Journal on

Internet of Things & Tech Science Press

DOI: 10.32604/jiot.2024.052325

ARTICLE Check for

updates

Human Intelligent-Things Interaction Application Using 6G and Deep Edge
Learning

Ftoon H. Kedwan and Mohammed Abdur Rahman

College of Computer and Cyber Sciences, University of Prince Mugrin, Medina, 42241, Saudi Arabia
*Corresponding Author: Ftoon H. Kedwan. Email: f kedwan@upm.edu.sa
Received: 30 March 2024  Accepted: 12 August 2024  Published: 10 September 2024

ABSTRACT

Impressive advancements and novel techniques have been witnessed in AI-based Human Intelligent-Things Inter-
action (HITI) systems. Several technological breakthroughs have contributed to HITI, such as Internet of Things
(IoT), deep and edge learning for deducing intelligence, and 6G for ultra-fast and ultralow-latency communication
between cyber-physical HITI systems. However, human-AI teaming presents several challenges that are yet to be
addressed, despite the many advancements that have been made towards human-AI teaming. Allowing human
stakeholders to understand AD’s decision-making process is a novel challenge. Artificial Intelligence (AI) needs to
adopt diversified human understandable features, such as ethics, non-biases, trustworthiness, explainability, safety
guarantee, data privacy, system security, and auditability. While adopting these features, high system performance
should be maintained, and transparent processing involved in the ‘human intelligent-things teaming’ should be
conveyed. To this end, we introduce the fusion of four key technologies, namely an ensemble of deep learning,
6G, IoT, and corresponding security/privacy techniques to support HITI. This paper presents a framework that
integrates the aforementioned four key technologies to support Al-based Human Intelligent-Things Interaction.
Additionally, this paper demonstrates two security applications as proof of the concept, namely intelligent smart
city surveillance and handling emergency services. The paper proposes to fuse four key technologies (deep learning,
6G, IoT, and security and privacy techniques) to support Human Intelligent-Things interaction, applying the
proposed framework to two security applications (surveillance and emergency handling). In this research paper,
we will present a comprehensive review of the existing techniques of fusing security and privacy within future
HITT applications. Moreover, we will showcase two security applications as proof of concept that use the fusion
of the four key technologies to offer next-generation HITI services, namely intelligent smart city surveillance and
handling emergency services. This proposed research outcome is envisioned to democratize the use of AI within
smart city surveillance applications.
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1 Introduction
1.1 Overview

Advanced technologies, such as the Internet of Things (IoT), Artificial Intelligence (AI), and 6G
network connectivity, have become an integral part of the civilized modern lifestyle and how businesses
are run [l]. Yet, there are some obstacles to completely relying on them, especially when human
judgment is required to assess certain values, such as safety, ethics, and trustworthiness. Therefore,
a near real-time Human Intelligent-Things Interaction (HITI) application is an emergent challenge.
The current research work will try to resolve the aforementioned challenges. One way to do this is
by allowing humans to understand how decisions are made by the HITI algorithms. This could be
achieved by establishing HITI processing transparency to eliminate the Blackbox syndrome of the
processing step. Understandability between humans and the edge processing endpoints must also be
established to support HITI processing transparency.

A fusion of advanced technologies is used in the current research work to enable a clear
understanding of non-functional processing features, such as ethics, trustworthiness, explainability,
and auditability. Hence, this research investigates the possibility of building edge GPU devices that
can train and run multiple ensembles of deep learning models on different types of edge IoT nodes
with constrained resources. In addition, a 6G architecture-based framework will be built to fuse edge
IoT devices and an ensemble of GPU-enabled deep-learning processing units. This framework will be
supported with edge 6G communication capability [2], edge storage system [3], and system security
and data privacy techniques. As a proof of concept, a smart city surveillance application and handling
emergency services will be implemented to showcase the research idea.

1.2 Research Main Objectives

e Study the 6G architecture and design a framework that allows intelligent fusion of IoT and deep
learning surveillance applications within a smart city.
e Study the fusion of diversified types of IoT devices that can leverage the advantage of deep
learning and 6G network convergence.
e Study supervised, unsupervised, and hybrid deep learning models and their ensemble techniques
that considers:
e Explainable fusion at the Edge Node
e Explainable fusion in the Cloud
e Study different security and privacy models that will allow IoT devices and edge learning models
to take part in smart city surveillance applications.
e Finally, the following four dimensions, 6G network characteristics, fusion of IoT devices, the
ensemble of human understandable and explainable deep learning models, and security/privacy
dimensions, will be leveraged to develop two smart city surveillance applications.

1.3 Research Secondary Objectives
The proposed system will bring the following benefits:

1. The implemented framework will make an integrated system that is the first of its kind,
integrating 6G, Deep Learning, 10T, and Security and Privacy Approaches.
2. The framework will showcase deep learning-assisted
a) Edge-to-cloud secure big data sharing
b) Live dashboard
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c) Live alerts
d) Live events
3. The framework will showcase next-generation demonstrable Al-based services to different
stakeholders, such as city offices and ministries, for further technology transfer.

1.4 Statement of the Problem
In this research, we will address the following challenges:

1. While deep learning models run on a cloud GPU, and since data security and privacy are
essential for smart city applications, edge GPU devices should be able to run deep learning
models on IoT nodes that have constrained resources. Running multiple deep-learning models
on the same GPU node is even more challenging. In the current research work, the methods
that will allow us to run multiple ensembles of deep learning models on edge nodes with
constrained resources will be investigated and presented. This will allow each edge node to
detect multiple smart city surveillance events.

2. Since 6G offers massive IoT connectivity with microseconds of latency between any two
endpoints. Some key features of 6G include software-defined security, software functions
virtualization, narrowband IoT [4], and SD-WAN [5]. Results for the two selected smart city
applications will be shared.

3. Finally, we will present approaches that will allow Al-based applications to integrate with IoT,
deep learning, and 6G to support human-Al interaction.

1.5 Related Works

As mentioned above, this paper is based on the fusion of several key technologies, namely deep
and edge learning, which deduce intelligence. The 6G network allows for ultra-fast communication
between [oT and cyber-physical systems while maintaining relatively low latency. The deep learning
and IoT fields have been extensively studied in many books and papers [6]. The reader should refer
to the surveys [7-9] for a detailed overview of these two fields. In this section, we focus on the related
works in the newly emerging fields of 6G wireless networks and deep learning on edge devices.

