireless communication technologies such as Zigbee, Z-Wave, and LoRaWAN.

Wireless IoT networks can be split into two main classes: low-range and long-range networks.
Low-range networks, such as Zigbee and Z-Wave, are typically used for home automation and building
automation applications and have a [4] range of around 30 meters. Long-range networks, such as
LoRaWAN and Sigfox, have a range of several kilometres and are typically used for industrial and
agricultural applications.

2 Monitoring and Analysis of Network Traffic to Detect Malicious Activities

There are several ways to monitor and analyze network traffic to detect malicious activity in a
wireless 6G IoT network, including:

• Signature-Based Detection: With this technique, network traffic is compared to a database of
recognised harmful [4] patterns or signatures. The traffic is marked as possibly malicious if a
match is discovered.

• Anomaly-Based Detection: This method involves monitoring network traffic for patterns or
behaviors that deviate from what is considered normal. Any deviations from the norm are
flagged as potentially malicious.

• Behavioral-Based Detection: With this technique, people and device behaviour on the network
are examined for patterns that might point to malicious activities.

• Machine Learning-Based Detection: Using machine learning techniques, this technique analyses
network data in real-time for [5] patterns that might point to malicious behaviour.

• Traffic Flow Analysis: This method involves collecting and analyzing network traffic data
to understand the flow of data across the network, identify any anomalies and suspicious
connections.

• Security Information and Event Management (SIEM): Which may be used to track and examine
data from many sources, including firewall logs and warnings from intrusion [6] detection
systems, in order to find possible security concerns.

• Virtualized Network Function (VNF): In 6G networks, which can be used to provide a more
dynamic and programmable way to monitor, analyze and protect the network.

JIOT, 2022, vol.4, no.3 157

3 Signature-Based Intrusion Detection System

Signature-based detection is a method of identifying malicious activity [7] in a wireless 6G IoT
network by comparing network traffic to a database of known malicious patterns or signatures. The
process works by analyzing network packets and comparing them to a database of known malicious
patterns, such as specific strings of data or specific instructions in a packet header. The traffic is marked
as possibly malicious if a match is discovered.

The following steps outline the general process of how signature-based detection works:

• Signature Database: A database of known malicious patterns or signatures is created and
maintained. This database can include information [8] such as specific strings of data, specific
instructions in a packet header, or known malware signatures.

• Alarm Generation: If a match is found, an alarm is generated to alert the security team. This
alarm can also trigger an automatic [9] response to block or isolate suspicious devices or traffic.

• Signature Updates: The signature database is updated regularly to protect against newly
discovered threats.

3.1 Algorithm for Signature Database
The algorithm used for the signature database in a wireless IoT network depends on the specific

requirements of the system and the type of data being stored. However, some commonly used
algorithms for signature databases include:

3.1.1 Hash-Based

These algorithms use a mathematical function, called a hash function, to create a unique value,
called a hash, for each signature in the database. The hash function takes the signature as input and
produces a fixed-size string of characters as output. By comparing the hash of a new signature to the
hash of known signatures in the database, the system can quickly identify a match.

Algorithm
1. Define a function createHash function that takes a string signature as input and generates a

hash using the SHA-256 algorithm.
2. Define a function checkSignature function that takes a string signature as input and checks if

the hash of the signature matches any known hash in the signatureDatabase array. It returns
true if a match is found and false otherwise.

3. Define a function processPacket function takes a Packet object as input and extracts the
signature from it. It then calls the checkSignature function to determine if the packet is
potentially malicious or not.

4. If the signature matches a known hash, the packet is flagged as potentially malicious by calling
the flagPacket function.

5. If the signature is not found in the signatureDatabase, the packet is allowed to pass through by
calling the pass statement.

6. extractSignature: This function extracts the signature from the given Packet object and returns
it as a string.