1.5.1 6G Networks

The number of intelligent devices connected to the internet is increasing day by day. This
requires more reliable, resilient, and secure connectivity to wireless networks. Thus, a wireless network
beyond 5G (i.e., 6G) is essential for building connectivity between humans and machines [10-12].
Moreover, recent advances in deep learning support many remarkable applications, such as robotics
and self-driving cars. This increases the demand for more innovations in 6G wireless networks.
Such networks will be needed to support extensive Al services in all the network layers. A potential
architecture for 6G was introduced in [13]. Many other works also describe the roadmap towards 6G
[14-16]. Zhang et al. [17] discussed several possible technology transformations that will define the 6G
networks. Additionally, many recent applications are now using 6G to upgrade both performance and
service quality [18-21]. Some other noteworthy research that focuses on 6G can be reached at [22-26].

1.5.2 Deep Learning on Edge Devices

Deep learning models have achieved excellent accuracy in several practical applications [27-29],
such as speech recognition/generation and motion detection/analysis. In many situations, deep learning
models must be trained and deployed on edge devices, such as in [30]. This is important as it allows
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to achieve the personalized, responsive, and private learning. This task is challenging since it requires
learning the value of millions of parameters by performing a huge number of operations using simple
edge devices with limited memory and computation power. Thus, it is impossible to benefit from the
great power of deep learning applied on edge devices without either compressing or distilling the large
deep learning model.

The compression of an already-trained model is done using weights sharing [31], quantization
[32], or pruning [33,34]. It is also possible to combine more than one of these compression techniques
35]. However, the compressed models cannot be retrained to capture user-specific requirements, nor
can they be retrained to capture new data available at runtime. The distillation approaches are based
on knowledge transfer using knowledge distilled from a termed teacher (a cloud-based deep model)
to improve the accuracy of a termed student (an on-device small model) [36—39]. The distillation
approaches suffer from limited accuracy [40,41] and the undefined training speed of the model to
reach an acceptable accuracy. Moreover, these approaches assume that all required training data is
available at the training time. It is also assumed that the tasks for the student and the teacher remain
the same. However, both assumptions are not realistic in practice. The concerning limitations in the
current studies are summarized in Table | for easier readability and reference. Some other noteworthy
research that uses deep learning on edge devices are [42,43].

Table 1: Existing studies limitations

Feature Limitations in existing studies
Deep learning training and deployment on edge e Values of parameters must be known
devices beforehand.

e A huge number of operations are
required using simple edge devices.

e Limited memory and computation
power.

e Must compress or distill large deep
learning models.

Deep learning models compression e Cannot be retrained to capture
user-specific requirements.

e Cannot be retrained to capture new data
available at runtime.

Deep learning models distillation e Limited accuracy.
e Undefined model training speed.

e All required training data must be known
beforehand.

The next section discusses the research methodology and design that explains advanced archi-
tectures in communication technologies, secure big data sharing and transmission techniques, and
advanced deep learning algorithms that can support HITI. In addition, this section demonstrates
a use-case scenario that explains the incorporation of human-understandable features (i.e., ethics,
trust, security, privacy, and non-biases) in the use of Al for HITI applications. In this section, the
framework design is demonstrated via a high-level diagram that shows all employed technologies
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required to run the research project implementation. It also shows the techniques used for preserving
human-Al interaction data security and privacy. It talks about the project implementation of two
types of services: smart city surveillance and emergency handling scenarios. After that, research
implementation is tested, and results are discussed and evaluated using evaluation measures, such as
accuracy, recall, precision, and F1 score. Assessment of the usage of edge learning and the provenance
of using blockchain is presented in this section. The last section summarizes the research paper in
conclusion and identifies potential future works.

2 Methodology & Framework Design

Recent advancements in Al, IoT, and 6G communications have shown promising results in the
HITI applications. What was perceived as a computer in the HITI loop is now replaced with several
technologies. The computing part of the HITI can now be accomplished through IoT devices that
can carry out complex computing tasks. Recent IoT devices come with greater memory modules, high
performance CPU, GPU, and RAM. Many sensors can be added through expansion slots. The [oT
devices are small in form factor, and hence, can be deployed at any location where computing tasks
need to be carried out. Examples of deployment are human body area networks, smart homes, smart
buildings, industrial control systems, within vehicles, and virtually anywhere. In parallel, the cloud
infrastructure has also matured to a new level. IoT data can now be sensed at its origin, parsed by
the edge computing devices, and important phenomena can be deduced. In addition, carefully crafted
an amount of local data or decisions can be shared with the cloud providers for further processing
or storage. This section discusses the advanced technologies employed in the current research. It also
discusses the framework design at a high-level.

2.1 Proposed Research Background

The adopted novel technologies include 6G connectivity architectures that improve the data
exchange between data sources and cloud services within a few milliseconds of latency. In addition,
HITI-supported deep learning algorithms are adopted to form the fusion of deep edge learning models
that can be used for surveillance and emergency situations. Real-time video analytics techniques
are also discussed since emergency handling scenarios are usually captured in real time and should
be dealt with swiftly. A use-case scenario is demonstrated to explain the feasibility of using Al for
HITT applications to leverage human understandable features (i.e., ethics, trust, security, privacy, and
non-biases).

2.1.1 Network Connectivity

Recent advancements in communication technologies have brought forth from 4G all digital
to 5G mass connectivity to 6G mass autonomy. This novel network connectivity advancement has
opened the door to innovative and rich HITI, such as the quality of service, experience, and trust
[44]. Fig. 1 shows fusion scenarios at different layers where intelligent things can stack-up and provide
rich, personalized emergency services for humans. There is an earlier notion that cloud computing
infrastructure is overly distant from data sources, which is used to be a concern with respect to the
HITT applications’ quality of service. The data privacy and security when shared with third-party
cloud providers was also a concern of having remote data sources. In recent advancements in 5G,
beyond 5G, and 6G communication networks, the gap between the source of the data at the edge and
the cloud has diminished [45]. Massive amounts of data can travel between any two points around the
world within milliseconds or even less. This high-speed communication channel has opened the door
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of a tactile internet for human-computing device interactions. Fig. 2 shows the fusion of different
entities form the HITI ecosystem. Al is one of the areas that has taken the full benefit of this ultra-
low latency and massive bandwidth communication [13]. Due to the availability of massive number of
datasets, very high bandwidth communication, availability of a massive memory and GPU, innovative
Al applications have been developed and proposed by researchers. Even the Al processes can now be
performed at the edge nodes [40].
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Figure 2: Fusion of communication entities within HITI ecosystem

2.1.2 Deep Learning

Deep learning algorithms supporting a very large number of hidden layers can now be run on
edge devices within smart homes or around human body area networks [47]. Fig. 3 shows the next
generation deep learning algorithms that can support HITI. Fig. 4 shows a sample HITI emergency
healthcare application where diversified types of IoT are attached with Al-enabled edge devices. The
edge nodes leverage GPUs to process deep learning algorithms developed for tracking different quality
of life (QoL) states of an elderly person. The edge node hosting deep learning algorithms are trained
to understand the emergency needs of an elderly person and provide the necessary services [48]. The
subject can interact with the AT algorithms through natural user interfaces, such as gesture, speech,
brain thought, and other channels.
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Figure 3: Fusion of deep edge learning models to support surveillance and emergency situations
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Figure 4: Fusion of human intelligence and Al interaction for emergency health applications within a
smart city