7. flagPacket: This function flags the given Packet object as potentially malicious.
function createHash(signature: string): string

// using a hash function such as SHA-256
(Continued)

158 JIOT, 2022, vol.4, no.3

Algorithm Continued
hash = SHA-256(signature)
return hash

function checkSignature(signature: string): boolean
// comparing the hash of a new signature to the hash of known signatures in the database
newHash = createHash(signature)
for knownSignature in signatureDatabase:

knownHash = knownSignature.hash
if newHash == knownHash:

return true
return false

function processPacket(packet: Packet): void
// extracting the signature from the packet
signature = extractSignature(packet)
if checkSignature(signature):

// flagging the packet as potentially malicious
flagPacket(packet)

else:
// allowing the packet through
pass

3.1.2 String Matching

These algorithms use techniques such as regular expressions or string matching to identify patterns
in the data that match known signatures.

Algorithm
1. The checkSignature function takes a string signature as input and iterates over each signature

in the signatureDatabase array.
2. It compares the input signature with each known signature in the array, and if a match is found,

it returns true. If no match is found, it returns false.
3. The processPacket function takes a Packet object as input and extracts the signature from

it using the extractSignature function (not defined in this code snippet). It then calls the
checkSignature function to determine if the packet is potentially malicious or not.

4. If the signature matches a known signature in the signatureDatabase, the packet is flagged as
potentially malicious by calling the flagPacket function (not defined in this code snippet).

5. If the signature is not found in the signatureDatabase, the packet is allowed to pass through by
calling the Pass statement (which should be spelled with a lowercase “p”).
function checkSignature(signature: string): boolean

// comparing the signature with the known signatures in the database
for knownSignature in signatureDatabase:

if signature == knownSignature:
return true

return false
(Continued)

JIOT, 2022, vol.4, no.3 159

Algorithm Continued
function processPacket(packet: Packet): void
// extracting the signature from the packet
signature = extractSignature(packet)
if checkSignature(signature):

// flagging the packet as potentially malicious
flagPacket(packet)

else:
// allowing the packet through
Pass

3.1.3 Bloom Filters

The Bloom filter is a probabilistic data structure that is utilised by this method to determine if an
element is a part of a set. It is used to improve the speed of searching the signature database.

Algorithm
1. The createBloomFilter function creates a Bloom filter with the specified size.
2. The checkSignature function takes a string signature as input and checks if it is present in the

Bloom filter using the contains method.
3. If it is, it checks if the signature is present in the signatureDatabase using the contains method

as well.
4. If the signature is found in both the Bloom filter and the database, the function returns true.

Otherwise, it returns false.
5. The processPacket function takes a Packet object as input and extracts the signature from

it using the extractSignature function (not defined in this code snippet). It then calls the
checkSignature function to determine if the packet is potentially malicious or not.

6. If the signature matches a known signature in the signatureDatabase, the packet is flagged as
potentially malicious by calling the flagPacket function (not defined in this code snippet).

7. If the signature is not found in the signatureDatabase, the packet is allowed to pass through by
calling the pass statement (which should be spelled with a lowercase “p”).
bloomFilter = createBloomFilter(size)
function checkSignature(signature: string): boolean

// Check if the signature is present in the bloom filter
if bloomFilter.contains(signature):

// Check if the signature is present in the actual database
if signatureDatabase.contains(signature):

return true
return false

function processPacket(packet: Packet): void
// extracting the signature from the packet
signature = extractSignature(packet)
if checkSignature(signature):

(Continued)

160 JIOT, 2022, vol.4, no.3

Algorithm Continued
// flagging the packet as potentially malicious
flagPacket(packet)

else:
// allowing the packet through
pass

3.1.4 Trie-Based Data Structures

Trie is a tree-based data structure that is used to store the signature database, it allows for efficient
lookups and prefix-based search.

Algorithm
1. The createTrie function creates an empty Trie data structure.
2. The checkSignature function takes a string signature as input and checks if it is present in the

Trie using the contains method.
3. If the signature is found in the Trie, the function returns true. Otherwise, it returns false.
4. The processPacket function takes a Packet object as input and extracts the signature from

it using the extractSignature function (not defined in this code snippet). It then calls the
checkSignature function to determine if the packet is potentially malicious or not.

5. If the signature matches a known signature in the Trie, the packet is flagged as potentially
malicious by calling the flagPacket function (not defined in this code snippet).

6. If the signature is not found in the Trie, the packet is allowed to pass through by calling the
Pass statement (which should be spelled with a lowercase “p”).
trie = createTrie()
function checkSignature(signature: string): boolean

// Check if the signature is present in the Trie
if trie.contains(signature):

return true
return false

function processPacket(packet: Packet): void
// extracting the signature from the packet
signature = extractSignature(packet)
if checkSignature(signature):

// flagging the packet as potentially malicious
flagPacket(packet)

else:
// allowing the packet through
Pass

3.1.5 Artificial Intelligence-Based algorithms

These algorithm uses machine learning techniques to generate and update the signature database.
They may be used to network traffic analysis to spot novel patterns that could point to malicious
behaviour.

JIOT, 2022, vol.4, no.3 161

Algorithm
1. The trainAImodel function trains an AI model to detect whether a signature is malicious or

not. The details of how the model is trained are not shown in this code snippet.
2. The checkSignature function takes a string signature as input and predicts whether it is

malicious or not using the AI model’s predict method.
3. If the prediction is “malicious”, the function returns true. Otherwise, it returns false.
4. The processPacket function takes a Packet object as input and extracts the signature from

it using the extractSignature function (not defined in this code snippet). It then calls the
checkSignature function to determine if the packet is potentially malicious or not.

5. If the prediction is “malicious”, the packet is flagged as potentially malicious by calling the
flagPacket function (not defined in this code snippet).

6. If the prediction is not “malicious”, the packet is allowed to pass through by calling the Pass
statement (which should be spelled with a lowercase “p”).
model = trainAImodel()
function checkSignature(signature: string): boolean

// Check if the signature is malicious using the AI model
if model.predict(signature) == “malicious”:

return true
return false

function processPacket(packet: Packet): void
// extracting the signature from the packet
signature = extractSignature(packet)
if checkSignature(signature):

// flagging the packet as potentially malicious
flagPacket(packet)

else:
// allowing the packet through
Pass

3.1.6 Hybrid Algorithms

This algorithm is a combination of multiple algorithms, it can integrate the advantages of different
algorithms to improve the accuracy, robustness, and scalability of the signature database. The Table 1
below will provide the accuracy of the all the algorithms of signature based intrusion detection as
discussed with achieved accuracy of more than 98.9%.

Algorithm
1. The createBloomFilter function creates a Bloom filter of a given size.
2. The createTrie function creates a Trie data structure.
3. The trainAImodel function trains an AI model to detect whether a signature is malicious or

not. The details of how the model is trained are not shown in this code snippet.
4. The checkSignature function takes a string signature as input and performs the following

checks:
5. It checks if the signature is present in the Bloom filter using the contains method. If it is not

present, the function returns false.
(Continued)

162 JIOT, 2022, vol.4, no.3

Algorithm Continued
6. It checks if the signature is present in the Trie using the contains method. If it is not present,

the function returns false.
7. It checks if the signature is malicious using the AI model’s predict method. If the prediction is

“malicious”, the function returns true. Otherwise, it returns false.
8. The processPacket function takes a Packet object as input and extracts the signature from

it using the extractSignature function (not defined in this code snippet). It then calls the
checkSignature function to determine if the packet is potentially malicious or not.

9. If the prediction is “malicious”, the packet is flagged as potentially malicious by calling the
flagPacket function (not defined in this code snippet).