2.1.3 AI Algorithms Understandability

While AT algorithms have the potential to be used with HITI applications, researchers have tried
to address several related concerns. For example, if an Al algorithm is used within a safety-critical
industrial system, can humans interacting with the Al device trust the algorithm? How to make sure
that the Al algorithm is not compromised or leaking training data to the algorithm provider? The
Blackbox nature of the existing Al algorithms does not provide evidence about the inner details
regarding how the input was processed and how the algorithm came to the intermediate and final
decision. The current research adopts a new generation of Al algorithms that try to add explainability,
human-like ethics, trust, security, privacy, and non-biases options built-in within the AI algorithm
[49]. This will allow the human actors to query and interact with the Al and reason with the working
principles and the machine’s decision-making processes. The specific measures that could be taken to
ensure these human-like features are listed in Fig. 5. Some of them are adopted in the current research,
such as:
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Preserving dataset privacy using federated learning.
Secure computing environment at the could.

Securing training datasets from adversarial attacks.
Securing algorithmic models from adversarial attacks.
Blockchain-based provenance.
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Figure 5: Fusion of different types of Al with security and privacy

By avoiding the Blackbox syndrome during model development, the Al algorithm could be
explainable, auditable, and debuggable. Focusing on datasets, models, and computing environment
security, in addition to encryption mechanisms, helps satisfy features like safety, privacy-awareness,
and responsibility. Measures like differential privacy, Blockchain-based provenance, and homomor-
phic encryption support non-biases and trustworthiness. Fig. 6 shows a scenario in which human
intelligence interacts with an Al that understands human semantics. This semantic Al would bring
trust in human subjects and will convince the HITI application designers to democratize Al for more
and more critical applications.

Smartphone Edge-loT
Intelligence Intelligence Intelligence

Fusion of Intelligence (Detect, Recognize, React)
| Evens | Objects.

Figure 6: Fusion of human intelligence with edge Al for deducing different types of objects and event
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2.1.4 Al-Enabled Fusion Scenarios

To make the HITI application near real-time, the human and the underlying application need to
process the end-to-end data within milliseconds. In this case, the human perceives that the application
is responding in real-time. 5G showed hope by supporting very low latency, high reliability, very high
bandwidth, low response time and ability to handle a massive number of IoT devices within a square
kilometer. In addition, 5G introduced virtualization of network functions, edge caching, software
defined networks, network slicing, directional antenna, and so on. Using 5G networks, the underlying
HITI applications can reserve the network resources on the fly. Lately, researchers started studying
the shortcomings of 5G, which has led to research terms such as “Beyond 5G” and “6G”.

For example, one of the limitations of the 5G networks is that the physical layer frequency
allocation, bandwidth reservations, network slicing and other virtualization parameters that need to
be manually configured, which is very inefficient for a complex system initialization. Hence, 6G is
proposed, which will inherently be maintained by the AI algorithms [17]. Different 6G radio access
networks, resource allocations, efficient spectrum allocation, security functions virtualization, network
slice configuration, and other processes will be managed by the built-in Al algorithms.

Fig. 7 shows the Al-enabled 6G properties, such as latency below 0.1 milliseconds, reliability on
the order of nine 9 s, and devices having zero energy usage [50]. 6G is expected to support subnetworks
with throughput exceeding 100 Gbps within subnetwork and around 5 Gbps at the network edge. 6G
is expected to accommodate 10 times IoT devices having precision of less than 1% missed detection
and false positives with location accuracy on the order of centimeter. All these features are expected
to offer a tactile internet experience and push for innovative HITT applications [44].

>100 Gbps

<1% missed detection

Figure 7: 6G for smart city HITI applications

As shown in Fig. 8, 6G will allow User Plane (UP) functions that provide personalized qualities
of service and experience-related functionalities with the help of Al functional plane. The Control
Plane (CP) functionalities use Al algorithms that ensure the network functions, security functions,
user mobility, and other control mechanisms to support the UP requirements. The 6G will use built-
in Al plane functions to offer custom, dynamic, and personalized network slices that will serve the
HITI applications’ needs [13]. Al-based Multiple-Input Multiple-Output (MIMO) beam-forming will
use the needed bandwidth only based on the HITTI vertical. Network slices and network functions are
virtually configured according to the QoS needed.

As shown in Fig. 9, 6G will use intelligence to manage applications from application to physical
Operating System Interface (OSI) layers [51]. Intelligent computing offloading and caching can be
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managed by application layer Al algorithms. Intelligent traffic prediction can be done by transport
layer AT algorithms. Traffic clustering can be done by employing Al algorithms in the network layer.
Intelligent channel allocation can be performed by a datalink layer AI algorithm. Fusion of OSI
layers can also be done to offer hybrid services. For example, physical and datalink layers can be
jointly optimized by Al algorithms to offer adaptive configuration, network, and datalink layers.
Such fusion can offer radio resource scheduling, network, and transport layers can offer intelligent
network traffic control, while the rest of the upper layers offer data rate control. 6G will also use Al
algorithms at different metaphors, e.g., Al for edge computing and cloud computing layers. At the
edge computing layers where sensing takes place, intelligent control functions and access strategies
are managed by Al algorithms. In the fog computing layer, intelligent resource management, slice
orchestration, and routing are managed by Al algorithms. Finally, in the cloud computing layer, i.e.,
service space, computation and storage resource allocation are performed by Al algorithms.
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Plane Functions

Fusion of

User Plane
Functions

Figure 8: Fusion of deep learning within 6G framework
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applications
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2.1.5 Al-Enabled 6G Communication

Leveraging the Al-enabled 6G communication architecture, future HITI applications will be able
to offer many real-time video analytics. As shown in Fig. 10, IoT devices, such as camera sensors, will
be able to process live video scenes, analyze the scene and infer objects, events and generate alerts and
reports. For example, if the requirement of underlying video analytics is greater than 30 frames per
second on a 4K video stream, the 6G control plane will employ Al to provide the network quality of
service through the right network slice [52].
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Figure 10: 6G intelligent network will allow real-time and live Al-based HITI surveillance applications

2.2 Framework Design

This section discusses the framework architecture developed to run the implementation of the
current research project. All advanced technologies and techniques discussed in the previous section
are incorporated into this framework design. This section also describes the virtualization framework
of the 6G secure functions as a means of preserving human-Al interaction, data security and privacy.