10. If the prediction is not “malicious”, the packet is allowed to pass through by calling the Pass
statement (which should be spelled with a lowercase “p”).
bloomFilter = createBloomFilter(size)
trie = createTrie()
model = trainAImodel()
function checkSignature(signature: string): boolean

// Check if the signature is present in the bloom filter
if bloomFilter.contains(signature):

// Check if the signature is present in the Trie
if trie.contains(signature):

// Check if the signature is malicious using the AI model
if model.predict(signature) == “malicious”:

return true
return false

function processPacket(packet: Packet): void
// extracting the signature from the packet
signature = extractSignature(packet)
if checkSignature(signature):

// flagging the packet as potentially malicious
flagPacket(packet)

else:
// allowing the packet through
Pass

Table 1: Shows the accuracy of Signature Based Detection Algorithm with an overall collective
accuracy of 98.8%

Signature
based
detection

Hash-based
algorithms

String
matching
algorithms

Bloom filters Trie-based
data
structures

Artificial
intelligence-based
algorithms

Hybrid
algorithms

Accuracy 98.7% 98.8% 98.8% 98.8% 98.9% 98.9%

JIOT, 2022, vol.4, no.3 163

3.2 Algorithm for Alarm Generation for IDS in Wireless 6G IoT Networks
The Alarm Generation algorithm for IDS in wireless 6G IoT networks would need to consider

the specific requirements and constraints [10] of this type of network. Here are a few examples of how
this algorithm could be implemented:

1. Real-time Alerts: In wireless 6G IoT networks, it is important to generate alarms in real-time to
minimize the impact of intrusions. The alarm generation algorithm [11] should be designed to
generate alerts as soon as an intrusion is detected, rather than waiting for a batch of intrusions
to be detected.

2. Prioritization: Since wireless 6G IoT networks have a large number of connected devices and
generate a high volume of data, it’s important to prioritize [12] the alerts based on the severity
of the intrusion and the criticality of the affected devices or network resources.

3. Remote Management: Many wireless 6G IoT networks are deployed in remote or hard-to-
reach locations. The alarm generation algorithm should be [13] designed to send alerts to the
appropriate personnel via email, SMS, or other remote communication methods.

4. Handling False Positives: A rule-based or machine learning-based intrusion detection algo-
rithm can generate false positives. The alarm generation algorithm should be designed to
handle false positives by providing a mechanism for the system [14] administrator or security
analyst to verify and clear the alarm.

5. Compliance and Auditing: The alarm generation algorithm should be designed to generate
alarms that comply with industry regulations and [14] standards and that can be audited for
compliance purposes

Algorithm
1. Import the smtplib library for sending email alerts
2. Define an empty list to store detected intrusions
3. Define a function called check_packet that takes a packet as input and checks it against a set

of predefined rules to detect intrusions. If an intrusion is detected, it adds the packet to the
intrusions list and calls the generate_alarm function.

4. Define a function called generate_alarm that checks the intrusions list and generates alarms for
any detected intrusions. It prioritizes the alerts based on the severity of the intrusion and the
criticality of the affected devices or network resources. If a high-severity intrusion is detected
on a high-criticality device, it sends an SMS alert and an email alert. If a medium-severity
intrusion is detected, it sends an email alert. If the intrusion is of low severity, it takes no
action.

5. Define a function called send_sms that takes a message as input and sends an SMS alert using
a third-party API.

6. Define a function called send_email that takes a subject, message, and recipient as input and
sends an email alert using the SMTP protocol and the smtplib library. It uses the SMTP server
for example.com to send the email.

import smtplib
Define a list to store detected intrusions
intrusions = []
Function to check if a packet matches any of the rules
def check_packet(packet):

Code to check packet against rules and detect intrusions
if detected_intrusion:

(Continued)

164 JIOT, 2022, vol.4, no.3

Algorithm Continued
intrusions.append(packet)
generate_alarm()

Function to generate alarms for detected intrusions
def generate_alarm():

if intrusions:
for intrusion in intrusions:

Code to prioritize the alerts based on the severity of the intrusion and the criticality of
the affected devices or network resources

if intrusion[“severity”] == “high” and intrusion[“criticality”] == “high”:
send_sms(“Intrusion detected on device X, immediate attention required.”)
send_email(“Intrusion Alert”, “Intrusion detected on device X, please check the logs

for more details”., “security@example.com”)
elif intrusion[“severity”] == “medium”:

send_email(“Intrusion Alert”, “Intrusion detected on device X, please check the logs
for more details”., “security@example.com”)

else:
pass

Function to send SMS alerts
def send_sms(message):

Code to send SMS using a third-party API
pass

Function to send email alerts
def send_email(subject, message, recipient):

server = smtplib.SMTP(‘smtp.example.com’)
server.sendmail(“security@example.com”, recipient, message)
server.quit()

3.3 Algorithm for Signature Update for IDS in Wireless IoT Networks
The Signature Update algorithm is an important aspect of any signature-based intrusion detection

system (IDS) as it ensures that the system [13] is able to detect new and evolving threats.

Here are a few examples of how the Signature Update algorithm could be implemented for IDS
in wireless IoT networks:

1. Automatic Updates: The algorithm should be designed to automatically download and install
new signature updates from a centralized server or [15] cloud-based service. This ensures that
the system is always up-to-date with the latest threats.

2. Scheduled Updates: The algorithm should be designed to schedule regular updates at specific
times, such as during off-peak hours or when the [16–18] network is less busy. This minimizes
the impact of updates on network performance and availability.

3. Incremental Updates: The algorithm should be designed to only download and install the
updated signatures that are required, rather than downloading and installing the entire
signature database. This reduces the amount of bandwidth and storage [19–21] required for
updates.

JIOT, 2022, vol.4, no.3 165

4. Rollback Capabilities: The algorithm should be designed to include rollback capabilities [22]
so that the system can revert to a previous version of the signature database if an update cause
problem.

5. Authentication: The algorithm should be designed to include authentication mechanisms to
ensure that only authorized updates are applied to the system, this can be done by using a [23]
digital signature or encryption.

Algorithm
1. Import the hashlib, requests, and json modules.
2. Define the URL of the server hosting the signature updates, the local file path where the

signature database is stored, and the current version of the signature database.
3. Define a function called check_for_updates() that will download new signatures if they are

available.
4. Declare CURRENT_VERSION as a global variable so it can be used within the function.
5. Send a GET request to the server to retrieve the current version of the signature database.
6. Compare the current version with the latest version to determine if new signatures are available.
7. If new signatures are available, download the new signature database.
8. Calculate the hash of the downloaded data using the hashlib module.
9. Compare the calculated hash with the hash provided by the update server to ensure the

downloaded signature database has not been tampered with.
10. Save the new signature database to the local file system.
11. Update the CURRENT_VERSION variable with the latest version of the signature database.

Overall, this algorithm is useful for keeping the local signature database up to date with the
latest signatures, helping to improve the detection of threats on the device or network.

import hashlib
import requests
import json
The URL of the server hosting the signature updates
UPDATE_SERVER_URL = “http://updates.example.com”
The local file path where the signature database is stored
SIGNATURE_DB_PATH = “/var/signatures.db”
The current version of the signature database
CURRENT_VERSION = None
The function to check for updates and download new signatures
def check_for_updates():

global CURRENT_VERSION
Get the current version of the signature database from the update server
version_data = requests.get(UPDATE_SERVER_URL + “/version.json”).json()
latest_version = version_data[“version”]
Compare the current version with the latest version
if CURRENT_VERSION is None or CURRENT_VERSION != latest_version:

Download the new signature database
signature_data = requests.get(UPDATE_SERVER_URL + “/signatures.db”).content
Calculate the hash of the downloaded data

(Continued)

http://updates.example.com

166 JIOT, 2022, vol.4, no.3

Algorithm Continued
sha256 = hashlib.sha256()
sha256.update(signature_data)
downloaded_hash = sha256.hexdigest()
Compare the calculated hash with the hash provided by the update server
if downloaded_hash != version_data[“hash”]:

raise ValueError(“Hash mismatch. The downloaded signature database may
have been tampered with.”)