2.2.1 Overall Framework Architecture

In this section, the general design of the framework is discussed. FFig. 11 shows the overall proposed
framework. The framework will employ a set of edge IoT sensors, a set of GPU-enabled edge Al
processing units, edge 6G communication capability, and edge storage. Raw IoT sensors will be
processed at the edge node based on the requirements. Events will be detected by the edge node hosting
the deep learning algorithms. The outcomes will be sent to the Cloud Fast API [53], which will enqueue
the client raw files as well as detected results.

Some heavy computing needs will be addressed at the server-side GPU and resources. The server-
side architecture will use RabbitMQ [54] for managing the tasks, engaging other components, such
as Celery Worker processes [55], Redis in-memory task processor, web server, Content Management
System (CMS) server [56], and streaming server. To perform the logging and search engine, elastic
stack is used. Security and privacy of the smart city data containing human-Al interaction is of the
utmost importance. Hence, in this paper, we will be using the end-to-end encryption state. For data
privacy, deep learning model computation, and sharing of the results, differential privacy has been
applied as a security and privacy check mechanism.

Fig. 12 shows the proposed security and privacy framework that will be added as a 6G secure
functions’ virtualization framework. Starting from training the raw dataset, model creation, model
deployment, and inferencing, a complete pipeline will be based on security and privacy. Finally, the
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deep learning models will ensemble a set of edge and cloud capable models. This will allow targeting
any type of GPU capability within the complete end-to-end smart city application scenario. Fig. 13
shows different open-source frameworks that we have researched, tested, and finally considered in
this research.
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Figure 11: Overall general architecture
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Figure 12: Security and privacy models that has been studied, implemented, and tested
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Figure 13: Families of edge learning models that has been studied, implemented, and tested

3 Implementation, Test Results, and Discussion

This section demonstrates the implementation of 17 smart city surveillance scenarios, in addition
to multiple emergency handling scenarios. Implementation testing and results discussion is then
carried out to evaluate the efficiency, reliability, and resilience of the proposed framework and system
architecture in real world applications. Also, usage of edge learning and privacy and trustworthiness
has been tested. The provenance is also assessed using blockchain to test the chain of trust between all
entities involved within a smart city application.

3.1 Implementation

As for proof of concept, we have implemented two types of services where human and Al teaming
has been realized: namely intelligent smart city surveillance and handling emergency services. For
pre-training, two classification learning algorithms were used: Logistic Regression (LR) and Support
Vector Machine (SVM) classification models for selective feature extraction and recognition. To
improve the classification accuracy, the number of iterations were increased, and the model parameters
were continuously observed and adjusted for best performance. Hence, input images shall be accurately
classified into a specific class based on the features extracted and recognized.

The deep learning model training step is done through running training data iteratively on the
Convolutional Neural Network (CNN) model while updating the parameters between the Neural
Network layers for higher detection accuracy. Those parameters represent the weights assigned to
each neuron in each hidden layer. In the input Neural Network layer, neurons represent image features.
Hence, adjusting the parameters or weights is reflected in how accurately the model can recognize an
image feature. The data extracted from the training data (images) at this stage are Internal Neural
Network rules or intricate patterns that enable the algorithm to learn the analysis process of those
images and learn how to detect it independently in the future. This deep learning model configuration
proved to improve the classification performance compared to traditional feature selection methods.

3.1.1 Smart City Surveillance Implementation Scenarios

Seventeen different scenarios of smart city surveillance were targeted and chosen where the
proposed technologies are used. In Fig. 14, the picture shows the live human crowd count in the
prophet’s mosque in which the proposed system can detect the number of people, any violent
activity, etc.
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Figure 14: Deep learning crowd-based count

Figs. 15 and 16 show surveillance of different suspicious objects, such as drones, ships, mines, and
separate these objects of interest with different labels, such as harmless (i.e., drones) or regular (i.e.,
birds) objects.

ship 0,98

Figure 15: Deep learning-based suspicious object detection

Source Recognized

]

Figure 16: Deep learning-based drone detection

Figs. 17 and 18 show a scenario in which public places (i.e., train station, airport, mosque) areas
can be monitored for luggage that is not accompanied by any human.

Fig. 19 shows deep learning-based surveillance on satellite imagery.
Figs. 20-22 show live surveillance of a construction site and airspace for possible violations.
Figs. 23 and 24 show live surveillance capability of the city’s public spaces.
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Figure 18: Deep learning-based luggage detection

Source Recognized
—eg -

Figure 19: Deep learning-based detection from satellite imagery

Source

Figure 20: Deep learning-based helmet detector

Figs. 25-28 show our deep learning model running on drone images and video feed to detect
objects of interest.

Figs. 29 and 30 show deep learning-based surveillance on satellite imagery to detect airplanes,
bridges, and other objects of interest.
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Figure 21: Deep learning-based safety cloth detector

Source Recognized

Figure 22: Deep learning-based airspace violation detector

Figure 24: Deep learning-based object detection from live stream

JIOT, 2024, vol.6



JIOT, 2024, vol.6

Figure 25: Deep learning-based object detection from video

Source Recognized

Figure 27: Deep learning-based parked car detection from video
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Figure 28: Deep learning-based social distancing alert

59



60 JIOT, 2024, vol.6

Source

Figure 29: Deep learning-based trucks detection from satellite imagery

Source Recognized

Figure 30: Deep learning-based bridge detection from satellite imagery

Finally, Fig. 31 shows the proposed live video analytics on social distancing in Mecca Grand
Mosque.
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Figure 31: Human—explainable Al teaming to handle smart city surveillance scenarios

3.1.2 Emergency Handling Scenarios

We have developed different emergency handling situations in which deep learning, edge learning,
IoT devices, cloud and 6G architecture work seamlessly as shown in Fig. 11. Figs. 32 to 38 show 8
diversified types of emergency handling scenarios in which human-Al teaming scenarios have been
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implemented and tested. For example, Fig. 32 shows a crowd sensing scenario in which a developed
citizen application is being used to capture an emergency car accident and share the captured image
with the emergency 911 department. The evidence that is shared with the 911 department for further
action is also included.

Source Recognized

Figure 32: Deep learning-based accident detection

Fig. 33 shows video analytics describing the automated emergency environment with the 911
department.

Figure 33: Deep learning-based accident and human injury detection

Fig. 34 shows a detailed report generated by our developed deep learning algorithms to support
description of emergency events by the 911 department.
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Figure 34: Deep learning-based fire and smoke detection

Similarly, Fig. 35 represents an emergency flood event.
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Source

Figure 35: Deep learning-based flood detection

Fig. 36 shows the description of a fire event at a gas station.

Smoke + Fire + Human + Car Delet

Figure 36: Deep learning-based fire detection

Fig. 37 shows the detection and reporting of a gun violence scene.