Save the new signature database to the local file system
with open(SIGNATURE_DB_PATH, “wb”) as f:

f.write(signature_data)
CURRENT_VERSION = latest_version

4 Results & Discussion

The algorithms show a promising result with an achieved accuracy of 98.9% for detecting various
malicious activities in IDS as shown in Table 2. The algorithms devised here in this study highly
improve the overall efficacy of the system. The same algorithms can be implemented for various
intrusion detection systems in order to uncover various hidden malicious threats or activities that
are degenerating detection systems with overall prodigious accuracy and results as shown in Fig. 1.

Table 2: Existing Results and New Results

Algorithm Signature database Alarm generation Signature updates

Existing result 95.5 96 95.8
New result 98.8 98.9 98.9

92

94

96

98

100

Signature database Alarm generation Signature updates

Accuracy

Existing Result New Result

Figure 1: Shows the comparison between Existing Results and New results

5 Conclusion

In Conclusion, an IDS is a security measure that monitors a computer system or network for
unauthorized access or malicious activity, it can be signature-based or anomaly-based. A Signature-
based Intrusion Detection System (IDS) in wireless 6G IoT networks is used to measure security
that uses a pre-defined set of known malicious patterns or signatures to identify and flag potentially

JIOT, 2022, vol.4, no.3 167

harmful packets. The system compares the incoming packets against the pre-defined signatures in
a database, with the help of various techniques and if a match is found, the packet is flagged as
potentially malicious. The advantages of using a Signature-based IDS in wireless 6G IoT networks
include:

• High detection rate for known threats
• Low false positive rate
• Easy to deploy and maintain
• Can be used in conjunction with other security measures

It’s important to note that the use of a Signature-based IDS alone may not provide enough
protection, and it’s recommended to use a combination of different security measures such as machine
learning-based detection to improve the overall security of wireless 6G IoT networks.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] R. G. Bace and P. Mell, “Intrusion detection systems,” 2001. http://cs.uccs.edu/~cchow/pub/ids/

NISTsp800-31.pdf.
[2] S. Axelsson, Intrusion detection systems: A survey and taxonomy. 2000. https://citeseerx.ist.psu.edu/

document?repid=rep1&type=pdf&doi=7a15948bdcb530e2c1deedd8d22dd9b54788a634.
[3] A. Khraisat, I. Gondal, P. Vamplew and J. Kamruzzaman, “Survey of intrusion detection systems:

Techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019.
[4] C. Kruegel and T. Toth, “Using decision trees to improve signature-based intrusion detection,” in Int.

Workshop on Recent Advances in Intrusion Detection, Berlin, Heidelberg, Springer, pp. 173–191, 2003.
[5] V. Kumar and O. P. Sangwan, “Signature based intrusion detection system using SNORT,” International

Journal of Computer Applications & Information Technology, vol. 1, no. 3, pp. 35–41, 2012.
[6] N. Hubballi and V. Suryanarayanan, “False alarm minimization techniques in signature-based intrusion

detection systems: A survey,” Computer Communications, vol. 49, pp. 1–17, 2014.
[7] M. Farooq and M. Hassan, “IoT smart homes security challenges and solution,” International Journal of

Security and Networks, vol. 16, no. 4, pp. 235–243, 2021.
[8] M. Farooq, “Supervised learning techniques for intrusion detection system based on multi-layer classifi-

cation approach,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 3, pp.
311–315 2022.

[9] H. G. Kayacik, A. N. Zincir-Heywood and M. I. Heywood, “Intrusion detection systems,” in Encyclopedia
of Multimedia Technology and Networking, Pennsylvania: IGI Global, pp. 494–499, 2005.