Source Recognized

Figure 37: Deep learning-based gun detection

Fig. 38 shows the spillage of oil as a disaster scenario.
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Figure 38: Deep learning-based oil spillage detection

3.2 Test Result

Test strategies of different surveillance and emergency-handling scenarios are discussed in this
section as shown in Figs. 14 to 38. In all test scenarios, we have obtained the needed types of
datasets from both open source and personally collected from different experiments. The used dataset
is a multi-class dataset. The testing dataset is an independent dataset personally collected from
different experiments.

Diversified types of deep learning algorithms were used, including supervised, semi-supervised,
unsupervised, federated learning, and other types as appropriate. We have also used transfer learning
for certain cases. Some of the algorithms that have been used in this experiment are presented as well.
CNN performs better when used for classifying images with a larger training dataset. But it may not
achieve well in the case of a very small dataset. In the case of a small amount of training data available,
CNN is implemented along with Fuzzy Neural Network (FNN) for better performance. As shown in
Fig. 39, the output of the CNN is used as feature maps for the fuzzifier layers.
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Figure 39: Human—explainable Al teaming to handle an emergency situation
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For example, two experiments have been done to compare the performance of Convolutional
Fuzzy Neural Network (CFNN) with a basic CNN model. Both models have the same CNN
architecture except for CFNN, which has additional FNN layers. Experiment 1 was done with a small
dataset containing 1500 smart city images. 1080 images were used for training, 120 for validation and
300 for testing, shown in Table 2.

Table 2: Experiment 1 small dataset

Emergency scenarios Non-emergency scenarios Total
Train 547 533 1080
Validation 62 58 120
Test 141 159 300
Total 750 750 1500

In this case, FCNN performs better with test accuracy of 95.67% and a processing speed of 56.21
Frames Per Second (FPS), whereas CNN has test accuracy of 94.67% and a processing speed of 54.43
Frames Per Second (FPS). FCNN also has higher recall, precision and F1 scores than CNN with this
small dataset shown in Table 3. The experiment trials are compared with each other in further detail
in Fig. 40. A detailed report is also provided in Figs. 41 and 42.

Table 3: Performance comparison between fuzzy CNN and CNN with small dataset

Train Validation Test
CFNN CNN CFNN CNN CFNN CNN
Recall 1.0 1.0 0.9655 0.9655 0.9371 0.9182
Specificity 1.0 1.0 0.9677 0.9677 0.9787 0.9787
Accuracy 1.0 1.0 0.9667 0.9667 0.9567 0.9467
Precision 1.0 1.0 0.9655 0.9655 0.9803 0.9799
F1 score 1.0 1.0 0.9655 0.9655 0.9582 0.9481
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Figure 40: (Continued)
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Figure 40: Confusion matrix comparison

In Experiment 2, the dataset had a total of 4000 samples. In this experiment, with an enlarged
dataset, CNN slightly outperformed FCNN during testing in terms of specificity, accuracy, precision,
and F1 score, and processing speed on FPS. Data distribution and performance measures for this
experiment are shown in Figs. 41 and 42. CNN has achieved testing accuracy of 94.75% and a
processing speed of 55.25 FPS, whereas CFNN has the closest testing accuracy of 94.5% and a
processing speed of 55.21 FPS. So, in the case of a small dataset, CFNN might perform better than
CNN. If there is enough data available for training, CNN might be sufficient. According to Table 4,
comparisons between FCNN and CNN have shown that the FCNN can classify images faster than
CNN in terms of computation time when dealing with smaller datasets (<3000 images). For bigger
dataset sizes, CNN performs a faster classification.

3.2.1 Assessing the Provenance Using Blockchain

We have measured the delay in accessing the deep learning applications after introducing the
provenance of different trustworthy entities within our framework. It is extremely important that all
the entities involved within a smart city application are properly privacy-protected and can have trust
in each other. Fig. 43 shows the delay introduced by the Peer-To-Peer (P2P) system, which is tolerable
for smart city surveillance and emergency handling applications.

3.2.2 Assessing the Usage of Edge and Federated Learning

Fig. 44 shows the experimental result of implementing federated learning on edge devices. As
shown in the figure, both training loss and accuracy seem to have degraded due to the introduction
of federated learning through a blockchain-based mediator. However, the introduction of privacy
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preservation and anonymity add more value to the smart city surveillance and emergency handling

scenarios.
Convolutional Fuzzy Neural Network
Classification Report for Train Data
precision recall fl-score support
5] 1.00 1.08 1.00 547
1 1.08 1.08 1.00 533
accuracy 1.00 1080
macro avg 1.00 1.008 1.00 1080
weighted avg 1.00 1.00 1.00 1080
Recall on Train Data: 1.e
Specificity on Train Data: 1.0
Accuracy on Train Data: 1.8
Precision on Train Data: 1.8
F1 Score on Train Data: 1.0
Classification Report for Validation Data
precision recall fl-score support
2] 0.97 0.97 0.97 62
1 0.97 9.97 a.97 58
accuracy a.97 120
macro avg 9.97 9.97 @.97 120
weighted avg 08.97 9.97 @.97 120
Recall on Val Data: ©.9655
Specificity on Val Data: ©.9677
Accuracy on Val Data: ©.9667
Precision on Val Data: @.9655
F1 Score on Val Data: ©.9655
Classification Report for Test Data
precision recall fl-score support
2] 9.93 0.98 0.96 141
1 9.98 9.94 a.96 159
accuracy @.96 300
macro avg 9.96 9.96 @.96 380
weighted avg 0.96 9.96 9.96 300
Recall on Test Data: .9371
Specificity on Test Data: ©.9787
Accuracy on Test Data: @.9567
Precision on Test Data: ©.9803
F1 Score Test Data: 0.9582

Convolutional Neural Network
Classification Report for Train Data
precision recall fl-score support
a 1.00 1.08 1.88 547
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accuracy 1.60 les8e
macro avg 1.00 1.08 1.0@ lese
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Recall on Train Data: 1.0
Specificity on Train Data: 1.0
Accuracy on Train Data: 1.0
Precision on Train Data: 1.8
F1 Score on Train Data: 1.0
Classification Report for Validation Data
precision recall fl-score support
@ .97 0.97 0.97 62
1 @.97 8.97 0.97 58
accuracy 0.97 120
macro avg @.97 .97 0.97 120
weighted avg @.97 0.97 0.97 120
Recall on Val Data: @.9655
Specificity on Val Data: @.9677
Accuracy on Val Data: ©.9667
Precision on Val Data: @.9655
F1 Score on Val Data: ©.9655
Classification Report for Test Data
precision recall fl-score support
@ 0.91 0.98 0.95 141
1 @.98 9.92 9.95 159
accuracy 9.95 380
macro avg @.95 .95 9.95 380
weighted avg @.95 0.95 0.95 300
Recall on Test Data: .9182
Specificity on Test Data: ©.9787
Accuracy on Test Data: ©.9467
Precision on Test Data: ©.9799
F1 Score Test Data: ©.9481