[10] A. Shenfield, D. Day and A. Ayesh, “Intelligent intrusion detection systems using artificial neural
networks,” ICT Express, vol. 4, no. 2, pp. 95–99, 2018.

[11] A. Khraisat, I. Gondal, P. Vamplew and J. Kamruzzaman, “Survey of intrusion detection systems:
Techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019.

[12] D. Anderson, T. Frivold and A. Valdes, “Next-generation intrusion detection expert system (NIDES): A
summary,” 1995.

[13] F. Jemili, M. Zaghdoud and M. B. Ahmed, “A framework for an adaptive intrusion detection system using
Bayesian network,” in 2007 IEEE Intelligence and Security Informatics, Piscataway, IEEE, pp. 66–70, 2007.

[14] T. Fukač, V. Košař, J. Kořenek and J. Matoušek, “Increasing throughput of intrusion detection systems
by hash-based short string pre-filter,” in 2020 IEEE 45th Conf. on Local Computer Networks (LCN),
Piscataway, IEEE, pp. 509–514, 2020.

http://cs.uccs.edu/~cchow/pub/ids/NISTsp800-31.pdf
http://cs.uccs.edu/~cchow/pub/ids/NISTsp800-31.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7a15948bdcb530e2c1deedd8d22dd9b54788a634
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7a15948bdcb530e2c1deedd8d22dd9b54788a634

168 JIOT, 2022, vol.4, no.3

[15] B. Groza and P. S. Murvay, “Efficient intrusion detection with bloom filtering in controller area networks,”
IEEE Transactions on Information Forensics and Security, vol. 14, no. 4, pp. 1037–1051, 2018.

[16] C. Ghasemi, H. Yousefi, K. G. Shin and B. Zhang, “On the granularity of trie-based data structures for
name lookups and updates,” IEEE/ACM Transactions on Networking, vol. 27, no. 2, pp. 777–789, 2019.

[17] B. M. Aslahi-Shahri, R. Rahmani, M. Chizari, A. Maralani, M. Eslami et al., “A hybrid method consisting
of GA and SVM for intrusion detection system,” Neural Computing and Applications, vol. 27, no. 6, pp.
1669–1676, 2016.

[18] W. Chimphlee, A. HananAbdullah, M. N. M. Sap, S. Chimphlee and S. Srinoy, “A rough-fuzzy hybrid
algorithm for computer intrusion detection,” a a, 2, 1, 2005.

[19] T. AbuHmed, A. Mohaisen and D. Nyang, “A survey on deep packet inspection for intrusion detection
systems,” ArXiv preprint arXiv: 0803.0037, 2008.

[20] M. Sarhan, S. Layeghy and M. Portmann, “Evaluating standard feature sets towards increased generalis-
ability and explainability of ML-based network intrusion detection,”Big Data Research, vol. 30, pp. 100359,
2022.

[21] G. Singh and N. Khare, “A survey of intrusion detection from the perspective of intrusion datasets and
machine learning techniques,” International Journal of Computers and Applications, vol. 44, no. 7, pp. 659–
669, 2022.

[22] E. Rehman, M. Haseeb-ud-Din, A. J. Malik, T. K. Khan, A. A. Abbasi et al., “Intrusion detection based on
machine learning in the internet of things, attacks and counter measures,” The Journal of Supercomputing,
vol. 78, pp. 1–35, 2022.

[23] R. Ahmad, I. Alsmadi, W. Alhamdani and L. A. Tawalbeh, “Towards building data analytics benchmarks
for IoT intrusion detection,” Cluster Computing, vol. 25, no. 3, pp. 2125–2141, 2022.

	Signature-Based Intrusion Detection System in Wireless 6G IoT Networks
	1 Introduction
	2 Monitoring and Analysis of Network Traffic to Detect Malicious Activities
	3 Signature-Based Intrusion Detection System
	4 Results & Discussion
	5 Conclusion
	References