Figure 41: Details report (for small dataset with 1500 samples)

Figs. 45 and 46 demonstrate the training performance for drone-based deep learning model
development using different techniques. Fig. 45 presents the comparison between the rates of the
true positive and false positive rates. Fig. 46 presents different capturing techniques. In the end, it
is important to note that no matter how sophisticated a deep learning model can be, there are certain
limitations that it is yet to overcome. Such a limitation is the mandatory availability of enough training
data. Some emergency phenomena (earthquakes, hurricanes, etc.) or behaviors don’t happen enough
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times to collect sufficient data for training, validation, and testing to be able to detect their future
occurrences. In addition, some complex programs, when used to train deep learning algorithmic
models, create a highly resource-consuming model with a huge size. On the other hand, some complex
programs are simply unlearnable due to extreme complexity. Hence, despite the promising results
of this research work, its scalability is subject to the complexity of the problem at hand, and the

availability of sufficient training data.

Convolutional Neural Network

Convolutional Fuzzy Neural Network
Classification Report for Train Data
precision recall fl-score  support
8 1.00 1.00 1.00 1442
1 1.00 1.008 1.00 1438
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Precision on Train Data: 1.8
F1 Score on Train Data: 1.0
Classification Report for Validation Data
precision recall fl-score  support
a 9.92 9.97 9.94 168
1 2.96 9.98 @.93 152
accuracy @.94 320
macro avg 9.94 9.94 9.94 320
weighted avg 0.94 9.94 9.94 320
Recall on Val Data: ©.9013
Specificity on Val Data: @.9702
Accuracy on Val Data: @.9375
Precision on Val Data: ©.9648
F1 Score on Val Data: ©.932
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Figure 42: Details report (for dataset with 4000 samples)
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Table 4: Computation time comparison between FCNN and CNN on various sample sizes

Sample size in # of images FCNN computation time in CNN computation time in
seconds seconds

500 0.02 0.04

1000 0.05 0.07

2000 0.12 0.13

3000 0.18 0.18

4000 0.25 0.23

5000 0.31 0.28

6000 0.36 0.34

Mean 0.12925187 0.14630137
Standard deviation 0.11962527 0.10161954
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Figure 43: Service access delay posed by the introduction of Blockchain-based provenance
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Figure 44: Performance of training for edge learning applications through federated learning
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Figure 46: Training performance for deep learning model development; (a) satellite-based, (b) human-
based, (c) other objects of interests shown in Figs. 14 to 30, and (d) for emergency events shown in
Figs. 32 to 38

4 Conclusion & Future Work

The proposed system presents a novel approach that supports secure HITI interaction via the
intelligent fusion of IoT, deep learning, and 6G network technologies. This approach employs an
innovative method that allows the running of multiple ensembles of deep learning models on resource-
constrained edge nodes. In this framework, each edge node can detect multiple smart city surveillance
events. The events’ detection performance proved to be ~95% accurate, which seems to be sufficient
to build trust in these Al-based applications. This considerably high accuracy gives system developers
a green light to apply the proposed system to many other real-life scenarios.

In addition, the deep learning algorithms employed in the current research project allowed the
framework to accommodate edge-to-cloud secure big data sharing, live dashboard, live alerts, and live
events. Therefore, these Al-based services with such a high detection algorithm accuracy ratio pave the
way towards incorporating advanced technologies in places such as smart city initiatives, government
offices, and emergency response trams. Lastly, since such usage of technology in sensitive settings
mandates absolute privacy and anonymity, robust security and privacy approaches are adopted to
allow IoT devices and edge learning models to take part in sensitive Al-based applications, such as
smart city surveillance.

Acknowledgement: Special thanks to Dr. Ahmed Elhayek for his input in regard to the Al aspect of
this work.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: Mohammed Abdur Rahman established the research idea and execution. Ftoon
H. Kedwan and Mohammed Abdur Rahman shared fair writing responsibility. All authors reviewed
the results and approved the final version of the manuscript.

Availability of Data and Materials: The data and materials used collected from personal experiments
and hence will not be supplied for public access.



JIOT, 2024, vol.6 71

Ethics Approval: The accomplished work does not involve any humans, animals, or private and
personal data. Therefore, no ethical approvals were needed.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

(1]

(2]
(3]

(4]

(5]

(6]
[7]
(8]
]
[10]

(1]
[12]
(13]
(14]

[15]

[16]

[17]

D. Vrontis, M. Christofi, V. Pereira, S. Tarba, A. Makrides and E. Trichina, “Artificial intelligence, robotics,
advanced technologies and human resource management: A systematic review,” Int. J Hum. Resour.
Manage., vol. 33, no. 6, pp. 1237-1266, May 2022. doi: 10.1080/09585192.2020.1871398.

W. Jiang et al., “Terahertz communications and sensing for 6G and beyond: A comprehensive review,”
IEEE Commun. Surv. Tutorials, Apr. 2024. doi: 10.1109/COMST.2024.3385908.

C. Li, L. Wang, J. Li, and Y. Fei, “CIM: CP-ABE-based identity management framework for
collaborative edge storage,” Peer Peer Netw. Appl., vol. 17, no. 2, pp. 639-655, Mar. 2024. doi:
10.1007/s12083-023-01606-6.

R. Gnanaselvam and M. S. Vasanthi, “Dynamic spectrum access-based augmenting coverage in nar-
row band Internet of Things,” Int. J Commun. Syst., vol. 37, no. 1, Jan. 2024, Art. no. €5629. doi:
10.1002/dac.5629.

P. Sege¢, M. Moravcik, J. Uratmova, J. Papan, and O. Yeremenko, “SD-WAN-architecture, functions and
benefits,” presented at the 18th Int. Conf. Emerg. eLearn. Technol. Appl. (ICETA), Kosice, Slovenia, IEEE,
Now. 2020, pp. 593-599.

F. H. Kedwan and C. Sharma, “Twitter texts’ quality classification using data mining and neural networks,”
Int. J. Comput. Appl., vol. 178, no. 32, pp. 19-27, Jul. 2019.

S. H. Shah and I. Yaqoob, “A survey: Internet of Things (IoT) technologies, applications and challenges,”
IEEE Smart Energy Grid Eng. (SEGE), vol. 17, pp. 381-385, Aug. 2016. doi: 10.1109/SEGE.2016.7589556.
D. C. Nguyen et al., “6G Internet of Things: A comprehensive survey,” IEEE Internet Things J., vol. 9, no.
1, pp. 359-383, Jan. 2022. doi: 10.1109/J10T.2021.3103320.

S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its applications,” Comput. Sci. Rev., vol.
40, May 2021, Art. no. 100379. doi: 10.1016/j.cosrev.2021.100379.

C. D’Andrea et al., “6G wireless technologies,” The Road towards 6G: Opportunities, Challenges, and
Applications: A Comprehensive View of the Enabling Technologies, Cham: Springer Nat. Switzerland, vol.
51, no. 114, pp. 1-222, 2024.

R. Chataut, M. Nankya, and R. Akl, “6G networks and the Al revolution—exploring technologies, appli-
cations, and emerging challenges,” Sensors, vol. 24, no. 6, Mar. 2024, Art. no. 1888. doi: 10.3390/s24061888.
A. Samad et al., “6G white paper on machine learning in wireless communication networks,” Apr. 2020,
arXiv:2004.13875.

K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. J. A. Zhang, “The roadmap to 6G: Al empowered wireless
networks,” IEEE Commun. Mag., vol. 57, no. 8, pp. 84-90, Aug. 2019. doi: 10.1109/MCOM.2019.1900271.
K. David and H. Berndt, “6G vision and requirements: Is there any need for beyond 5G?,” IEEE Veh.
Technol. Mag., vol. 13, no. 3, pp. 72-80, Sep. 2018. doi: 10.1109/MVT.2018.2848498.

E. C. Strinati et al., “6G: The next frontier: From holographic messaging to artificial intelligence using
subterahertz and visible light communication,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 42-50, Aug.
2019. doi: 10.1109/MVT.2019.2921162.

F. Tarig, M. R. Khandaker, K. K. Wong, M. A. Imran, M. Bennis and M. Debbah, “A speculative study
on 6G,” IEEE Wirel. Commun., vol. 27, no. 4, pp. 118-125, Aug. 2020. doi: 10.1109/MWC.001.1900488.
Z. Zhang et al., “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE
Veh. Technol. Mag., vol. 14, no. 3, pp. 28-41, Sep. 2019. doi: 10.1109/MVT.2019.2921208.


https://doi.org/10.1080/09585192.2020.1871398
https://doi.org/10.1109/COMST.2024.3385908
https://doi.org/10.1007/s12083-023-01606-6
https://doi.org/10.1002/dac.5629
https://doi.org/10.1109/SEGE.2016.7589556
https://doi.org/10.1109/JIOT.2021.3103320
https://doi.org/10.1016/j.cosrev.2021.100379
https://doi.org/10.3390/s24061888
https://doi.org/10.1109/MCOM.2019.1900271
https://doi.org/10.1109/MVT.2018.2848498
https://doi.org/10.1109/MVT.2019.2921162
https://doi.org/10.1109/MWC.001.1900488
https://doi.org/10.1109/MVT.2019.2921208

JIOT, 2024, vol.6

M. H. Alsharif, A. Jahid, R. Kannadasan, and M. K. Kim, “Unleashing the potential of sixth generation
(6G) wireless networks in smart energy grid management: A comprehensive review,” Energy Rep., vol. 11,
pp- 1376-1398, Jun. 2024. doi: 10.1016/j.egyr.2024.01.011.

J. Bae, W. Khalid, A. Lee, H. Lee, S. Noh and H. Yu, “Overview of RIS-enabled secure transmission in 6G
wireless networks,” Digit. Commun. Netw., Mar. 2024. doi: 10.1016/j.dcan.2024.02.005.

W. Abdallah, “A physical layer security scheme for 6G wireless networks using post-quantum cryptogra-
phy,” Comput. Commun., vol. 218, no. 5, pp. 176-187, Mar. 2024. doi: 10.1016/j.comcom.2024.02.019.

A. Alhammadi ez al., “Artificial intelligence in 6G wireless networks: Opportunities, applications, and
challenges,” Int. J. Intell. Syst., vol. 2024, no. 1, pp. 1-27, 2024. doi: 10.1155/2024/8845070.

R. Sun, N. Cheng, C. Li, F. Chen, and W. Chen, “Knowledge-driven deep learning paradigms
for wireless network optimization in 6G,” IEEE Netw., vol. 38, no. 2, pp. 70-78, Mar. 2024. doi:
10.1109/MNET.2024.3352257.

D. Verbruggen, H. Salluoha, and S. Pollin, “Distributed deep learning for modulation classification in 6G
Cell-free wireless networks,” Mar. 2024, ar Xiv:2403.08563.

P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications: Vision and potential techniques,’
IEEE Netw., vol. 33, no. 4, pp. 70-75, Jul. 2019. doi: 10.1109/MNET.2019.1800418.

T. S. Rappaport et al., “Wireless communications and applications above 100 GHz: Opportunities and
challenges for 6G and beyond,” IEEE Access, vol. 7, pp. 78729-78757, Jun. 2019. doi: 10.1109/AC-
CESS.2019.2921522.

K. Zhao, Y. Chen, and M. Zhao, “Enabling deep learning on edge devices through filter pruning and
knowledge transfer,” Jan. 2022, ar Xiv.2201.10947.

A. Raha, D. A. Mathaikutty, S. K. Ghosh, and S. Kundu, “FlexNN: A dataflow-aware flexible deep
learning accelerator for energy-efficient edge devices,” Mar. 2024, ar Xiv:2403.09026.

M. Zawish, S. Davy, and L. Abraham, “Complexity-driven model compression for resource-constrained
deep learning on edge,” IEEE Trans. Artif. Intell., vol. 5, no. 8, pp. 1-15, Jan. 2024. doi:
10.1109/TA1.2024.3353157.

J. DeGe and S. Sang, “Optimization of news dissemination push mode by intelligent edge com-
puting technology for deep learning,” Sci. Rep., vol. 14, no. 1, Mar. 2024, Art. no. 6671. doi:
10.1038/s41598-024-53859-7.

W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compressing neural networks with the hashing
trick,” presented at the Int. Conf. Mach. Learn., Lille, France, Jul. 2015, vol. 37, pp. 2285-2294.

D. Kadetotad, S. Arunachalam, C. Chakrabarti, and J. -S. Seo, “Efficient memory compression in deep
neural networks using coarse-grain sparsification for speech applications,” presented at the 35th Int. Conf.
Comput.-Aided Des., ACM, Austin, TX, USA, Nov. 2016, pp. 1-8.

Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” Adv. Neural Inf. Process. Syst., vol. 2,
pp. 598-605, 1989.

S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep neural networks,” Jul. 2015,
arXiv:1507.06149.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding,” Oct. 2015, arXiv:1510.00149.

J. Ba and R. Caruana, “Do deep nets really need to be deep?,” Adv. Neural Inf. Process. Syst., vol. 27, pp.
2654-2662, 2014.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” Mar. 2015,
arXiv:1503.02531.

A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta and Y. Bengio, “FitNets: Hints for thin deep
nets,” arXiv preprint arXiv:1412.6550, vol. 1, p. 6550, Dec. 2014.

R. Venkatesan and B. Li, “Diving deeper into mentee networks,” Apr. 2016, arXiv.1604.08220.

J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation: Fast optimization network
minimization and transfer learning,” in 2017 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Honolulu, HI, USA, 2017.

i


https://doi.org/10.1016/j.egyr.2024.01.011
https://doi.org/10.1016/j.dcan.2024.02.005
https://doi.org/10.1016/j.comcom.2024.02.019
https://doi.org/10.1155/2024/8845070
https://doi.org/10.1109/MNET.2024.3352257
https://doi.org/10.1109/MNET.2019.1800418
https://doi.org/10.1109/ACCESS.2019.2921522
https://doi.org/10.1109/TAI.2024.3353157
https://doi.org/10.1038/s41598-024-53859-7

JIOT, 2024, vol.6 73

(40]

[41]

(42]

[43]

[44]

[43]

[46]

[47]

(48]

[49]

[50]

[51]
[52]

[53]

[54]
[53]

[56]

A. Benito-Santos and R. T. Sanchez, “A data-driven introduction to authors, readings, and techniques in
visualization for the digital humanities,” IEEE Comput. Graph. App., vol. 40, no. 3, pp. 45-57, Feb. 2020.
D. Berardini, L. Migliorelli, A. Galdelli, E. Frontoni, A. Mancini and S. Moccia, “A deep-learning frame-
work running on edge devices for handgun and knife detection from indoor video-surveillance cameras,”
Multimed. Tools Appl., vol. 83, no. 7, pp. 19109-19127, Feb. 2024. doi: 10.1007/s11042-023-16231-x.

N. Rai, Y. Zhang, M. Villamil, K. Howatt, M. Ostliec and X. Sun, “Agricultural weed identification in
images and videos by integrating optimized deep learning architecture on an edge computing technology,”
Comput. Electron. Agric., vol. 216, Jan. 2024, Art. no. 108442. doi: 10.1016/j.compag.2023.108442.

C. Li, W. Guo, S. C. Sun, S. Al-Rubaye, and A. Tsourdos, “Trustworthy deep learning in 6G-enabled mass
autonomy: From concept to quality-of-trust KPIs,” IEEE Veh. Technol. Mag., vol. 15, no. 4, pp. 112-121,
Sep. 2020. doi: 10.1109/MVT.2020.3017181.

X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan and X. Chen, “Convergence of edge computing and
deep learning: A comprehensive survey,” IEEE Commun. Surv. Tutorials, vol. 22, no. 2, pp. 869-904, Jan.
2020. doi: 10.1109/COMST.2020.2970550.

M. A. Rahman, M. S. Hossain, N. Alrajeh, and F. Alsolami, “Adversarial examples—security threats to
COVID-19 deep learning systems in medical IoT devices,” IEEE Internet Things J., vol. 8, no. 12, pp. 9603—
9610, Aug. 2020. doi: 10.1109/J10T.2020.3013710.

M. A. Rahman, M. S. Hossain, N. Alrajeh, and N. Guizani, “B5G and explainable deep learning assisted
healthcare vertical at the edge COVID 19 perspective,” IEEE Netw., vol. 34, no. 4, pp. 98-105, Jul. 2020.
doi: 10.1109/MNET.011.2000353.

A.Rahman, M. S. Hossain, M. M. Rashid, S. Barnes, and E. Hassanain, “IoEV-Chain: A 5G-based secure
inter-connected mobility framework for the internet of electric vehicles,” IEEE Netw., vol. 34, no. 5, pp.
190-197, Aug. 2020. doi: 10.1109/MNET.001.1900597.

H. Viswanathan and P. E. Mogensen, “Communications in the 6G Era,” IEEE Access, vol. 8, pp. 57063~
57074, Mar. 2020. doi: 10.1109/ACCESS.2020.2981745.

C. She et al, “A tutorial on ultrareliable and low-latency communications in 6G: Integrating
domain knowledge into deep learning,” Proc. IEEE, vol. 109, no. 3, pp. 204-246, Mar. 2021. doi:
10.1109/JPROC.2021.3053601.

N. Kato, B. Mao, F. Tang, Y. Kawamoto, and J. Liu, “Ten challenges in advancing machine learn-
ing technologies toward 6G,” IEEE Wirel Commun., vol. 27, no. 3, pp. 96-103, Apr. 2020. doi:
10.1109/MWC.001.1900476.

A. Khan, L. Serafini, L. Bozzato, and B. Lazzerini, “Event detection from video using answer set
programming,” in CEUR Workshop Proc., 2019, vol. 2396, pp. 48-58.

M. Emmi et al., “RAPID: Checking API usage for the cloud in the cloud,” presented at the 29th ACM Joint
Meet. Eur. Soft. Eng. Conf. Symp. Found. Soft. Eng., New York, NY, USA, Aug. 2021, pp. 1416-1426.
A. N. Aprianto, A. S. Girsang, Y. Nugroho, and W. K. Putra, “Performance analysis of RabbitMQ and
Nats streaming for communication in microservice,” Teknologi: Jurnal Ilmiah Sistem Informasi, vol. 14,
no. 1, pp. 3747, Mar. 2024.

R. Sileika and S. Rytis, “Distributed message processing system,” in Pro Python Syst. Adm., Nov. 2014, pp.
331-347.

S. M. Levin, “Unleashing real-time analytics: A comparative study of in-memory computing vs. traditional

S. Lin, C. Li, and K. Niu, “End-to-end encrypted message distribution system for the Internet of
Things based on conditional proxy re-encryption,” Sensors, vol. 24, no. 2, Jan. 2024, Art. no. 438. doi:
10.3390/524020438.


https://doi.org/10.1007/s11042-023-16231-x
https://doi.org/10.1016/j.compag.2023.108442
https://doi.org/10.1109/MVT.2020.3017181
https://doi.org/10.1109/COMST.2020.2970550
https://doi.org/10.1109/JIOT.2020.3013710
https://doi.org/10.1109/MNET.011.2000353
https://doi.org/10.1109/MNET.001.1900597
https://doi.org/10.1109/ACCESS.2020.2981745
https://doi.org/10.1109/JPROC.2021.3053601
https://doi.org/10.1109/MWC.001.1900476
https://doi.org/10.14295/bjs.v3i5.553
https://doi.org/10.3390/s24020438

	Human Intelligent-Things Interaction Application Using 6G and Deep Edge Learning
	1 Introduction
	2 Methodology & Framework Design
	3 Implementation, Test Results, and Discussion
	4 Conclusion & Future Work
	References


